
Exploring the Barriers and Factors that Influence
Debugger Usage for Students

Minhyuk Ko, Dibyendu Brinto Bose, Hemayet Ahmed Chowdhury, Mohammed Seyam, Chris Brown
Department of Computer Science

Virginia Tech, Blacksburg, VA, USA

{minhyukko, brintodibyendu, hemayetahmedc, seyam, dcbrown}@vt.edu

Abstract—Debugging is one of the most expensive and time-
consuming processes in software development. To support pro-
grammers, researchers, and developers have introduced a wide
variety of debuggers or tools to automatically find errors in code,
to make this process more efficient. However, there is a gap
between industry developers and students regarding the skillful
use of debuggers. We aim to understand this gap by studying
barriers that hinder new programmers from using debuggers.
We conducted a survey involving 73 students with various
extents of programming experience and performed qualitative
analysis. The goal was to extract insights into why students
do not develop debugger usage skills. Our results suggest the
general lack of academic course focus on debuggers is one of
the primary reasons for avoidance. At the same time, complex
user interfaces and a lack of visualization also seem intimidat-
ing for many students, making using a debugger unappealing.
Based on the results, we provide guidelines to motivate future
debugger designs and education materials to improve debugger
usage. Our survey results summary is publicly available at
https://github.com/minhyukko/vlhcc23

Index Terms—Debuggers, Novice Programmers, Barriers, Ed-
ucation

I. INTRODUCTION

Debugging is critical in software development, however

most programmers find the process of finding and fixing errors

in source code to be difficult and demanding [20]. Software

engineers often spend more time debugging software problems

in the code than writing code [2], and accelerating this process

can increase the productivity of programmers as well as the

quality of the program [21]. Moreover, debugging is a critical

part of learning how to program, yet it is one of the most

challenging activities for Computer Science (CS) students to

grasp [7].

To make debugging more efficient, developers and re-

searchers have introduced a wide variety of debuggers, or au-

tomated tools with functionality to support various debugging

tasks, such as locating bugs in code to repair the program.

For example, Crisp is a tool for Java that allows developers

to review parts of code for debugging based on failing test

cases [4]. Debuggers have also been shown to help student

programmers complete debugging tasks significantly faster [5].

However, despite the existence of automated debugging

tools, software engineers often avoid using debuggers to

find and fix errors in practice. There are many issues with

automated debugging techniques that lead them to be ignored

by developers, with prior work suggesting professional soft-

ware engineers largely find automated debugging techniques

unhelpful [13].

To that end, programmers adopt less efficient approaches

such as print statement debugging, also known as “printf

debugging” [2], or the process of manually inserting print

statements in the code and observing the output to determine

the location of errors. While this practice is frequently used by

students and novices [12], experienced programmers also ac-

knowledge using print statements for debugging their code [9].

This motivates us to study barriers to the use of debuggers.

Specifically, we aim to understand what influences decisions

to use tools or manual print statements. In that context, we

conducted a survey and received responses from 73 software

engineering students with varying degrees of programming

experience. Our results suggest that effort and lack of educa-

tion are the main barriers to debugger usage, despite success

and positive experiences when using debuggers to resolve

bugs. This work contributes a detailed analysis of students’

debugging behaviors and decisions, and our findings provide

implications for improving debugging tool development and

programming education to increase knowledge and usage of

debuggers for automating debugging tasks.

II. RELATED WORK

Previous studies have been conducted to explore debugging

practices by novice programmers. Katz and Anderson [10]

studied students’ LISP debugging skills and provided strong

evidence that students usually debug in 4 stages: 1) under-

standing the system, 2) testing the system, 3) locating the

error, and 4) repairing the error. They further conclude that

the skills required to understand the system are not necessarily

connected to the skills required to locating the error. Similarly,

Fitzgerald et al. [7] explored students’ perceptions of debug-

ging, with most participants responding finding problems is

more difficult than fixing them.

Beller et al. [2] studied the professionals’ usage of print

statements. Beller’s study pointed out that hands-on debug-

ging education in academia needs to be strengthened, as

industry professionals lack knowledge of advanced debugging

techniques. Based on Beller’s study, our study examines the

barriers to accessing debuggers in academia and how some

students are successful in adapting debuggers to address the

issues that were brought up in Beller’s study.

168

2023 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

1943-6106/23/$31.00 ©2023 IEEE
DOI 10.1109/VL-HCC57772.2023.00027

20
23

 IE
EE

 S
ym

po
siu

m
 o

n
Vi

su
al

 L
an

gu
ag

es
 a

nd
 H

um
an

-C
en

tr
ic

 C
om

pu
tin

g
(V

L/
HC

C)
 |

 9
79

-8
-3

50
3-

29
46

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
VL

-H
CC

57
77

2.
20

23
.0

00
27

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on December 12,2023 at 17:50:24 UTC from IEEE Xplore. Restrictions apply.

