
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Sorry to Bother You Again: Developer Recommendation Choice
Architectures for Designing Effective Bots

Chris Brown, Chris Parnin

North Carolina State University

Raleigh, North Carolina, USA

{dcbrow10,cjparnin}@ncsu.edu

ABSTRACT
Software robots, or bots, are useful for automating a wide variety of

programming and software development tasks. Despite the advan-

tages of using bots throughout the software engineering process,

research shows that developers often face challenges interacting

with these systems. To improve automated developer recommenda-

tions from bots, this work introduces developer recommendation
choice architectures. Choice architecture is a behavioral science
concept that suggests the presentation of options impacts the de-

cisions humans make. To evaluate the impact of framing recom-

mendations for software engineers, we examine the impact of one

choice architecture, actionability, for improving the design of bot

recommendations. We present the results of a preliminary study

evaluating this choice architecture in a bot and provide implica-

tions for integrating choice architecture into the design of future

software engineering bots.

KEYWORDS
software engineering, recommendations, developer behavior, choice

architecture

ACM Reference Format:
Chris Brown, Chris Parnin. 2020. Sorry to Bother You Again: Developer

Recommendation Choice Architectures for Designing Effective Bots. In

IEEE/ACM 42nd International Conference on Software Engineering Workshops
(ICSEW’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY,

USA, 5 pages. https://doi.org/10.1145/3387940.3391506

1 INTRODUCTION
Bots are useful for automatically completing a wide variety of soft-

ware engineering tasks to aid developers and support them in their

work. For example, DependaBot is a system for automating security

fixes on GitHub and Greenkeeper helps developers monitor npm

dependencies for JavaScript packages. Furthermore, Wessel and col-

leagues show that bots are widely adopted in open source software

(OSS) repositories and developers report finding bots beneficial for

automating tasks such as explaining project guidelines, decreasing

code review time, automating continuous integration, running tests

and quality assurance, and more [30]. Additionally, Storey suggests

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00

https://doi.org/10.1145/3387940.3391506

bots can help developers become more efficient and effective in

meeting their development goals [26].

Even though bots are useful for automating many different tasks

and provide benefits to users, developers often face issues inter-

acting with software bots designed to help them complete pro-

gramming tasks. For instance, Wessel and colleagues also reported

that software engineers face many challenges interacting with bots

while contributing to and maintaining OSS projects including poor

decision mechanisms, incomprehensible feedback, performing in-

correct actions, and more [30]. Furthermore, Mirhosseini and col-

leagues discovered that developers had negative perceptions of

automated pull requests and faced challenges convincing users to

upgrade out-of-date dependencies with Greenkeeper and Travis-

bot [19]. These examples point to a need to improve the design of

bots and better their interactions with human developers.

To identify a baseline design for automated bot recommenda-

tions to developers, our prior work introduced a naive approach

static analysis tool recommendations [4]. We found that our bot

recommendations were ineffective because our system violated

social contexts within software engineering and interrupted the

development workflow of programmers. To fix these problems in

bot recommendations, we propose developer recommendation
choice architectures. Choice architecture refers to the way op-

tions are organized and presented to humans [28]. Johnson and

colleagues introduced 11 tools to incorporate choice architecture

into decisions for impacting user choices [16]. To help develop-

ers make better choices, we use these tools to present developer
recommendation choice architectures for enhancing software

engineering bots to improve developer behavior.

The goal of this work is to explore the impact of choice archi-

tecture on developer behavior adoption through automated recom-

mendations. First, we introduce the developer recommendation
choice architectures and provide examples of how effective choice

architectures can improve decision-making. Then, we performed a

preliminary evaluation incorporating one choice architecture, ac-
tionability, into automated notifications to collect feedback from de-

velopers. Finally, we introduce developer recommendation choice
architectures to further improve the effectiveness of future bots

by incorporating choice architectures into their design. Our results

show that recommendations with actionability are significantly

more effective and preferred by developers than those without. The

primary contributions of this work are:

• introducing developer recommendation choice architec-
tures that focus on the way recommendations are presented

to software engineers to increase adoption, and

• a preliminary evaluation that explores integrating choice

architecture into automated recommendations to developers.

