
Understanding the Performance of Large
Language Model to Generate SQL Queries

Minhyuk Ko, Dibyendu Brinto Bose, Weilu Wang, Mohammed Seyam, Chris Brown
Department of Computer Science

Virginia Tech, Blacksburg, VA, USA

{minhyukko, brintodibyendu, weilu, seyam, dcbrown}@vt.edu

Abstract—Recent developments in Artificial Intel-
ligence (AI) have shifted the software development
paradigm. Past studies demonstrated how effective AI
can generate code for programming purposes. However,
to our knowledge, no prior study has been done to evalu-
ate the effectiveness of SQL queries generated by AI. We
utilized nine AI assistants to generate SQL queries. Our
results reveal that most AI assistants generate inaccurate
SQL queries, and based on the results, we provide
possible implications for SQL developers.

Index Terms—AI Programming Assistants, Usability
Study, Database Systems

I. INTRODUCTION

Structured Query Language (SQL) is one of

the most popular languages for managing relational

databases [30] and one of the most used languages

across programming in general [32]. However, the

complexity of queries and the declarative nature of

SQL can make SQL programming more difficult to

learn compared to procedural or object-oriented pro-

gramming [10]—in particular for novice and non-

expert programmers [28], [31].

To support end-user programmers handling of data

in database management systems (DBMS), various

text-to-SQL systems have been introduced to bridge

the gap between users and data by translating natural

language into queries for relational databases [14]—

nowadays often leveraging machine learning (ML) and

natural language processing (NLP) techniques [16].

For example, NaLIR is a tool that can translate natural

language, like English, to SQL queries [21].

However, current text-to-SQL systems face chal-

lenges limiting their adoption in practice. Prior

work suggests state-of-the-art approaches are inaccu-

rate, making mistakes, especially for more complex

queries [31]. Further, text-to-SQL systems can face is-

sues with usability, inhibiting their adoption. Recently,

the rapid emergence of LLMs has changed and trans-

formed various software engineering processes, in-

cluding code generation [34], code summarization [3],

translating code between different programming lan-

guages [26], and conversing with programmers to

complete software development tasks [27].

Our project extends this work by investigating

the capabilities of commercial LLM-based systems

for producing SQL queries when an English state-

ment is provided. We conduct a comparative analysis

to investigate SQL query generation across a wide

range of off-the-shelf LLM-based programming assis-

tants and AI chatbots—including ChatGPT, GitHub

CoPilot, Amazon Q Developer, Codeium, Blackbox,

CodeGeeX, Tabnine, Bing Chat, and Google Gemini.

They were chosen as they are publicly available as-

sistants without any modifications such as fine-tuning.

Our research will open up discussions on how LLM-

based systems can be used to generate SQL queries

and extend various works [17], [22] that aim to en-

hance developers’ productivity.

II. DATA COLLECTION AND EVALUATION

To investigate the text-to-SQL performance of off-

the-shelf LLM-based assistants, we first analyze the

capabilities of these systems to generate accurate SQL

queries based on natural language prompts.

A. Tool Sampling.

We used various AI programming assistants and

LLM-based chatbots to observe their capabilities to

support database development. In this paper, we define

AI programming assistants as tools that are primarily

designed to support assistance in programming, such

as GitHub Copilot [11], Blackbox [1], Tabnine [29],

Q Developer [2], and Codeium [7]. We define Large
Language Models (LLMs) as chatbots that are not

specifically intended for programming assistance, such

as ChatGPT [25], Google Gemini [12], and Bing

Chat [4]. We define AI assistants as all tools that

can assist in writing code through AI, including AI

programming assistants and Large Language Models.

B. Study Database.

We used the European Soccer Database [24], which

is one of the most popular repositories on Kaggle

[15], for our evaluation. The dataset has informa-

tion regarding more than 25,000 matches and 10,000

players from 11 European Countries with their lead

championship between seasons 2008 and 2016. The

attributes of players and teams are sources from EA

Sports’ FIFA video game series. The information

is composed in the dataset of seven tables: Coun-

try, League, Match, Player, Player Attributes, Team,

Team Attributes. Each table contains several rows

ranging from 11 to 183978 and several columns rang-

ing from 2 to 115.