Although Whalley et al. [19] did research in academia,

the participants in Whalley’s study were exclusively recruited

from a CS2 class, which precedes the introduction to data

structures. While the study offers valuable insights, its appli-

cability to upperclassmen students dealing with intricate pro-

gramming assignments involving concurrency, systems pro-

gramming, and industry internship experience remains uncer-

tain. Our study attempts to incorporate various perspectives on

debugging from all levels in college.

Elliot Soloway et al. [17] studied the programming pro-

cesses used and the types of and the reasons for the bugs

that the introductory programming students generated. They

categorized the bugs produced by novice programmers that

were non-syntactic in nature. Perkins and Martin [14] studied

how high school BASIC programmers think and tried to

understand how they introduce errors, observing that students’

difficulty in programming, including finding and removing

bugs, was related to their fragile knowledge of debugging.

Finally, Murphy et al. [12] explored debugging strategies for

novice programmers, reporting that participants often used

print statement debugging. Our study aims to advance this

work to understand what prevents students from using de-

buggers when resolving programming bugs and what factors

influence their decision-making on debugging approaches.

III. METHODOLOGY

To understand how students perceive debuggers, we sought

to answer the following research questions:

RQ1: What barriers prevent programmers from using de-

buggers?

RQ2: How do different debugging approaches help pro-

grammers resolve bugs?

RQ3: What factors influences programmers’ choice to use

debuggers or print statements?

RQ4: How does using debuggers improve programming

experiences?

A. Survey

We distributed a survey to Computer Science students at the

authors’ primary institution. The responses were all received

between October 2022 and November 2022. We designed

the survey to obtain examples of how respondents approach

debuggers, or what prevents them from using debugging tools.

We also included questions asking about debugger usage

experience, behavior, limitations, familiarity, and education.

B. Survey Analysis

After collecting the survey, our next task was to extract the

essence of responses. To do that, we used an open coding [16]

approach. In open coding, a rater examines and synthesizes

patterns within unstructured text. There were five open ended

question in the survey and we used this approach on the

responses of these questions. The first three authors of the

paper individually read the responses of each open ended

questions and then categorized them. Then those authors sat

together to merge the categories. For the disagreements, three

of them discussed together and came to a conclusion. By

following these, we categorized the open-ended questions.

C. Survey Participants

We were able to recruit 73 students from diverse levels, in-

cluding sophomore (n = 2), junior (n = 28), senior (n = 15),

masters (n = 16), and doctoral (n = 12) students. Participants

were familiar with the following debugger concepts: Step over

(59), Step into (62), Force step into (12), step out (44), drop

frame (6), run to cursor (14). Debuggers mentioned by the

participants include GDB (7), Python debugger (2), Eclipse

(2), Unity debugger (1), and C debugger (1). On average,

students had 4.09 years of general programming experience.

Due to the nature of the questions, students were not required

to respond to all the questions in the survey. On the percentage

calculations, we excluded participants who did not respond to

questions for a more accurate result.

IV. RESULT

A. RQ1: Debugger Usage Barriers

The main barrier preventing debugger usage is the amount

of effort needed to adopt and use debuggers (15/39, 38%).

Sample responses include “Besides, debuggers seems to take
much more time to find out the bugs due to its step by step
debug ways” (P15). In general, participants believed using

debuggers is harder than manually inserting print statements

for debugging. Many respondents also responded that they

never learned how to use a debugger, especially in a formal

classroom setting (11/39, 28%). Even when debuggers were

taught in the classroom, participants mentioned that their

experience with them was limited to a tutorial during one week

with only one or two exercises. Also, oftentimes students were

taught how to use a command-line based debuggers when they

mostly use an IDE for programming, which has a graphical

user interface.

B. RQ2: Bug Resolution

Some participants (17/48, 35%) weren’t able to identify a

circumstance where a debugger was not able to resolve a bug

that they faced. Even when they have previously experienced

being unable to debug their code with debuggers, they were

not able to identify a case. Some programmers have even

responded that spending sufficient time stepping through the

code line-by-line would solve all problems. For participants

who were not able to resolve a bug using a debugger, the

main reason was that the tools were not able to provide

enough information that the programmers needed (6/48, 13%).

Examples include being unable to look at some of the values

that some variables have, segmentation faults, difficulty com-

prehending the results from the debugger, etc.