1

https://doi.org/10.1145/3387940.3391506
https://doi.org/10.1145/3387940.3391506

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Chris Brown, Chris Parnin

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2 BACKGROUND
2.1 Choice Architecture
Brown and colleagues propose using nudge theory, or a behav-

ioral science framework to improve human behavior and decision-

making without banning alternatives or providing incentives [27],

to improve human-bot interactions and the effectiveness of auto-

mated recommendations [4]. The driving force behind nudge theory

is the ability to influence the context and environment surround-

ing human decision-making, or choice architecture [28]. Behavioral
science research shows the way choices are framed and presented

can have a major impact on human behavior, for example Wilson

and colleagues show the arrangement of food options in cafeterias

and grocery stores impacts the products people purchase and con-

sume [31]. Furthermore, Johnson and colleagues introduce 11 prac-

tical tools for choice architecture, which we use in this work [16].

Thaler and Sunstein note that choice architecture “is pervasive

and unavoidable" in human decision-making [27, p. 255]. This is

also seen in software applications, where research has explored the

impact of choice architecture on user interface design and software

user behavior [23]. For example, Acquisti and colleagues explored

creating choice architectures encouraging users to adopt better

privacy and security practices online [1]. While prior work has

studied choice architecture and nudge theory for software users,

we study these concepts for software developers by applying choice

architecture to recommendations from bots encouraging software

engineers to adopt useful software engineering behaviors.

2.2 Automated Developer Recommendations
The role of bots in software engineering is an emerging research

area.
1
Prior work has explored using bots to support developer be-

haviors, or useful practices and activities to help software engineers
complete programming tasks, to users. For example, researchers

have explored using bots to convince developers to adopt useful

practices such as reducing developer effort to improve the code re-

view process [2], upgrade outdated dependencies [19], update code

documentation [22], and more. Prior work has also studied effective

recommendations to developers. Research shows peer interactions,
or face-to-face interactions with colleagues during work activities,

are effective for tool discovery [20] and code comprehension [17],

but they also occur infrequently in industry [21]. Meanwhile, Fis-

cher and colleagues propose active help systems to automatically

aid users are more useful than passive approaches [10].

For software engineering recommender bots, our prior work

introduced the naive telemarketer design, a baseline approach that

makes generic and static recommendations to developers similar to

a telemarketer, and found that developers disapproved of this design

in tool-recommender-bot because it lacks social context and inter-
rupted developer workflow [4]. Additionally, Cerezo and colleagues

developed an expert recommender chatbot and to examine interac-

tions with humans [5], while Beschastnikh and colleagues propose

using bots to increase adoption of software engineering research

in industry [3]. This work seeks to improve developer behavior

by incorporating choice architecture into bot recommendations to

encourage adoption of useful tools and practices.

1
http://botse.org/

3 DEVELOPER RECOMMENDATION CHOICE
ARCHITECTURES

To further improve software engineering bots, we introduce devel-
oper recommendation choice architectures to design effective

bots, motivated by software engineering literature and tools for

choice architecture. Johnson suggests these 11 tools are useful for

preventing decision-making problems by structuring decisions and

describing options [16]. Table 1 presents how our developer choice

architectures correlate with the tools available for choice architects

to improve decision-making. We suggest software engineering re-

searchers and bot designers are choice architects, or “anyone who
presents people with choices", by creating automated notifications

that developers need to make decisions on. To improve the decision-

making process for automated developer recommendations, we

propose bot makers emphasize actionability, feedback, and locality.

3.1 Actionability
Actionability refers to the ease with which users can act on rec-

ommendations. Nudge theory suggests “many people will take

whatever option requires the least effort, or the path of least re-

sistance" [27, p. 85]. Johnson provides several tools for improving

actionability, including technology and decision aids and use defaults.
Johnson and colleagues note “the default option will be chosen

more often than if another option is designated the default" and

that “technology-based decision aids could be designed to steer con-

sumers towards choosing products, services, or activities that are

individually and/or socially desirable" [16, p. 488,491]. For example,

Madrian and Shea explored automatically enrolling employees in

401k plans. By changing the default behavior to having users opt-

out of retirement plans instead of making them opt in, they found

that this improved money saving behaviors and increased new

employee enrollment in 401k plans by 98% within 36 months [18].