359

2024 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

DOI 10.1109/VL/HCC60511.2024.00048

20
24

 IE
EE

 S
ym

po
si

um
 o

n
V

is
ua

l L
an

gu
ag

es
 a

nd
 H

um
an

-C
en

tri
c

C
om

pu
tin

g
(V

L/
H

C
C

) |
 9

79
-8

-3
50

3-
66

13
-6

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

V
L/

H
C

C
60

51
1.

20
24

.0
00

48

979-8-3503-6613-6/24/$31.00 ©2024 IEEE

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 01,2024 at 15:37:06 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Accuracy Results for each LLM

AI Tool/LLM Accuracy (% of test cases passed)
ChatGPT 55.0% (n = 39)

Amazon Q Developer 50.7% (n = 36)
Tabnine 21.1% (n = 15)

Blackbox 16.9% (n = 12)
Bing Chat 14.1% (n = 10)

Google Gemini 11.3% (n = 8)
GitHub Copilot 0% (n = 0)

Codeium 0% (n = 0)
CodeGeeX 0% (n = 0)

Total: 18.78% (n = 120/639)

C. Query Prompt.

Prompting is a key feature of LLMs, where users

input natural language and receive automatically gen-

erated responses in a natural language format [35].

Here, we provided a subset of the prompts that we

used for SQL query generation. The complete prompts

are provided in the supplemental materials [19].

• Display the id, birthday, height, weight who

is a player.

• List all the teams that have won more than

half of the matches that they played

• Adam Brown has gained 20 pounds due

to eating too many hamburgers. Update the

player table accordingly.

D. Accuracy Measurement

To test out the queries that were generated by AI

assistants, we utilized ChatGPT [13] to create unit

testing script in Python. Then, we executed the script.

Based on how many test cases the query can pass, we

would be able to measure its accuracy in retrieving the

information.

E. Quality Measurement

To evaluate the quality of the SQL queries, we mea-

sured indentation [20], naming convention, number of

comments present in the query [6], whether the query

has an error handling mechanism [5], and whether

the query is easily be updated [23]. We developed

a web application [18] where, after providing SQL

queries, it will return the readability report with a

correctly indented version of the code and also an error

mechanism policy if possible.

F. Preliminary Findings

We found most AI assistants are unable to generate

accurate SQL queries using natural language prompts.

The average accuracy across the AI tools is less than

19%. Three AI assistants (GitHub Copilot, Codeium,

and CodeGeeX) were unable to generate any accurate

SQL queries based on our evaluation test cases. The

most accurate LLM was ChatGPT where, out of 71

test cases, 39 passed and 32 failed. These results

are presented in Table II, where we presented the

accuracy results for each AI tools. Further manual

analysis provided several insights into why LLMs were

inaccurate.

a) Missing Columns: In some instances, in par-

ticular test failures for ChatGPT in SQL query gen-

eration, inaccuracies were due to missing columns in

the generated table. We traced back to the schema and

found out that the generated table did not follow the

instructions mentioned in the prompts.

b) Incomplete Tests: Another notable finding is

that, in some cases, test scripts were incomplete. For

instance, we observed ChatGPT provided frameworks

with “...” in functions instead of complete code. In

future work, we should consider testing queries with

man-made scripts since we evaluate the accuracy of

queries or feed more explicit prompts to avoid misun-

derstanding.

c) Miscellaneous: We observed several other is-

sues specific to certain AI tools that lack a clear

explanation. First, Codeium [7]—despite its ability to

support multiple programming languages and devel-

opment tasks, [8] would always generate a one-line

SQL query, regardless of the given prompt. When we

provided more casual prompts, GitHub Copilot was

not able to understand the prompt that we provided—

causing an error in the output.

III. PROPOSED RESEARCH

Throughout this research, we were able to identify

AI tools that were able to generate quality SQL

queries. Based on our preliminary findings, we propose

a user study to understand how AI tools can be utilized

in SQL programming. Prior literature suggests that

general programmers tend to use AI tools to find a

good starting point and that they have a hard time

understanding and debugging the code generated by

AI tools [33]. We would like to find out if this finding

holds in SQL programming.