C. RQ3: Debugging Approach Decisions

To answer this research question, we wanted to gain insight

into what encourages students to choose debuggers or print

statements to complete debugging tasks.

169

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on December 12,2023 at 17:50:24 UTC from IEEE Xplore. Restrictions apply.

1) Debuggers: The main reason participants provided for

selecting debuggers is insufficient information provided by

print statements. 33% (15/45) of participants responded that

in some cases print statements do not provide enough help-

ful information besides the value contained in the variable.

Through this, we were able to observe that programmers are

not able to use print statements to print other information that

debuggers can provide, such as the address storing a variable

or thread information.

We noticed that the more programming experience partici-

pants had, the more likely it was for them to use debuggers.

For example, only 9% (1/11) of the students with two years

of programming experience indicated that they frequently use

debuggers, while more than half (52%, 14/27) of the students

with five or more years of programming experience indicated

that they use debuggers frequently.

Participants (9/45, 20%) were also unlikely to adopt print

statement debugging for that involve system-level issues, such

as I/O, segmentation faults, and memory allocation issues.

Programmers responded that print statements were unhelpful

in those contexts, and features that debuggers can provide,

such as backtrace, help users find where a bug occurred.

2) Print Statements: Related to decisions for using de-

buggers, the most popular response determining print state-

ment debugging was a lack of complexity in problems

(33/64, 52%). Participants responded that they use print state-

ments when they face errors that can easily be explained or

are obvious. When it becomes more complex, such as code

involving loops, hash tables, or multi-threading, then they elect

to use debuggers. Another key disadvantage for debuggers is

platform dependence. Several participants (5/64, 8%) noted

they decide whether or not to use debuggers depending on

their familiarity with the IDE or programming language they

are using. Programmers use different IDEs depending on the

programming language that they are working in, however cod-

ing environments differ in their implementation of debuggers.

Lastly, 12 participants (12/64, 19%) responded that they use
print statements first before attempting to use the debugger.

If print statement debugging goes nowhere or becomes more

complex than expected, then they use the debugger.

D. RQ4: Programming Improvements

Finally, we aim to understand how debuggers improve

programming experiences when adopted. The main benefits

provided by participants are enhanced efficiency (16/52, 31%)

compared to other debugging methods and productivity,

(10/52, 19%) expanding the capability to solve bugs. Partici-

pants mentioned that they were able to resolve more bugs in

a shorter frame of time after adopting debuggers. They also

appreciated additional information that debuggers provide,

such as memory values, helping identify bugs faster and easier.

Programmers also mentioned debuggers provide a more robust

experience to increase understanding of the underlying issues.

Debuggers also improved experiences for other coding tasks,

for instance, P51 noted a debugger “helps a lot with testing”.

V. DISCUSSION

Overall, we found out the main barrier to debugger usage

is the amount of time and effort needed to learn how to use

them effectively. Participants also rarely encounter them in CS

curricula. Further, our results suggest that the more complex

the code is, the more likely the users are to use a debugger

instead of print statements. However, participants tend to use

print statements unless there is a substantial reason to switch

to using a debugger, even if a debugger can solve the solution

more effectively. Participants with debugger experience noted

that it improved their efficiency, productivity, and overall

programming experiences. Thus, we provide guidelines to

motivate designs of future automated debugging tools and

encourage the incorporation of debugger usage in CS courses.

A. Debuggers

1) Problem Difficulty: We observed that when people face

more challenging programming problems, such as memory-

related errors and segmentation faults, debuggers are mostly

helpful. However, for simpler debugging tasks, participants

opted for print statements. For example, one response was

“Yes, a lot of my problems when using c were memory alloca-
tion issues and print statements did not help with that at all.”
(P31). Another response was “I found that my program was
segfaulting and not properly displaying the print statements”.

This indicates programmers seem to evaluate how complex a

bug in the code is before deciding whether to use the debugger.

There are a number of opportunities to use debugging

features to deal with memory problems. However, in less

complex cases, participants did not seek help using debuggers.

Oftentimes, students’ solutions to complex problems without

debuggers is copying and pasting the error message online to

websites such as Stack Overflow1 to see how other program-

mers that faced the same problem tried to solve the issue.

This “crowd debugging” is also frequently used by novice

and expert programmers [3]. Thus, integrating debuggers with

Stack Overflow posts or other relevant information can save

developers time from opening up a web browser and searching.