Actionability has also shown to be effective in software engi-

neering research. For example, Evans and colleagues show that

configuring security checks by default in configurations for static

analysis tools prevents vulnerabilities in the code [9]. Furthermore,

prior work by Heckman and colleagues explored actionable alert

identification techniques (AAITs) for static analysis tool notifica-

tions to help software engineers identify and fix defects in code

earlier [14]. To design effective bots, we suggest making actionable

recommendations by making targets behaviors default for decision-

making of developers.

3.2 Feedback
Feedback focuses on the information provided to decision-makers.

Behavioral scientists Sunstein and Thaler suggest “the best way

to help Humans improve their performance is to provide feed-

back". Furthermore, they also posit “choices can be improved with

better and simpler information" [27, p. 92,204]. Johnson and col-

leagues provide many different examples of improving information

presented and the way it’s communicated to users. For example,

providing customized information on food calories and daily caloric

intake feedback encouraged consumers to purchase healthier meals

at fast food restaurants [32]. Additionally, changing gas and CO2

emissions from 100 to 10,000 miles translates and rescales for better
evaluability to impact car purchases [16].

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Developer Recommendation Choice Architectures for Designing Effective Bots ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 1: Map of Developer Recommendation Choice Architectures (DRCA) and Tools for Choice Architecture

DRCA Tool [16] Definition

Actionability

Technology and decision aids Introducing technology to aid decision makers in choice tasks

Use defaults The way decision makers initially encounter choice tasks

Feedback

Reduce number of alternatives Limiting the number of choice options presented to decision makers

Focus on satisficing Helping users consider outcomes that lead to higher choice satisfaction

Attribute parsimony and labeling Limiting the number of characteristics presented with options

Translate and rescale for better evaluability Presenting attributes to increase impact and clarity

Customized information Personalization to account for individual differences between decision-makers

Focus on experience Considering the background and knowledge of decision-makers

Locality

Limited time windows Providing time restrictions for users to make decisions

Partitioning of options Groups or categories of options or attributes

Decision staging Dividing decisions into multiple stages

Software engineering researchers also show that feedback to

developers is important. For instance, Johnson and colleagues dis-

covered that the primary reasons developers reported for not using

static analysis tools in their work is poor result understandability,

customizability, and tool output [15]. Additionally, Chmiel and col-

leagues focus on experience to study information needs for novices

and experts during debugging tasks [6]. Furthermore, research

Cerezo and colleagues suggest implementing user-driven communi-
cation to improve chatbot recommender systems instead of single

purpose bot-driven communication techniques [5]. To improve au-

tomated developer recommendations, we propose providing useful

information and feedback to users.

3.3 Locality
Locality involves the setting surrounding the context of developer

recommendations. To further define this, we divide it into spatial
and temporal locality.

3.3.1 Spatial Locality. Spatial locality refers to the location where

recommendations are viewed as well as how options are arranged.

Johnson notes the structure of decision tasks not only impacts

decisions, but also how users explore the option space and search

for information, which “can have a dramatic impact on choice

behavior" [16, p. 494]. For example, research shows that changing

the location of vegetables, fruits, etc. in a high school cafeteria

increased the purchase and consumption of healthier foods by

students [13] and partitioning options from a menu into separate

categories for healthy and unhealthy options encourages consumers

to choose more healthy food and less unhealthy food [32].

Software engineering research also shows that the location of no-

tifications matters to developers. For example, Smith and colleagues

implemented Flower, an in situ code navigation tool within the

code, and found that this increased efficiency and received positive

responses from developers [24]. Furthermore, Viriyakattiyaporn

and colleagues found that several users ignored recommendations

from Spyglass, a code navigation plugin, because they were un-

aware of the location of notifications from the tool within the

Eclipse IDE [29]. To improve the effectiveness of software engineer-

ing bots, we propose presenting recommendations in familiar and

convenient locations for developers.

3.3.2 Temporal Locality. Temporal locality references the time

when recommendations are made. Johnson notes timing impacts

decisions, stating “the intertemporal structure of a task has im-

portant implications for both the decision-maker and the choice

architect...which affects choice tasks " [16, p. 492]. For example,

introducing time-limited windows for yearly fertilizer discounts

encouraged farmers in Kenya to make purchases and improved

the harvest of crops [8]. Additionally, timing also refers to when

choices take place after decisions. For example, Johnson also notes

“in general, tools that translate aspects of the choice into immediate

salient outcomes are more successful" [16, p. 493]. For example,

Soman and colleagues show that consumers view decisions with

distant impacts differently than those with proximal outcomes [25].

