
Securing Agile: Assessing the Impact of Security Activities on
Agile Development

Arpit Thool
Virginia Tech

Blacksburg, Virginia, USA
arpitthool@vt.edu

Chris Brown
Virginia Tech

Blacksburg, Virginia, USA
dcbrown@vt.edu

ABSTRACT
Software systems are expected to be secure and robust. To verify
and ensure software security, it is vital to include security activities,
or development practices to detect and prevent security vulner-
abilities, into the software development process. Agile software
development is a popular software engineering (SE) process used
by many organizations and development teams. However, while
Agile aims to be a lightweight and responsive process, security
activities are typically more cumbersome and involve more doc-
umentation and tools–violating the core principles of Agile. This
work investigates the impact of security activities on various as-
pects of Agile development. To understand how software engineers
perceive incorporating security practices into Agile methodologies,
we distributed an online survey to collect data from software prac-
titioners with experience working in Agile teams. Our results from
34 survey participants show most software practitioners believe
security activities are beneficial to development overall but lack
confidence in their impact on the security of software systems. Our
findings provide insight into how security activities affect Agile
development and provide implications to help SE teams better in-
corporate security activities into implementing Agile development
processes.

CCS CONCEPTS
• Software and its engineering → Agile software develop-
ment; • Security and privacy→ Social aspects of security and
privacy.

KEYWORDS
Agile, Software Engineering, Security Activities

ACM Reference Format:
Arpit Thool and Chris Brown. 2024. Securing Agile: Assessing the Impact of
Security Activities on Agile Development. In 28th International Conference
on Evaluation and Assessment in Software Engineering (EASE 2024), June
18–21, 2024, Salerno, Italy. ACM, New York, NY, USA, 11 pages. https://doi.
org/10.1145/3661167.3661280

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike International 4.0 License.

EASE 2024, June 18–21, 2024, Salerno, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1701-7/24/06
https://doi.org/10.1145/3661167.3661280

1 INTRODUCTION
Software security is crucial for preventing attacks, safeguarding
data, and ensuring the quality of software systems. To support
software engineers, a wide variety of security activities have been
introduced to automate and streamline security-related develop-
ment tasks. For example, security-oriented static analysis tools,
such as FindSecurityBugs1 and Bandit2, have been implemented
to analyze source code and detect vulnerabilities early during the
development process [51].

Developing secure computing systems becomes increasingly
difficult as software becomes more prevalent and complex. To or-
ganize software development efforts, software engineering (SE)
teams adopt SE processes to produce quality applications. Agile is
a software development framework that puts emphasis on flexible
and iterative processes [45]. Numerous SE processes apply Agile
methodologies, including Scrum, Kanban, and Extreme Program-
ming (XP) [46]. Agile methodologies have become increasingly pop-
ular over the last decade and are now widely adopted by software
development teams. Previous research has suggested that Agile
methods enhance team productivity and product quality [37, 40],
foster communication [40] and knowledge sharing [37], but con-
trasting studies have pointed out potential adverse effects of Agile
practices on software security [9, 21]. For example, Agile devel-
opment emphasizes reduced documentation, while security-based
code analysis and scanning tools often produce more documenta-
tion to report potential issues and risk analyses. There are efforts to
integrate security into Agile in the form of security activities [5, 29].
For example, DevOps— a modern development methodology com-
monly combined with Agile principles [34]—focuses on automating
development and infrastructure tasks to support rapid releases of
software to users [26]. DevSecOps extends this not just to Develop-
ment (Dev) and Operations (Ops), but also covers Security (Sec) by
incorporating security activities, such as automated static analysis
tools, into DevOps pipelines [31, 36]. However, more research is
needed to understand how these security activities merge into Agile,
affect its various facets, and how Agile practitioners perceive them.
Our work aims to understand software practitioners’ perspectives
and experiences integrating security activities into Agile practices.
Our study explores the following research questions (RQs):

RQ1 How do software practitioners perceive the effective-
ness of adopted and state-of-the-art security practices, and
what is their level of willingness to incorporate them into
the Agile software development process?

1https://find-sec-bugs.github.io/
2https://bandit.readthedocs.io/

668

https://doi.org/10.1145/3661167.3661280
https://doi.org/10.1145/3661167.3661280
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3661167.3661280
https://find-sec-bugs.github.io/
https://bandit.readthedocs.io/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3661167.3661280&domain=pdf&date_stamp=2024-06-18

EASE 2024, June 18–21, 2024, Salerno, Italy Arpit, et al.

RQ2 How are the team velocity and productivity, as per-
ceived by the software practitioners, affected by the inclusion
of security activities?
RQ3What is the impact of integrating security activities into
Agile development on software practitioners’ confidence in
their software product and organization?

To answer these research questions, we used an online survey to
collect data from 34 software practitioners with experience working
in Agile development teams. By answering the research questions,
we aim to contribute valuable insights into the security activities
adopted by Agile development teams to safeguard their products.
Additionally, we seek to understand software practitioners’ percep-
tions of the effectiveness and willingness to adopt these security
practices. This includes evaluating the impact of security activities
on team productivity and velocity, a metric measuring the produc-
tivity of Agile teams by the number of tasks they can complete
in a sprint [58]. Along with evaluating their effect on software
practitioners’ confidence in their software products and overall
organization. Ultimately, through this work, we aim to contribute
insights for improving the adoption of techniques to secure complex
software systems.

This article is organized as follows: In Section 2, we provide
a glossary and background information on Security and Agile
Methodology. Section 3 reviews related work. Section 4 explains
the methodology we used to address our research questions. Sec-
tion 5 presents the data analysis results. In Section 6, we discuss
our results. Section 7 outlines the study’s limitations and suggests
potential future work, while Section 8 concludes.

2 BACKGROUND
2.1 Security
Secure software systems safeguard users’ data and prevent mali-
cious attacks. Compromised software security can lead to detrimen-
tal consequences for software users and companies. For example,
the Equifax data breach in 2017–involving one of the largest credit
reporting agencies in the U.S.–saw hackers exploit a vulnerability
to access and expose the sensitive personal identifiable information
(PII) of approximately 147 million users [32]. Further, this led to
billions of dollars lost in market value and numerous lawsuits and
fines, including a $700 million settlement. This motivates organi-
zations to invest in security and development teams to integrate
security-related tasks into their software development processes.