IV. RELEVANCE

Our work encompasses the theme of thinking more
deeply about code and future of work with AI as it

tries to understand how AI can be used in a particular

coding situation. Two papers that discuss how AI-

generated code can be utilized have been published in

VL/HCC 2023 [9], [34]. Similarly, our paper discusses

how AI-generated code can be used among SQL

programmers. Furthermore, the special emphasis of

VL/HCC 2024 is VL/HCC and Generative AI. Various

preliminary findings from our study would be able to

motivate various future studies on how generative AI

can be used in a specific programming context.

V. PRESENTATION

To provide a visual understanding of how AI can

be utilized in SQL programming, we plan to create a

poster. We also plan to bring a laptop to demonstrate

our web application [18] used to evaluate the quality

of queries. We believe this will foster a two-way

conversation between the presenter and the audience.

360

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 01,2024 at 15:37:06 UTC from IEEE Xplore. Restrictions apply.

APPENDIX

This information is based on the period of the study

(November 2023).

TABLE II: LLM Information

AI Tool/LLM GPT
Version

Number
of Tokens

Number of
Parameters

ChatGPT 3.5 4096 17B
Amazon Q Developer Unknown Unknown Unknown

Tabnine 3.5 Unknown 2B
Blackbox LLaMA 256K 1.5B
Bing Chat 4.0 25K 175B

Google Gemini N/A 128K 137B
GitHub Copilot 3.0 4096 12B

Codeium Unknown 4096 Unknown
CodeGeeX 2.0 158B 13B

REFERENCES

[1] Blackbox. https://www.blackbox.ai/. Accessed: June 19, 2024.
[2] What is codewhisperer? https://docs.aws.amazon.com/

codewhisperer/latest/userguide/what-is-cwspr.html. Accessed:
June 19, 2024.

[3] Toufique Ahmed and Premkumar Devanbu. Few-shot training
llms for project-specific code-summarization. In Proceedings
of the 37th IEEE/ACM International Conference on Automated
Software Engineering, pages 1–5, 2022.

[4] Bing Chat. https://www.bing.com/chat.
[5] Miguel Cebollero, Jay Natarajan, Michael Coles, Miguel Ce-

bollero, Jay Natarajan, and Michael Coles. Error handling and
dynamic sql. Pro T-SQL Programmer’s Guide, pages 589–612,
2015.

[6] Joe Celko. Joe Celko’s SQL programming style. Elsevier,
2005.

[7] Codeium. https://codeium.com/.
[8] Yonas Enchalew. Five alternatives to github copilot, 2021.
[9] Kasra Ferdowsi, Jack Williams, Ian Drosos, Andrew D Gor-

don, Carina Negreanu, Nadia Polikarpova, Advait Sarkar, and
Benjamin Zorn. Coldeco: An end user spreadsheet inspection
tool for ai-generated code. In 2023 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pages
82–91. IEEE, 2023.

[10] Philip Garner and John Mariani. Learning sql in steps.
Learning, 12:23, 2015.

[11] GitHub Copilot. https://github.com/features/copilot.
[12] Google. Google bard. https://www.google.com/bard.
[13] Vitor Guilherme and Auri Vincenzi. An initial investigation

of chatgpt unit test generation capability. In Proceedings of
the 8th Brazilian Symposium on Systematic and Automated
Software Testing, pages 15–24, 2023.

[14] Gary G. Hendrix, Earl D. Sacerdoti, Daniel Sagalowicz, and
Jonathan Slocum. Developing a natural language interface to
complex data. ACM Trans. Database Syst., 3(2):105–147, jun
1978.

[15] Kaggle. https://www.kaggle.com/.
[16] George Katsogiannis-Meimarakis and Georgia Koutrika. A

survey on deep learning approaches for text-to-sql. The VLDB
Journal, 2023.

[17] Shawal Khalid and Chris Brown. Software engineering ap-
proaches adopted by blockchain developers. In 2023 Tenth
International Conference on Software Defined Systems (SDS),
pages 1–6. IEEE, 2023.