Similarly in software engineering, prior work suggests timing is

important for notifications. For instance, Distefano and colleagues

examined configuring static analysis tools to run at diff time, or a
limited time window for patches submitted by developers to review

before merging into the code base, and found that this increased

the fix rate of reported bugs up to 70% compared to nearly 0%

for times outside the development workflow, such as assigning

bug lists to developers from overnight builds [7]. Furthermore, our

prior work shows that developers avoided recommendations from

tool-recommender-bot because they made untimely suggestions

interrupting their workflow by breaking builds and adding to the

workload of programmers [4]. For improving bot recommenda-

tions, we propose automating suggestions to programmers in time

windows within their workflow.

4 PRELIMINARY EVALUATION
To explore how integrating choice architecture into developer rec-

ommendations impacts the behavior of software engineers, we

start by conducting a preliminary evaluation examining the impact

of one of our developer recommendation choice architectures:
actionability. We evaluated actionability in bots by surveying pro-

fessional software engineers to provide feedback recommendations

from two systems on GitHub, pull request comments and suggested

changes. These systems have make similar recommendations to

programmers, but only differ on the actionability for developers to

apply suggestions to their code. Here, we explain our methodology

and early results from this introductory evaluation.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Chris Brown, Chris Parnin

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

9 if status is True:
10 - print 'passed'
11 + print('passed')

Listing 1: Example of PEP 3105 violation and fix

4.1 Methodology
4.1.1 Choice Task. In this evaluation, sample recommendations

recommended fixing a PEP 3105 Python style warning, because

print statements are replaced with a print() function in Python

3 [11]. Listing 1 shows a sample violation and fix for this simple

warning. Additionally, as of January 1, 2020 Python is officially no

longer supporting Python 2 [12]. Our sample recommendations

encourage developers to fix a PEP 3105 warning and upgrade to

Python 3.

4.1.2 Study Recommendations. To measure the effectiveness of

automated recommendations with and without actionability, we

presented developers with recommendations from two systems for

providing feedback on pull requests. In our study, both systems pro-

vide the same feedback, a proposed fix for the PEP 3105warning in
Listing 1, and encouraged users to upgrade to Python 3. Addition-

ally, both have the same locality- placed on line 10 in the example

above and would be received during reviews on open PRs. These

systems differ, however, on the actionability of recommendations.

A pull request comment is not actionable and requires developers

to re-submit a pull request to make the change. However, a sug-

gested change is highly actionable because it allows developers

to immediately commit suggestions to their code. By using this

technology aid and it’s default action to commit proposed code

changes to pull requests, we aim to show that developers prefer

actionable recommendations to easily integrate suggestions into

their workflow.

4.1.3 Data Collection. To discover the impact of our actionability

choice architecture on developer recommendations, we surveyed

software developers to provide their preference for receiving recom-

mendations via pull request review comment or suggested change.

After presenting example notifications with each option, we asked

participants to select which recommendation they preferred and

why. Additionally, we encouraged developers to provide general

feedback on designing effective automated recommendations from

bots. Overall, 15 developers completed the survey with an average

of 7.3 years of programming experience.

4.2 Results
In our survey responses, all 15 developers preferred the actionable

recommendation from suggested changes over the non-actionable

pull request review comment. Table 2 presents the results from our

survey. This shows that developers were significantly more likely

to adopt recommendations from actionable systems that make it

easier to apply suggestions from bots. Developers also provided

feedback praising the actionable recommendation. The default be-
havior for suggested changes is to commit recommendations, which

most participants mentioned made it more effective. For example,

P2 commented that the suggested changes recommendation would

n Percent
comment 0 0%

suggestion 15 100%

Table 2: Actionable Recommendation Survey Results

“provide an actionable short cut" and P8 liked that it “lets you auto-

matically merge it". Even though both recommendations contained

the exact same feedback information, approximately half of par-

ticipants (n = 7) replied that the actionable recommendation was

easier to understand. For instance P1 noted it’s “more specific and

helps the user understand better". This could be due to the technol-
ogy aids such coloring, highlighting, and side-by-side comparisons

in the suggested changes feature.