Securing software is an increasingly difficult task for software
practitioners [23]. Various tools and methods have been introduced
to automate and support security-related tasks to reduce the burden
of securing software. In addition to our primary research efforts, we
conducted a comprehensive review of existing literature focusing
on security challenges encountered in Agile software development
methodologies and the recommended security practices to address
these challenges. From this extensive collection of security practices,
we selected eight activities that we deemed to have the potential
to provide the highest value in enhancing the security posture of
Agile software development processes. These security activities are
presented in Table 1. We incorporate these state-of-the-art secu-
rity activities in our evaluation to understand software engineers’
perceptions of their impact on Agile development processes.

2.2 Agile
Software engineering processes are useful for organizing develop-
ment activities within the Software Development Life-cycle (SDLC).
A typical SDLC begins with analyzing requirements for a project
and goes through the system’s design, implementation, testing,
maintenance, and deployment. Agile is a framework for SE pro-
cesses that focuses on iterative and incremental development, con-
tinuous delivery, and customer satisfaction through collaboration [38].
The primary goal of Agile methodologies is to be responsive to
change to incorporate flexibility and avoid increased development
costs and unnecessary rework typical in traditional SE processes [2].

Agile, known for being lightweight and adaptable [27], was of-
ficially introduced with the “Manifesto for Agile Software Devel-
opment"3 released in 2001–outlining the values of Agile software
development [14]. However, these principles can positively or neg-
atively impact software security in software development, as sum-
marized below:

Individuals and interactions over processes and tools: Agile empha-
sizes communication and interactions between individuals over
processes and tools. These interactions between software practi-
tioners can lead to increased knowledge about security vulnerabili-
ties and methods to mitigate them. For instance, software engineers
primarily discover security-related tools through recommendations
from coworkers [57], and peer code reviews are effective for detect-
ing possible vulnerabilities [16]. However, many security activities
necessitate adopting tools and libraries–which are challenging for
developers to use to fix vulnerabilities [13, 51].

Working software over comprehensive documentation: Agile pro-
cesses prioritize functional software over extensive documenta-
tion. Incorporating security activities into working software can
increase confidence in the system’s security. Yet, many security
activities increase documentation–primarily related to potential
vulnerabilities. For example, security tools generate reports out-
lining detected issues, increasing documentation for development
teams [48]. Moreover, minimizing this documentation can lead to
inadequate knowledge of the system’s security. However, the incom-
prehensible output generated by security tools is one of the main
barriers to adoption in DevOps workflows [42] and development
teams [51].

Customer collaboration over contract negotiation: Engaging with
clients is emphasized over formal contract agreements in Agile
development processes. Involving customers in security-related
discussions early in the development process has also been shown
to address security needs and concerns [50] effectively. However,
clients may not possess the knowledge needed to implement se-
curity practices or understand risks in software. Thus, security
activities can involve formal contracts for beneficial practices, such
as hiring external security experts and teams to validate software
security. For instance, red teams are frequently employed by large
software companies such as Microsoft to emulate hackers and try
to compromise production software and systems [52].

Responding to change over following a plan: Adaptability is one of
the main benefits of Agile development [2], allowing development

3https://agilemanifesto.org/

669

https://agilemanifesto.org/

Securing Agile: Assessing the Impact of Security Activities on Agile Development EASE 2024, June 18–21, 2024, Salerno, Italy

Table 1: Security Activities for Agile Software Development

Studies Security Activity Definition
[8, 12, 30,
47]

Addressing security in early iterations
with requirements and testing

This security activity emphasizes the importance of development teams addressing security issues
and concerns early in the project before deploying the software.

[18, 30,
47]

Stating security requirements that are ex-
pected in the production software

This requires incorporating security expectations in project requirements when describing the
responsibilities and behavior of the software.

[8, 18,
19] Adding a security specialist to your team

Security specialists, such as a Security Master, are members of a development team that focus on
security aspects of the project to address concerns and ensure the security of the system.

[5, 35, 41,
53]

Additional points or weights to issues with
an impact on security

This activity involves increasing the weights, such as story points in an Agile development
environment, of issues that will have a higher impact the security of the product to prioritize
security-related tasks and encourage more secure development and testing.

[5, 15,
30]

Iterative and incremental vulnerability
and penetration testing

This security activity suggests incorporating recurring security scanning, such as Dynamic Appli-
cation Security Testing (DAST), to test for security flaws in the working software automatically.

[5, 8, 15] Iterative and incremental security static
analysis

Similar to DAST, Static Application Security Testing (SAST) involves using security-related static
analysis tools to detect potential security vulnerabilities by scanning the source code.

[6, 15,
20]

Iterative and incremental risk analysis,
countermeasure graphs

This security activity consists of using tools to monitor networks, applications, and infrastructure
and perform risk analysis to identify vulnerabilities. These tools can evaluate the system’s security
and suggest methods to prevent attacks.

[3, 15,
30] Automatic testing

This security activity involves incorporating secure coding practices, such as vulnerabilities
analysis and risk assessment, into the deployment pipeline for software projects. This allows
security checks to be automatically triggered with code changes and issues to be addressed before
the software is deployed to users.

teams to react to modified requirements instead of strictly adhering
to a specification. This can benefit software security by encourag-
ing development teams to respond quickly to security incidents to
reduce the time between identifying security issues and deploying
a solution [56]. Integrating security activities into development pro-
cesses often involves following a defined plan. For example, prior
work suggests traditional security practices, such as Microsoft’s Se-
curity Development Lifecycle [24], fail to scale in Agile conditions
because of high costs and time constraints due to iterative devel-
opment on projects [5]. Further, incorporating security standards,
such as the Federal Information Processing Standard (FIPS), requires
documented system security planning to discuss security-related
concepts, such as how information is inventoried [55].