[18] Minhyuk Ko, Dibyendu Brinto Bose, Weilu Wang, Mohammed
Seyam, and Chris Brown. Sql redability. https://github.com/
brintodibyendu/SQL redability, 2024.

[19] Minhyuk Ko, Dibyendu Brinto Bose, Weilu Wang, Mohammed
Seyam, and Chris Brown. Supplemental materials for under-
standing the performance of large language model to gener-
ate sql queries. https://figshare.com/s/7e745548335eb1f1095f,
2024.

[20] Aristotelis Leventidis, Jiahui Zhang, Cody Dunne, Wolfgang
Gatterbauer, HV Jagadish, and Mirek Riedewald. Queryvis:
Logic-based diagrams help users understand complicated sql
queries faster. In Proceedings of the 2020 ACM SIGMOD In-
ternational Conference on Management of Data, pages 2303–
2318, 2020.

[21] Fei Li and Hosagrahar V Jagadish. Nalir: an interactive
natural language interface for querying relational databases.
In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pages 709–712, 2014.

[22] Jenny T Liang, Maryam Arab, Minhyuk Ko, Amy J Ko, and
Thomas D LaToza. A qualitative study on the implementation
design decisions of developers. In 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE),
pages 435–447. IEEE, 2023.

[23] Yoshifumi Masunaga, Yugo Nagata, and Tatsuo Ishii. Making
join views updatable on relational database systems in theory
and in practice. In Proceedings of the 13th International
Conference on Ubiquitous Information Management and Com-
munication (IMCOM) 2019 13, pages 823–840. Springer,
2019.

[24] Hugo Mathien. European soccer database, 2016.
[25] Open AI. https://openai.com/blog/chatgpt.
[26] Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Di-

vya Sankar, Lambert Pouguem Wassi, Michele Merler, Boris
Sobolev, Raju Pavuluri, Saurabh Sinha, and Reyhaneh Jab-
barvand. Understanding the effectiveness of large language
models in code translation. arXiv preprint arXiv:2308.03109,
2023.

[27] Steven I. Ross, Fernando Martinez, Stephanie Houde, Michael
Muller, and Justin D. Weisz. The programmer’s assistant:
Conversational interaction with a large language model for
software development. In Proceedings of the 28th Inter-
national Conference on Intelligent User Interfaces, IUI ’23,
page 491–514, New York, NY, USA, 2023. Association for
Computing Machinery.

[28] Amir Shareghi Najar, Antonija Mitrovic, and Kourosh Nesha-
tian. Eye tracking and studying examples: how novices and
advanced learners study sql examples. Journal of computing
and information technology, 23(2):171–190, 2015.

[29] Tabnine. https://www.tabnine.com/.
[30] Konstantinos Tatsis. A quantitative study on the popularity

and performance of sql and nosql dbms., 2022.
[31] Yuan Tian, Toby Jia-Jun Li, Jonathan K Kummerfeld, and

Tianyi Zhang. Interactive text-to-sql generation via editable
step-by-step explanations. arXiv preprint arXiv:2305.07372,
2023.

[32] Lionel Sujay Vailshery. Most widely utilized pro-
gramming languages among developers worldwide 2023.
Statista, 2024. https://www.statista.com/statistics/793628/
worldwide-developer-survey-most-used-languages/.

[33] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman.
Expectation vs. experience: Evaluating the usability of code
generation tools powered by large language models. In Chi
conference on human factors in computing systems extended
abstracts, pages 1–7, 2022.

[34] Tianjia Wang, Daniel Vargas Dı́az, Chris Brown, and Yan
Chen. Exploring the role of ai assistants in computer science
education: Methods, implications, and instructor perspectives.
In 2023 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pages 92–102. IEEE, 2023.

[35] JD Zamfirescu-Pereira, Richmond Y Wong, Bjoern Hartmann,
and Qian Yang. Why johnny can’t prompt: how non-ai experts
try (and fail) to design llm prompts. In Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems,
pages 1–21, 2023.

361

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 01,2024 at 15:37:06 UTC from IEEE Xplore. Restrictions apply.