5 IMPLICATIONS AND FUTUREWORK
Our results suggest that integrating concepts from behavioral sci-

ence and choice architecture can improve how software engineers

perceive bot recommendations. We found that developers signifi-

cantly preferred actionable recommendations as opposed to non-

actionable ones. Based on this, we argue that software engineering

bot developers and researchers are choice architects, presenting de-

velopers with automated recommendations and choices during pro-

gramming activities. To improve the behavior and decision-making

of software engineers, we propose integrating developer recom-
mendation choice architectures into the design of bot systems

can help make more effective notifications to improve developer

recommendations and decision-making.

As choice architects, researchers and bot developers can improve

the effectiveness of software engineering bots by incorporating de-
veloper recommendation choice architectures into automated

recommendation from systems. For future work, we plan to explore

additional ways to incorporate choice architecture and behavioral

science into the design of software engineering bots. We plan to

implement and evaluate bots that also vary feedback and locality
to determine their impact on recommendations to developers. Fur-

thermore, we aim to discover new choice architectures to continue

to improve software engineering bots encouraging developers to

adopt useful practices and tools. Future work can also explore the

impact of developer recommendation choice architectures on
other metrics, such as the amount of time to adoption.

6 CONCLUSION
We present developer recommendation choice architectures to
improve the effectiveness of automated recommendations to soft-

ware engineers. By incorporating actionability, feedback, and spatial
and temporal locality into automated bot notifications, we believe

these can improve the way decisions are presented to developers

and encourage adoption of useful tools and practices. To discover

the impact of integrating these design principles into automated

recommendations, we compared the effectiveness of two systems to

suggest fixing Python PEP 3105warnings that differed in actionabil-
ity, or the easewithwhich developers could apply recommendations

to their code.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Developer Recommendation Choice Architectures for Designing Effective Bots ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

REFERENCES
[1] Alessandro Acquisti, Idris Adjerid, Rebecca Balebako, Laura Brandimarte, Lor-

rie Faith Cranor, Saranga Komanduri, Pedro Giovanni Leon, Norman Sadeh,

Florian Schaub, Manya Sleeper, et al. 2017. Nudges for privacy and security:

Understanding and assisting users’ choices online. ACM Computing Surveys
(CSUR) 50, 3 (2017), 44.

[2] V. Balachandran. 2013. Reducing human effort and improving quality in peer

code reviews using automatic static analysis and reviewer recommendation. In

2013 35th International Conference on Software Engineering (ICSE). IEEE, 931–940.
https://doi.org/10.1109/ICSE.2013.6606642

[3] I. Beschastnikh, M. F. Lungu, and Y. Zhuang. 2017. Accelerating Software Engi-

neering Research Adoption with Analysis Bots. In 2017 IEEE/ACM 39th Interna-
tional Conference on Software Engineering: New Ideas and Emerging Technologies
Results Track (ICSE-NIER). IEEE, 35–38. https://doi.org/10.1109/ICSE-NIER.2017.

17

[4] C. Brown and C. Parnin. 2019. Sorry to Bother You: Designing Bots for Effective

Recommendations. In 2019 IEEE/ACM 1st International Workshop on Bots in Soft-
ware Engineering (BotSE). IEEE, 54–58. https://doi.org/10.1109/BotSE.2019.00021

[5] J. Cerezo, J. Kubelka, R. Robbes, and A. Bergel. 2019. Building an Expert Recom-

mender Chatbot. In 2019 IEEE/ACM 1st International Workshop on Bots in Software
Engineering (BotSE). IEEE, 59–63. https://doi.org/10.1109/BotSE.2019.00022

[6] Ryan Chmiel and Michael C Loui. 2004. Debugging: from novice to expert. ACM
SIGCSE Bulletin 36, 1 (2004), 17–21.

[7] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn.

2019. Scaling Static Analyses at Facebook. Commun. ACM 62, 8 (July 2019),

62–70. https://doi.org/10.1145/3338112

[8] Esther Duflo, Michael Kremer, and Jonathan Robinson. 2011. Nudging farmers to

use fertilizer: Theory and experimental evidence from Kenya. American economic
review 101, 6 (2011), 2350–90.