The success of incorporating these values with security practices
depends on the implementation of individual development teams.
Thus, this work aims to explore the perceptions and experiences
of software practitioners incorporating various security activities
into Agile development processes.

3 RELATEDWORK
Prior work has investigated software development methods in Agile
development and concluded that the myth of Agile methodologies
decreasing software security is false and security activities are
increasing in popularity [44]. Jabangwe and colleagues [25] also
found similar results in a literature review investigating research ex-
ploring ways to integrate security practices into Agile development
processes. While these studies are based on theoretical evidence,
this work aims to analyze how specific security activities are per-
ceived by software engineers with experience working on Agile
development teams.

Beznosov et al. [9] categorize security assurance methods into
four groups based on their adaptability to Agile methodology. Their

results saw that almost half of these security practices clash di-
rectly with Agile development, primarily due to their dependence
on heavy documentation. Similarly, Bartsch and colleagues[7] con-
ducted a literature review to investigate security challenges in Agile
development, concluding clients and developers should explicitly
discuss non-functional security requirements earlier in the project
and risk awareness incorporated into Agile team retrospective meet-
ings. This work builds on these studies by surveying software practi-
tioners to analyze their experiences and perspectives on integrating
security activities into Agile development processes.

Hammad et al. [22] explored the neglect of risk management in
Agile software development. By conducting an online survey, the
authors revealed that while risk management strategies are used,
they are often applied non-systemically, with project deadlines
and varying requirements being the most commonly faced risks
by practitioners. We add to this work by shifting the focus from
risk management practices to incorporating security activities in
Agile. This extension is significant because it addresses the unique
challenges posed by security activities, which often involve more
documentation and tools, potentially conflicting with Agile’s light-
weight and responsive nature. Our research focuses on integrating
security practices within Agile and understanding practitioners’
perceptions of them, providing insights into software development
practices beyond risk management. Another study by Agrawal et
al. [1] examined the current limitations and advantages of Agile
software development, conducting an online survey among Agile
practitioners highlighting issues such as lack of upfront planning,
budget constraint, insufficient documentation, and predictability
challenges. We study the impact of security activities on Agile soft-
ware development rather than the limitations of Agile methods.
We aim to examine the integration of security practices into Agile,
acknowledging the potential conflicts between Agile principles and
the more traditional and sequential nature of security activities.

670

EASE 2024, June 18–21, 2024, Salerno, Italy Arpit, et al.

Assal et al. [3] investigated real-life software security practices
during various SDLC stages through developers’ interviews. With
the popularity of Agile, our research aims to narrow the focus
from the broader SDLCs to specifically Agile software development.
Similar to study [3], we aim to explore real-life software security
practices but specifically in Agile contexts. Additionally, we inves-
tigate how these security activities impact the Agile development
process. The study [3] discusses discrepancies between real-life se-
curity practices and best practices for securing software identified
in the literature. Our research aims to extend this discussion by
examining how software practitioners perceive the effectiveness of
security practices within Agile and their willingness to incorporate
them.

Ayalew et al. [4] evaluated and compared existing high-profile
waterfall security-engineering processes with Agile methodologies,
identifying the need for specific security practices tailored for Ag-
ile projects and emphasizing the importance of balancing security
efforts with integration costs. Our research complements these find-
ings by focusing on the impact of existing security activities within
Agile software development. While this study suggests existing
waterfall security-engineering processes may not align well with
Agile projects, we investigate how software practitioners perceive
the effectiveness of security practices deemed compatible with Ag-
ile. By exploring these aspects, our study addresses the practical
implications of securing Agile development, offering insights be-
yond identifying and evaluating security activities presented by
Ayalew and colleagues [4].

4 METHODOLOGY
4.1 Data Collection
Using QuestionPro,4 we created and distributed an online survey.
The survey was conducted to help us answer our research questions
investigating the impact of security activities on various aspects
of Agile development. It contained nine questions with multiple
parts. The Institutional Review Board (IRB) provided approval for
both the survey and its protocol before the commencement of data
collection.

4.2 Participant Recruitment
We aimed to recruit diverse participants to ensure a comprehen-
sive perspective. Our recruitment strategy involved reaching out
to potential participants through multiple channels. We used per-
sonalized invites and posts on LinkedIn5 to promote our survey,
inviting professionals in the software industry. Through Slack 6,
we sent the survey to our network of contacts actively engaged
in IT teams within different organizations. We also reached out
to Virginia Tech graduate students with relevant technical work
experience developing software in a professional industry setting.

4.3 Survey Structure
Our survey collected demographic information and background
details on participants’ experiences with Agile development and
security practices, specifically asking respondents to provide insight
4https://www.questionpro.com/
5https://www.linkedin.com/
6https://www.slack.com

into the security activities adopted by their development teams and
to provide feedback on the recommended practices in Table 1. As
this research focuses specifically on security activities in Agile
software development, we discarded participants without Agile
experience.

We asked participants to provide their perspectives on adopting
security practices into Agile, their take on these security practices
and how these practices affect them, their team and their overall
organization. To answer RQ1, we inquired about their perceived
effectiveness of specific security practices to increase the overall
software security individually. Subsequently, we also asked the
participants how willing they were to include each state-of-the-art
security practice in their Agile software development process. To
answer RQ2, we asked how the inclusion of these security practices
affected the sprint velocity. Lastly, we asked about their confidence
level in the overall security of the software product to answer RQ3.
Also, it is important to note that some questions were kept as op-
tional in our research survey, and consequently, only 41% (𝑛 = 14)
of the respondents chose to provide answers to them. These ques-
tions delved into various aspects of security practices within Agile
processes, seeking insights into their impact on teams, productivity,
software products, organizations, and individuals’ day-to-day activ-
ities. Despite their optional nature, the responses to these questions
offer valuable perspectives on integrating security practices into
Agile development. Kindly access the survey questions and their
corresponding format through the hyperlink 7.