2) Advanced Coding Concepts: More advanced coding

concepts, such as recursion and loops, also led participants

to use debuggers instead of print statements. For instance,

one respondent mentioned that “I always used print statement
or search online. I would say I’ll use debugger when there
is some error caused by looping issue” (P15). Because it

would be very difficult to debug via print statements when

there are hundreds of lines printed in the console, developers

use debuggers to avoid this issue. Additionally, complex data

structures also led developers to use debuggers. For example,

one participant responded that “If i have a hash table or
something Id definitely use a debugger but if i have only a
few variables being updated i can print them out” (P30).

This motivates the need for debugging tools to help developers

understand the complex programming concepts while debug-

ging, through techniques such as visualizations to improve

1https://stackoverflow.com

170

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on December 12,2023 at 17:50:24 UTC from IEEE Xplore. Restrictions apply.

user understanding [8]. We could also use this information

to nudge students to use debuggers more often by automating

customized recommendations for specific debugging features

based on the data structures and programming paradigms

included in their code.

3) Platform Independence: One challenge reported in our

survey is that participants are hesitant to learn debuggers

for different languages and IDEs. For example, one response

was “I have used the python debugger, which I have found
extremely useful because of the ability to easily interact w/
the current program state via the interpreter. For JS, I feel like
it could maybe be useful, but printing objects to the console
is quick, easy and effective.” (P5). Another noted “printing
statement works better for me since I don’t really like to get
used to debugger for every new IDE environment.” (P15).

Varying interfaces and functionality in different debugging

tools makes potential users disinterested in using debuggers,

hence the prevalence of print statements. To resolve this

issue, we posit debuggers with similar user interfaces and

interactions across multiple IDEs are ideal. Although, we

do recognize that consistent interfaces would be hard to be

applied to all IDE plugins available for developers, we believe

that this can be implemented in most common programming

languages, such as Java, Python, and C.

B. Education

1) Debugging education can play an important role: Most

students that do not use debuggers responded that they never

had the opportunity to learn how to use debuggers or learned

too briefly. A plausible factor contributing to this phenomenon

could be attributed to a potential lack of experience using

complex debuggers found in modern IDEs among CS in-

structors. Prior work also suggests debugging tool usage is

fragile and often neglected in CS education [15]. For instance,

many new programmers struggle in the first few months of

new jobs due to a lack of experience in various software

engineering tasks, including debugging. [1]. Additionally, a

glance at popular programming-related sites also seem to

confirm this problem [6], [18], and a lot of the questions asked

and problems faced by students can be solved with the proper

use of debuggers [11]. We received responses such as “We
weren’t really taught how to use it and it was either the IDE
will do it automatically or good luck” (P12).

Moreover, participants who did receive instruction on de-

buggers noted the irrelevance of lessons, such as learning to

use command-line debuggers like gdb2 while most develop-

ment is done in IDEs. Due to limited exposure to debuggers,

students may be unaware of the benefits of automated debug-

ging tools. Further research is needed to explore how to teach

debuggers effectively in a classroom setting, which can be as

simple as increasing the hours spent on teaching debuggers

and having more exercises where students use debuggers.

Further, educators can create coding assignments complex

enough to make print statement debugging extremely difficult,

2https://www.sourceware.org/gdb/

encouraging students to use debuggers. Finally, introducing a

course dedicated to debugging techniques would also be useful

for teaching up-to-date debugging practices in industry.

2) External Resources: Almost all students that use debug-

gers responded positively about their debugger usage. Some

students responded with passion, such as “10000% debugger
is so important, If you dont use it, you tend to just pull out
your hairs for hours and coding becomes a very frustrating
experience” (P19). Although the main barrier to debugger

usage is that they can be hard to learn, several participants

noted it is worth learning. Many survey respondents noted

using external resources to learn how to use debuggers, such as

online blogs and YouTube videos. This motivates new research

directions to explore how to make debugging learning experi-

ences easier for students and instructors, to prevent debugger

avoidance. Outside of the classroom, content from tutorials

and other online resources can be evaluated and improved to

help programmers learn and practice using debuggers.

VI. LIMITATIONS AND FUTURE WORK

We have only explored perceptions of debugger usage with

a limited set of participants from one university. While we

attempted to recruit a diverse sample of participants in terms of

professional and academic experiences, they may not represent

the debugging practices of all programmers at varying levels or

CS students at other institutions. Future work should conduct

more extensive recruiting from a broader range of participants

to increase the validity of our results.

In the future, we hope this work motivates new techniques

to improve the adoption of debuggers. First, we aim to explore

investigating more usable debugging tools to overcome chal-

lenges expressed by participants, such as platform dependence

and problem difficulty. Moreover, we plan to explore methods

to help potential users learn about debugging tools more

effectively. This includes investigating updates to CS curricula,

coursework activities focused on debugging, enhancements to

tutorials and resources to train users, and tools to automate

recommendations for debugging tools and techniques.