[9] David Evans and David Larochelle. 2002. Improving security using extensible

lightweight static analysis. IEEE software 19, 1 (2002), 42–51.
[10] Gerhard Fischer, Andreas Lemke, and Thomas Schwab. 1984. Active help systems.

Springer Berlin Heidelberg, Berlin, Heidelberg, 115–131. https://doi.org/10.1007/

3-540-13394-1_10

[11] Python Software Foundation. 2006. PEP 3105 – Make print a function. https:

//www.python.org/dev/peps/pep-3105/.

[12] Python Software Foundation. 2019. Sunsetting Python 2. https://www.python.

org/doc/sunset-python-2/.

[13] Andrew S. Hanks, David R. Just, Laura E. Smith, and Brian Wansink. 2012.

Healthy convenience: nudging students toward healthier choices in the

lunchroom. Journal of Public Health 34, 3 (01 2012), 370–376. https://

doi.org/10.1093/pubmed/fds003 arXiv:http://oup.prod.sis.lan/jpubhealth/article-

pdf/34/3/370/12782601/fds003.pdf

[14] Sarah Heckman and Laurie Williams. 2011. A systematic literature review of

actionable alert identification techniques for automated static code analysis.

Information and Software Technology 53, 4 (2011), 363 – 387. https://doi.org/10.

1016/j.infsof.2010.12.007 Special section: Software Engineering track of the 24th

Annual Symposium on Applied Computing.

[15] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. 2013. Why don’t software

developers use static analysis tools to find bugs?. In 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 672–681. https://doi.org/10.

1109/ICSE.2013.6606613

[16] Eric J Johnson, Suzanne B Shu, Benedict GC Dellaert, Craig Fox, Daniel G Gold-

stein, Gerald Häubl, Richard P Larrick, JohnWPayne, Ellen Peters, David Schkade,

et al. 2012. Beyond nudges: Tools of a choice architecture. Marketing Letters 23,
2 (2012), 487–504.

[17] Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. 2014. On the

Comprehension of Program Comprehension. ACM Trans. Softw. Eng. Methodol.
23, 4, Article 31 (Sept. 2014), 37 pages. https://doi.org/10.1145/2622669

[18] Brigitte C Madrian and Dennis F Shea. 2001. The power of suggestion: Inertia in

401 (k) participation and savings behavior. The Quarterly journal of economics
116, 4 (2001), 1149–1187.

[19] S. Mirhosseini and C. Parnin. 2017. Can automated pull requests encourage soft-

ware developers to upgrade out-of-date dependencies?. In 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 84–94.
https://doi.org/10.1109/ASE.2017.8115621

[20] Emerson Murphy-Hill, Da Young Lee, Gail C. Murphy, and Joanna McGrenere.

2015. How Do Users Discover New Tools in Software Development and Beyond?

Computer Supported Cooperative Work (CSCW) 24, 5 (2015), 389–422. https:

//doi.org/10.1007/s10606-015-9230-9

[21] Emerson Murphy-Hill and Gail C. Murphy. 2011. Peer Interaction Effectively,

Yet Infrequently, Enables Programmers to Discover New Tools. In Proceedings of
the ACM 2011 Conference on Computer Supported Cooperative Work (CSCW ’11).
ACM, New York, NY, USA, 405–414. https://doi.org/10.1145/1958824.1958888

[22] S. Rebai, O. Ben Sghaier, V. Alizadeh, M. Kessentini, and M. Chater. 2019. In-

teractive Refactoring Documentation Bot. In 2019 19th International Working
Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 152–162.

https://doi.org/10.1109/SCAM.2019.00026

[23] Christoph Schneider, Markus Weinmann, and Jan Vom Brocke. 2018. Digital

nudging: guiding online user choices through interface design. Commun. ACM
61, 7 (2018), 67–73.

[24] J. Smith, C. Brown, and E. Murphy-Hill. 2017. Flower: Navigating program flow

in the IDE. In 2017 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 19–23. https://doi.org/10.1109/VLHCC.2017.8103445

[25] Dilip Soman, George Ainslie, Shane Frederick, Xiuping Li, John Lynch, Page

Moreau, Andrew Mitchell, Daniel Read, Alan Sawyer, Yaacov Trope, et al. 2005.