4.4 Data Analysis
Our survey contained closed-ended, Likert scale, and open-ended
questions asking respondents about their opinion on software se-
curity, incorporating security practices in Agile, and their impact.
We used a mixed methods approach to analyze the 5-point Likert
scale questions. The percentage value for an option in a question is
calculated by using this formula:(𝑛

𝑁

)
× 100%

where (𝑛) is the number of responses for that option and (𝑁) is the
total number of responses to the question. We also used a one-way
(Analysis of Variance) ANOVA test to analyze the variance of re-
sponses across the activity. We consider a result to be statistically
significant if 𝑝 < 0.05. Qualitative analysis of the free response data
was done using an iterative-inductive thematic open coding analy-
sis. We worked in a team of two, with each individual performing
the open coding analysis on the responses separately; then, the
results were compared and discussed to reach a conclusion agreed
on by both researchers. For example, one survey question asked
about the different security practices employed in the respondents’
current workplace. We reviewed the responses to this question
using the open coding method and highlighted parts of sentences
that indicate one or more adopted security practices. In one of the
responses for the above question, “Dual-authentication, least priv-
ilege so only certain users could access certain stage environments
just as testing.", “Dual-authentication" indicated the Multi-Factor
Authentication practice. Another response, “Only certain users could

7https://doi.org/10.6084/m9.figshare.25655838

671

https://www.questionpro.com/
https://www.linkedin.com/
https://www.slack.com
https://doi.org/10.6084/m9.figshare.25655838

Securing Agile: Assessing the Impact of Security Activities on Agile Development EASE 2024, June 18–21, 2024, Salerno, Italy

access certain stage environments" indicated the Identity Access Man-
agement security practice. In this manner, as shown Table 2, each
response was parsed and categorized into one or more security
practices. By utilizing open coding, we could discern recurrent
themes and trends in the data and, as a result, gain a more profound
comprehension of the respondents’ opinions and experiences in-
corporating security activities into Agile development processes.
The analysis revealed various security practices employed in Agile
software development for the above survey question.

4.5 Participants
Our survey was completed by 34 individuals averaging approxi-
mately seven years of software engineering experience. Most partic-
ipants were software engineers with years of experience working in
the software industry. Of 34 participants, 67% (𝑛 = 23) were work-
ing professionals with an average of eight years of technical work
experience, and 33% (𝑛 = 11) were university students pursuing
graduate studies. Participants who identified as industry profes-
sionals reported working for organizations such as Acquia, Flexcar,
GlobalLogic, Decisions.com, Cvent, Lutron Electronics, Palo Alto
Networks, and Microsoft in various roles such as software engi-
neer, infrastructure engineer, senior product manager, technical
consultant, systems architect, and database administrator. The re-
maining participants were graduate students with an average of
two years of work experience in the software engineering domain.
Most participants viewed security as extremely (𝑛 = 25, 76%) or
very important (𝑛 = 7, 21%) for their software team. Details about
our survey respondents are presented in Table 3.

5 RESULTS
5.1 RQ1: Security Activities in Agile, Perceived

Effectiveness & Willingness to Adopt
5.1.1 Adoption. While 97% of participants (𝑛 = 33) reported using
Agile software development methodologies, only 72% (𝑛 = 23) re-
ported having security-related activities in their Agile processes.
When excluding participants who reported being students, we
found 77% (𝑛 = 27) of software professionals adopt security activi-
ties in their development process. The participants were working in
Agile development and not specifically in Agile security. Example
security activities adopted by Agile teams include security training,
security scanning & monitoring systems, security static analysis
tools, code reviews, integrating standards such as Open Worldwide
Application Security Project (OWASP) [39], Identity Access Man-
agement, Multi-Factor Authentication, and zero trust policies [49],
and separate security teams.

5.1.2 Perception. Then, we asked a follow-up question to under-
stand participants’ perspectives regarding the security practices
employed within their respective teams. The responses encom-
passed a range of sentiments, which indicated diverse opinions. A
majority of the respondents expressed these practices as “good"
(𝑛 = 8), “informative" (𝑛 = 2), “necessary" (𝑛 = 2) and something
that needs to be complied with (𝑛 = 1). On the other hand, some
participants expressed that these activities were time-consuming
(𝑛 = 1) and disliked (𝑛 = 1). The respondents also acknowledged
the need for improvement (𝑛 = 4), emphasizing the importance of

enhancing security measures. Overall, the data suggests that while
certain individuals recognize the value of security practices, there
is room for progress and optimization within software development
teams.

5.1.3 Agile Security. We also asked respondents how much they
agree with the statement: “Software developed through Agile meth-
ods is relatively less secure when compared to software developed
through sequential SDLC processes, like Waterfall". As shown in
Figure1, the responses from the survey show a diverse range of opin-
ions. Most (43.7%) of the participants disagreed with the statement,
indicating that they perceive Agile software development processes
as relatively secure. Furthermore, a considerable proportion (31%)
remained neutral, neither fully agreeing nor disagreeing. This sug-
gests that many respondents may be uncertain about the security
implications of Agile practices. On the other hand, a minority of
respondents (15.6%) strongly agreed with the statement, while an
even smaller percentage (9.38%) agreed. These responses indicate
no consensus among the majority, emphasizing the need for further
exploration into the impact of security practices on Agile software
development processes.

0%9.4
%

31
.3%

43
.8%

15
.7%

Strongly Disagree Disagree Neutral
Agree Strongly Agree

Figure 1: Participants’ response on, “Agile software is less
secure compared to the ones developed using Waterfall”.

5.1.4 Effectiveness of software security practices and willingness to
include them in Agile. The survey also listed the eight state-of-the-
art security practices mentioned in Table 1. We asked participants
how effective these activities would be in increasing the security
and robustness of software if their team included them in the Agile
software development process. A total of 30 participants responded
to the question. The collected data, displayed as a heat map in Ta-
ble 4, revealed notable scores assigned to each practice, indicating
the degree of perceived effectiveness. “Iterative vulnerability test-
ing" garnered the second highest score of 60% (Extremely effective),
suggesting its efficacy in identifying andmitigating potential vulner-
abilities. Similarly, “Automatic testing" obtained the highest score
of 66.67% (Extremely effective), underscoring the potential of au-
tomation to bolster security throughout the SDLC. Other practices,
such as “Iterative security static analysis" and assigning “Additional
weight based on security impact," also demonstrated strong effec-
tiveness ratings. However, certain practices received slightly lower
scores, indicating potential areas for improvement. For instance,
“Iterative risk analysis, countermeasure graphs" obtained the lowest
scores. However, an ANOVA test showed no significant difference
in participants’ perceived effectiveness across the aforementioned
security activities (𝐹 = 1.806, 𝑝 = 0.09035). These findings still
provide valuable insights into the perceived effectiveness of various
security practices and motivate the need to incorporate automation
in security activities to bolster software security and robustness in
an Agile setting.