VII. CONCLUSION

In this paper, we surveyed participants to understand the

barriers that keep students from learning skillful usage of

debuggers. Responses suggest that CS courses do not usually

focus on effective and relevant debugger usage, leaving stu-

dents with a lack of knowledge in this area. We also see that

students struggle with complex debugger UIs, especially when

they vary between IDEs, which intimidates them to an extent

when it comes to the initial learning curve. However, students

are more open to using debuggers when solving more complex

data structure problems. Our results provide implications for

improving debugging tools and CS education to reduce the

effort barrier preventing programmers from using debuggers

to find and fix errors in their code.

171

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on December 12,2023 at 17:50:24 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Andrew Begel and Beth Simon. Novice software developers, all over
again. In Proceedings of the fourth international workshop on computing
education research, pages 3–14, 2008.

[2] Moritz Beller, Niels Spruit, Diomidis Spinellis, and Andy Zaidman. On
the dichotomy of debugging behavior among programmers. In Pro-
ceedings of the 40th International Conference on Software Engineering,
pages 572–583, 2018.

[3] Fuxiang Chen and Sunghun Kim. Crowd debugging. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, page 320–332, New York, NY, USA, 2015. Associa-
tion for Computing Machinery.

[4] Ophelia C Chesley, Xiaoxia Ren, and Barbara G Ryder. Crisp: A
debugging tool for java programs. In 21st IEEE International Conference
on Software Maintenance (ICSM’05), pages 401–410. IEEE, 2005.

[5] Ryan Chmiel and Michael C Loui. Debugging: from novice to expert.
Acm Sigcse Bulletin, 36(1):17–21, 2004.

[6] dizzyflames. Is debugging with print statements bad?, Jan 2019.
[7] Sue Fitzgerald, Renée McCauley, Brian Hanks, Laurie Murphy, Beth

Simon, and Carol Zander. Debugging from the student perspective.
IEEE Transactions on Education, 53(3):390–396, 2009.

[8] Dan Hao, Lingming Zhang, Lu Zhang, Jiasu Sun, and Hong Mei.
Vida: Visual interactive debugging. In 2009 IEEE 31st International
Conference on Software Engineering, pages 583–586, 2009.

[9] Bryce Ikeda and Daniel Szafir. Advancing the design of visual debugging
tools for roboticists. In 2022 17th ACM/IEEE International Conference
on Human-Robot Interaction (HRI), pages 195–204, 2022.

[10] Irvin R. Katz and John R. Anderson. Debugging: An analysis of bug-
location strategies. Human–Computer Interaction, 3(4):351–399, 1987.

[11] Kelly Loougheed. 10 best practices for helping students debug their
code, July 2019.

[12] Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon,
Lynda Thomas, and Carol Zander. Debugging: The good, the bad, and
the quirky – a qualitative analysis of novices’ strategies. SIGCSE Bull.,
40(1):163–167, mar 2008.

[13] Chris Parnin and Alessandro Orso. Are automated debugging techniques
actually helping programmers? In Proceedings of the 2011 international
symposium on software testing and analysis, pages 199–209, 2011.

[14] David N. Perkins and Fay Martin. Fragile knowledge and neglected
strategies in novice programmers. 1985.

[15] David N Perkins and Fay Martin. Fragile knowledge and neglected
strategies in novice programmers. In Papers presented at the first
workshop on empirical studies of programmers on Empirical studies
of programmers, pages 213–229, 1986.

[16] Johnny Saldaña. The Coding Manual for Qualitative Researchers. Sage,
2015.

[17] Cutler B Spohrer, Draper S and Elliot Soloway. Bug catalogue: I
(technical report no. 286). 1983.

[18] user113476. Why aren’t students taught to use a debugger?, Jan 2010.

[19] Jacqueline Whalley, Amber Settle, and Andrew Luxton-Reilly. Novice
reflections on debugging. In Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education, SIGCSE ’21, page 73–79,
New York, NY, USA, 2021. Association for Computing Machinery.

[20] Shaochun Xu and Václav Rajlich. Cognitive process during program
debugging. In Proceedings of the Third IEEE International Conference
on Cognitive Informatics, 2004., pages 176–182. IEEE, 2004.

[21] Andreas Zeller. Why programs fail: a guide to systematic debugging.
Elsevier, 2009.

172

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on December 12,2023 at 17:50:24 UTC from IEEE Xplore. Restrictions apply.