The psychology of intertemporal discounting: Why are distant events valued

differently from proximal ones? Marketing Letters 16, 3-4 (2005), 347–360.
[26] Margaret-Anne Storey and Alexey Zagalsky. 2016. Disrupting Developer Pro-

ductivity One Bot at a Time. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2016).
Association for Computing Machinery, New York, NY, USA, 928–931. https:

//doi.org/10.1145/2950290.2983989

[27] Richard H Thaler and Cass R Sunstein. 2009. Nudge: Improving decisions about
health, wealth, and happiness. Penguin, New York, NY, USA.

[28] Richard H Thaler, Cass R Sunstein, and John P Balz. 2014. Choice architecture.
Princeton University Press, Chapter 25.

[29] P. Viriyakattiyaporn and G. C. Murphy. 2009. Challenges in the user interface

design of an IDE tool recommender. In 2009 ICSE Workshop on Cooperative and
Human Aspects on Software Engineering. IEEE, 104–107. https://doi.org/10.1109/

CHASE.2009.5071421

[30] Mairieli Wessel, Bruno Mendes de Souza, Igor Steinmacher, Igor S. Wiese,

Ivanilton Polato, Ana Paula Chaves, and Marco A. Gerosa. 2018. The Power

of Bots: Characterizing and Understanding Bots in OSS Projects. Proc. ACM
Hum.-Comput. Interact. 2, CSCW, Article 182 (Nov. 2018), 19 pages. https:

//doi.org/10.1145/3274451

[31] Amy LWilson, Elizabeth Buckley, Jonathan D Buckley, and Svetlana Bogomolova.

2016. Nudging healthier food and beverage choices through salience and priming.

Evidence from a systematic review. Food Quality and Preference 51 (2016), 47–64.
[32] Jessica Wisdom, Julie S. Downs, and George Loewenstein. 2010. Promoting

Healthy Choices: Information versus Convenience. American Economic Journal:
Applied Economics 2, 2 (April 2010), 164–78. https://doi.org/10.1257/app.2.2.164

5

https://doi.org/10.1109/ICSE.2013.6606642
https://doi.org/10.1109/ICSE-NIER.2017.17
https://doi.org/10.1109/ICSE-NIER.2017.17
https://doi.org/10.1109/BotSE.2019.00021
https://doi.org/10.1109/BotSE.2019.00022
https://doi.org/10.1145/3338112
https://doi.org/10.1007/3-540-13394-1_10
https://doi.org/10.1007/3-540-13394-1_10
https://www.python.org/dev/peps/pep-3105/
https://www.python.org/dev/peps/pep-3105/
https://www.python.org/doc/sunset-python-2/
https://www.python.org/doc/sunset-python-2/
https://doi.org/10.1093/pubmed/fds003
https://doi.org/10.1093/pubmed/fds003
http://arxiv.org/abs/http://oup.prod.sis.lan/jpubhealth/article-pdf/34/3/370/12782601/fds003.pdf
http://arxiv.org/abs/http://oup.prod.sis.lan/jpubhealth/article-pdf/34/3/370/12782601/fds003.pdf
https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1145/2622669
https://doi.org/10.1109/ASE.2017.8115621
https://doi.org/10.1007/s10606-015-9230-9
https://doi.org/10.1007/s10606-015-9230-9
https://doi.org/10.1145/1958824.1958888
https://doi.org/10.1109/SCAM.2019.00026
https://doi.org/10.1109/VLHCC.2017.8103445
https://doi.org/10.1145/2950290.2983989
https://doi.org/10.1145/2950290.2983989
https://doi.org/10.1109/CHASE.2009.5071421
https://doi.org/10.1109/CHASE.2009.5071421
https://doi.org/10.1145/3274451
https://doi.org/10.1145/3274451
https://doi.org/10.1257/app.2.2.164

	Abstract
	1 Introduction
	2 Background
	2.1 Choice Architecture
	2.2 Automated Developer Recommendations

	3 developer recommendation choice architectures
	3.1 Actionability
	3.2 Feedback
	3.3 Locality

	4 Preliminary Evaluation
	4.1 Methodology
	4.2 Results

	5 Implications and Future Work
	6 Conclusion
	References