672

EASE 2024, June 18–21, 2024, Salerno, Italy Arpit, et al.

Table 2: Open coding examples for "What are the security practices used in your Agile process?"

Participant Response Categories Identified
P1 “Security training which takes place each quarter. And quiz based on that training.” Security Training

P3 “Use of continuous Integration, Add multiple checks for static analysis and code scan
Proper IAM policy.”

Continuous Integration (CI), Static Application
Security Testing (SAST), Security scanning, Iden-
tity Access Management (IAM)

P4 “Compliance best practices and checklist” Compliance best practices
P8 “Differential Access to resources” Identity Access Management (IAM)

P10 “We follow Owasp standards. Each enhancement goes through the tests according
to OWASP standards.” OWASP standards

P12

“In my previous company, there was a separate team that worked on the security
aspects of the product, like login, user management, permissions, etc. To prevent
unauthorised access to certain parts of software. There were security expectations
in each user story, and those aspects used to get tested by QA before deploying the
code.”

Separate Security team, Identity Access Manage-
ment (IAM), Agile Stories, Separate security team,
Agile stories

P18
“Regular security scans using commercial tools, as well as requested scans of servers
and applications by the IT security office. Monitoring of known security outlets for
zero-day exploits.”

Continuous Integration (CI), Security scanning,
Automation tools, Monitoring

P19 “Periodic reviews” Periodic reviews

P27 “Before any story is picked up, there’s a Security Review of the entire epic with the
Security Team.”

Agile stories, Separate security team, Periodic
reviews

P30 “Dual-authentication, least privilege so only certain users could access certain stage
environments just as testing.”

Multi-factor Authentication (MFA), Identity Ac-
cess Management (IAM)

P31 “Code review, multiple release plan, security checks by software development engi-
neering team and security team.”

Code reviews, Separate security team, Continu-
ous Integration (CI)

P32 “There are security experts to ensure secure practices and regular security testing
and analysis is performed.”

Security expert, Security practice insurance, Con-
tinuous Integration (CI)

P33 “Secure Clouds and systems - MFA - Including a round of security test with every
PR or Features - Zero Trust Policies.”

Multi-factor Authentication (MFA), Zero trust
policy, Secure cloud services & systems, Code
reviews

Table 3: Survey Participants

Participant Role
Industry
Exp.
(years)

Agile? Security? Participant Role
Industry
Exp.
(years)

Agile? Security?

P1 Associate Software Engi-
neer 1 Yes Yes P18 Chief Test Monkey 41 Yes Yes

P2 Software Engineer 2.2 Yes Yes P19 Cloud Engineer 7 Yes Yes
P3 Software Engineer 2 Yes Yes P20 Systems Architect 8 Yes No
P4 Engineering Manager 11 Yes Yes P21 Department Head 23 Yes Yes

P5 Software Engineer 6 Yes Yes P22 Associate Director of Sys-
tems Development 11 Yes Yes

P6 Student 0 Yes Yes P23 Director, DBAA 22 Yes Yes
P7 Quality Engineer 1.5 Yes No P24 Software Developer 20 No No

P8 Graduate Teaching Assis-
tant 1 Yes Yes P25 Software Engineering Co-

Op 1 Yes Yes

P9 Student 4 Yes No P26 Senior Product Manager 10 Yes No
P10 Consultant 15 Yes Yes P27 Software Engineer 2.5 Yes Yes
P11 Senior Software Engineer 5 Yes Yes P28 Student 3 Yes No
P12 Student 3 Yes Yes P29 Student 1 Yes No
P13 Student 3 Yes No P30 Technical Consultant 1 Yes Yes
P14 Automation Test Engineer 4.2 Yes Yes P31 Software Engineer 2 Yes Yes
P15 Graduate Student 2.8 Yes No P32 Security Co-Op 0-1 Yes Yes

P16 Student 0 Yes No P33 Senior Staff Machine
Learning Engineer 4 Yes Yes

P17 Senior Software Engineer 6 Yes No P34 Infrastructure Engineer 1.5 Yes Yes

673

Securing Agile: Assessing the Impact of Security Activities on Agile Development EASE 2024, June 18–21, 2024, Salerno, Italy

Table 4: Security Activities and Practitioners’ Perceived Effectiveness

Security Activity Not at
all Slightly Moderately Very Extremely

Addressing security in early iterations with requirements and testing 0% 0% 13.33% 73.33% 13.33%
Stating security requirements that are expected in the production software 0% 3.33% 20% 46.67% 30%
Adding a security specialist to your team 0% 6.67% 20% 40% 33.33%
Additional points or weights to issues with an impact on security 0% 0% 20% 46.67% 33.33%
Iterative and incremental vulnerability and penetration testing 0% 0% 10% 30% 60%
Iterative and incremental security static analysis 0% 3.33% 6.67% 53.33% 36.67%
Iterative and incremental risk analysis, countermeasure graphs 0% 6.67% 30% 43.33% 20%
Automatic testing 0% 3.33% 0% 30% 66.67%

Table 5: Security Activities and Practitioners’ Willingness to Include Them in Agile Processes

Security Activity Not at
all Slightly Moderately Very Extremely

Addressing security in early iterations with requirements and testing 0% 0% 29.03% 45.16% 25.81%
Stating security requirements that are expected in the production software 0% 0% 29.03% 41.94% 29.03%
Adding a security specialist to your team 0% 6.45% 19.35% 48.39% 25.81%
Additional points or weights to issues with an impact on security 0% 0% 12.9% 38.71% 48.39%
Iterative and incremental vulnerability and penetration testing 0% 0% 16.13% 19.35% 64.52%
Iterative and incremental security static analysis 0% 0% 3.23% 45.16% 51.61%
Iterative and incremental risk analysis, countermeasure graphs 3.23% 0% 22.58% 48.39% 25.81%
Automatic testing 0% 0% 3.23% 29.03% 67.74%

Lastly, we inquired about the willingness of the respondents to
include specific security practices into their Agile process for the
same security practices listed in Table 1. In total, 31 participants
responded to this question. As shown in Table 5, several practices
received notable scores–indicating a high willingness to include
them. For example, both iterative vulnerability testing and itera-
tive security static analysis obtained strong scores. The automatic
testing activity received the highest score of 67.74% (Extremely
willing), emphasizing a strong willingness to incorporate this par-
ticular practice. Other practices, such as additional weights based
on security impact and stating security requirements, also received
favorable scores. However, certain practices, including addressing
security in early iterations and iterative risk analysis, obtained
the lowest scores. Using an ANOVA test, we found no statistically
significant difference in participants’ willingness to adopt certain
practices (𝐹 = 1.3191, 𝑝 = 0.2457). However, understanding these
inclinations can assist organizations in effectively promoting and
implementing security measures in Agile software development
teams.

5.2 RQ2: Impact on Productivity
5.2.1 Team Velocity. Most of the participants who responded to
the optional question about their opinion on the impacts of security
practices on team velocity (𝑛 = 14) reported that adopting security
practices did not affect their team’s overall output. Some of this
was dependent on specific team policies, such as one participant
who noted the activities were planned “before the sprint starts, [and]
the developers go in the spring knowing what to expect” (P26). Some
participants noted minor changes to their productivity, adding it
affected their productivity “10-20%” (P17) or one to two days (P16,
P28). However, one participant responded that incorporating new

initiatives for security engineering “will always affect the sprint
velocity drastically” leading to a slower rollout of features, but
concluded “such changes are fruitful” (P14).

5.2.2 Day-to-day Activities. Participants also noted that security
activities have less effect on their day-to-day work. Many respon-
dents (𝑛 = 16) noted that they had little to no effect on daily de-
velopment tasks. Specific activities mentioned as not interrupting
development processes include integrating tools to do “periodic
security checking” (P20) and having an external team. However,
the most popular disruption reported (𝑛 = 2) was increased time
in the development process. For instance, P27 mentioned security
activities lead to “more time spent authenticating to access different
environments and projects”. Thus, we found that integrating security
activities into Agile development processes does not have a major
impact on the sprint velocity of Agile development teams.

5.3 RQ3: Impact of Software Activities
5.3.1 Software Products. We were also interested in exploring how
incorporating security activities into Agile practices impacted the
software practitioners. We asked participants how the involvement
of their reported security practices affected their software prod-
ucts. Many participants (𝑛 = 10) reported that the involvement
of security practices increased overall security. This suggests that
implementing robust security measures positively influenced soft-
ware products, making them more secure and resilient to potential
threats. Additionally, a few participants mentioned that the involve-
ment of security practices contributed to increased customer trust
(𝑛 = 1), highlighting the importance of instilling confidence in end-
users. Other reported impacts include increased confidence among

674

EASE 2024, June 18–21, 2024, Salerno, Italy Arpit, et al.

team members (𝑛 = 1), adherence to higher standards (𝑛 = 1), and
a decrease in the number of bugs (𝑛 = 1).

However, these activities may have some negative effects as
well. For instance, one respondent mentioned that these activities
“extended delivery date since a lot of code was often stuck waiting
for approval" (P30). P19 also mentioned that their teams adopted
security practices “rarely” impacted the product’s security. Our
findings demonstrate the positive influence of security practices on
software products in terms of their security posture and broader
aspects such as customer trust, team morale, and overall product
quality. However, it becomes evident that incorporating these ac-
tivities requires careful planning to manage and avoid effectively
delaying software feature deployment.

5.3.2 Organization. Next, we asked how these security activities
affected the organization.While a few participants noted positive ef-
fects, such as the likely inclusion of more security practices (𝑛 = 1),
an improved overall culture (𝑛 = 1), building company reputation
(𝑛 = 1), and increased customer confidence (𝑛 = 1), the majority of
respondents indicated either no effect (𝑛 = 4) or a minimal impact
(𝑛 = 4) on their organizations. These findings suggest that while
some organizations experience tangible benefits, others may not
perceive substantial changes resulting from implementing these
practices. Further analysis is necessary to understand the specific
factors influencing these variations and to identify strategies for op-
timizing the integration of security practices within organizational
contexts. However, it can also be said that the benefits of these
activities are not explicitly visible since there is no way of knowing
how many different security threats the organization faces and
how many of them were prevented due to the inclusion of security
practices.

5.3.3 Confidence. We studied how participants’ confidence in the
security of their software product was influenced by the security
practices adopted by their Agile teams. The results, as shown in Fig-
ure 2, Participants generated various responses, providing insights
into the perceived impact of security practices on confidence levels.
amajority, 50% of the respondents reported feeling “fairly confident"
in the security of the software they build, 25% responded “some-
what confident", and 25% indicated being “completely confident".
These findings indicate a positive influence of security practices
in instilling trust and assurance among the software practitioners
involved and underscore the significance of integrating robust secu-
rity measures into software development processes. However, more
work is needed to increase the confidence of software engineers.

0%25
%

50
%

25
%

0%

Not at all Confident Slightly Confident
Somewhat Confident Fairly Confident
Completely Confident

Figure 2: Participants’ confidence in software security was
influenced by the adoption of security practices by their Agile
teams

6 DISCUSSION
Our study provides valuable insights into integrating security ac-
tivities within Agile development, shedding light on software prac-
titioners’ perceptions and the impact on various aspects of the
Agile development process. The results show that software prac-
titioners positively perceive incorporating security activities into
Agile despite the potential for conflicts between these domains.
This alignment with security practices underscores the growing
awareness of the importance of software security. Integration of se-
curity activities also had minimal impact on software practitioners’
productivity and generally increased the security of software prod-
ucts. While some participants noted increased time and occasional
delays in feature deployment related to security activities, these
concerns were outweighed by the perceived benefits of enhanced
security. This suggests that, with careful planning and efficient
implementation, Agile teams can successfully integrate security
practices without compromising productivity.

However, it is important to address the concerns raised by some
participants regarding the need for improved security activities.
Some participants were only “somewhat” or “fairly” confident that
their team’s adopted security activities improved the protection of
their software. In light of their feedback, it becomes evident that
there is room for enhancing the effectiveness of security practices
within Agile development. To minimize the impact of software
security practices on wasted time and improve confidence in system
security, we recommend a two-pronged approach to address this
issue: increasing automation and improving feedback.

6.1 Increase Automation
Our results highlight the positive perception and willingness to
adopt Agile processes involving automation and security tools. For
example, while we noticed no significant difference in the eight
security activities in our survey, we found more automated ap-
proaches (i.e., automatic testing) had better perception and higher
willingness to adopt among participants than more manual prac-
tices (i.e., adding a security specialist). This is consistent with prior
work, which shows automated penetration testing techniques are
more efficient than manual approaches [54]. However, Edwards and
colleagues suggest automated security techniques can be harmful
due to various social and technical issues, such as inaccurate output,
not meeting stakeholder requirements, and information overload
for users [17].

Therefore, there is an opportunity to streamline security activ-
ities through automation further. Our results suggest that teams
should consider implementing automated testing, vulnerability as-
sessments, penetration testing, and static security analysis tools to
enhance the security of the software- as these security practices had
higher perceived effectiveness and willingness to adopt metrics. To
that end, automation can help support software engineers utilizing
security activities in iterative development processes. For example,
prior work has explored continuous security testing or integrating
automated security tools into CI/CD processes for repositories [43].
Similarly, DevOps, a development methodology that incorporates
Development (Dev) and Operations (Ops) aspects of software devel-
opment, has been modified as DevSecOps to incorporate concepts
and tools related to security into DevOps pipelines [31]. These

675

Securing Agile: Assessing the Impact of Security Activities on Agile Development EASE 2024, June 18–21, 2024, Salerno, Italy

practices are also commonly adopted with Agile and iterative devel-
opment processes because they focus on rapidly delivering software
to users [38]. To that end, incorporating security activities in these
processes can further automate and streamline the protection of
software projects.

Our results demonstrate notable scores for recommended secu-
rity practices involving automation and tools—particularly auto-
matic testing, vulnerability & penetration testing, and security static
analysis—indicating higher perceived effectiveness and willingness
to adopt Agile processes.

6.2 Improve Feedback
However, blindly automating security tasks is not a valid solution.
For instance, prior work suggests users are unlikely to trust and
use automated development tools that fail to meet personal, inter-
active, and technical values–such as incorrect or incomprehensible
results [28]. We also observed this in our study, with some partici-
pants reporting feeling the adopted security activities among their
teams had little to no impact on the security of products and lacked
confidence in these processes. Moreover, too much information
without context can be detrimental to developers using security
tools [17]. Security activities should also incorporate useful and ac-
tionable feedback to users to improve this. Prior work suggests poor
feedback hinders security tool adoption [42, 51]. Providing clear
and actionable feedback through interventions such as collabora-
tions between security experts and developers [13] can improve the
impact of automated security tools and increase software engineers’
confidence in the security of their systems.

For example, systems could incorporate additional information
instead of just reporting vulnerabilities to users. Prior work sug-
gests developers lack knowledge of the consequences of generated
security output [51]. To mitigate this, researchers have explored
using vignettes and brief stories to illustrate concepts to increase un-
derstanding and behavior related to software security [11]. To that
end, automated tools can also provide insight into the consequences
of potential vulnerabilities. Developers also lack knowledge on how
to address security issues reported by security-related tools. To
mitigate this, Bhandari et al. inspected open-source repositories to
collect security vulnerabilities and their corresponding fixes [10].
Research has shown that automated program repair can improve
general debugging tasks [33], and we speculate automated tools sug-
gesting security fixes can be useful in providing specific feedback
to software practitioners and enhancing the security of software
products.

7 LIMITATIONS AND FUTUREWORK
A limitation of this work is that participants’ responses may not
generalize to all Agile software practitioners. To mitigate this, we
recruited participants from different backgrounds and experience
levels to understand the impact of security practices on Agile devel-
opment. However, this pool included a substantial representation
of graduate students (𝑛 = 11), from which a majority (𝑛 = 9) were
from Virginia Tech, which could introduce a bias in the findings.
Future work can further investigate software practitioners’ perspec-
tives by surveying a wider audience. Additionally, our survey relies
on participants’ memory and estimations to report how security

practices impact team velocity, which can be inaccurate. Further
research is needed to investigate the impact of security activities on
software practitioner productivity. This could be explored by ana-
lyzing Github8 repositories to uncover practices used and measure
productivity metrics.

A potential avenue for future research could involve conducting
a comprehensive use-case study that examines integrating spe-
cific security practices into an Agile development process within a
software engineering team. This study would focus on soliciting
feedback from team members regarding their firsthand experiences
during the incorporation. By obtaining insights directly from the
individuals involved, valuable information can be gathered to as-
sess the practical implications, challenges, and benefits of adopting
security practices in an Agile environment. This research approach
would provide an opportunity to gain a deeper understanding of the
team dynamics, the impact on workflow, and the overall effective-
ness of the security practice within the Agile development process.
Such a study would contribute to the existing body of knowledge
by offering real-world insights into the concepts discussed in this
study.

Finally, future work can explore developing novel security tools
and methods to avoid conflicts with Agile software development.
For example, reducing the amount of documentation by providing
concise and actionable feedback to software engineers to prevent
and fix vulnerabilities. To achieve this, such a tool could use the
power of Large Language Models (LLM) to understand and sum-
marize lengthy security reports generated by security tools often
loathed by software practitioners. Another tool could be developed
to scan the static code in the CI/CD pipeline to look for vulnerabil-
ities, thereby providing DevOps engineers with a quick and easy
way to identify and fix security issues. Additionally, increasing
automation in security-related practices and tools can benefit soft-
ware engineers by saving time and incorporating security analysis
into their Agile development workflows, such as CI/CD or DevOps
processes.

8 CONCLUSION
Securing software systems is challenging, especially when security
activities conflict with software development processes like Agile.
We surveyed software practitioners to understand their experiences
incorporating security activities into Agile development processes
and their perception of state-of-the-art approaches. Our results
show that software practitioners find security activities useful, and
their integration did not negatively impact team productivity. Our
work provides practical implications to improve current and fu-
ture security activities with increased automation and improved
feedback to increase confidence in security practices for Agile soft-
ware development processes, ultimately improving the security of
software products.

REFERENCES
[1] Ashish Agrawal, Mohd Aurangzeb Atiq, and LS Maurya. 2016. A current study on

the limitations of agile methods in industry using secure google forms. Procedia
Computer Science 78 (2016), 291–297.

8https://github.com/

676

https://github.com/

EASE 2024, June 18–21, 2024, Salerno, Italy Arpit, et al.

[2] Samar Al-Saqqa, Samer Sawalha, and Hiba AbdelNabi. 2020. Agile Software
Development: Methodologies and Trends. International Journal of Interactive
Mobile Technologies 14, 11 (2020).

[3] Hala Assal and Sonia Chiasson. 2018. Security in the software development
lifecycle. In Fourteenth symposium on usable privacy and security (SOUPS 2018).
281–296.

[4] Tigist Ayalew, Tigist Kidane, and Bengt Carlsson. 2013. Identification and eval-
uation of security activities in agile projects. In Secure IT Systems: 18th Nordic
Conference, NordSec 2013, Ilulissat, Greenland, October 18-21, 2013, Proceedings 18.
Springer, 139–153.

[5] Dejan Baca and Bengt Carlsson. 2011. Agile development with security engineer-
ing activities. In Proceedings of the 2011 international conference on software and
systems process. 149–158.

[6] Dejan Baca and Kai Petersen. 2013. Countermeasure graphs for software security
risk assessment: An action research. Journal of Systems and Software 86, 9 (2013),
2411–2428.

[7] Steffen Bartsch. 2011. Practitioners’ perspectives on security in agile development.
In 2011 Sixth International Conference on Availability, Reliability and Security. IEEE,
479–484.

[8] Lotfi ben Othmane, Pelin Angin, Harold Weffers, and Bharat Bhargava. 2014.
Extending the agile development process to develop acceptably secure software.
IEEE Transactions on dependable and secure computing 11, 6 (2014), 497–509.

[9] Konstantin Beznosov and Philippe Kruchten. 2004. Towards agile security assur-
ance. In Proceedings of the 2004 workshop on New security paradigms. 47–54.

[10] Guru Bhandari, Amara Naseer, and Leon Moonen. 2021. CVEfixes: automated
collection of vulnerabilities and their fixes from open-source software. In Proceed-
ings of the 17th International Conference on Predictive Models and Data Analytics
in Software Engineering. 30–39.

[11] John Blythe. 2013. Cyber security in theworkplace: Understanding and promoting
behaviour change. Proceedings of CHItaly 2013 Doctoral Consortium 1065 (2013),
92–101.

[12] Brian Chess and Gary McGraw. 2004. Static analysis for security. IEEE security &
privacy 2, 6 (2004), 76–79.

[13] Partha Das Chowdhury, Joseph Hallett, Nikhil Patnaik, Mohammad Tahaei, and
Awais Rashid. 2021. Developers are neither enemies nor users: they are collabo-
rators. In 2021 IEEE Secure Development Conference (SecDev). IEEE, 47–55.

[14] Kieran Conboy. 2009. Agility from first principles: Reconstructing the concept of
agility in information systems development. Information systems research 20, 3
(2009), 329–354.

[15] Sébastien Dupont, Guillaume Ginis, Mirko Malacario, Claudio Porretti, Nicolò
Maunero, Christophe Ponsard, and PhilippeMassonet. 2021. Incremental common
criteria certification processes using DeVSecOps practices. In 2021 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW). IEEE, 12–23.

[16] Anne Edmundson, Brian Holtkamp, Emanuel Rivera, Matthew Finifter, Adrian
Mettler, and David Wagner. 2013. An empirical study on the effectiveness of
security code review. In Engineering Secure Software and Systems: 5th International
Symposium, ESSoS 2013, Paris, France, February 27-March 1, 2013. Proceedings 5.
Springer, 197–212.

[17] W Keith Edwards, Erika Shehan Poole, and Jennifer Stoll. 2008. Security automa-
tion considered harmful?. In Proceedings of the 2007 Workshop on New Security
Paradigms. 33–42.

[18] Adila Firdaus, Imran Ghani, and Seung Ryul Jeong. 2014. Secure feature driven
development (SFDD) model for secure software development. Procedia-Social
and Behavioral Sciences 129 (2014), 546–553.

[19] Adila Firdaus, Imran Ghani, and Nor Izzaty Mohd Yasin. 2013. Developing secure
websites using feature driven development (FDD): a case study. Journal of Clean
Energy Technologies 1, 4 (2013), 322–326.

[20] Xiaocheng Ge, Richard F Paige, Fiona AC Polack, Howard Chivers, and Phillip J
Brooke. 2006. Agile development of secure web applications. In Proceedings of
the 6th international conference on Web engineering. 305–312.

[21] Karen Mercedes Goertzel, Theodore Winograd, Holly L McKinley, Lyndon Oh,
Michael Colon, Thomas McGibbon, Elaine Fedchak, and Robert Vienneau. 2007.
Software security assurance: a state-of-art report (sar). DTIC Document (2007).

[22] Muhammad Hammad, Irum Inayat, and Maryam Zahid. 2019. Risk management
in agile software development: A survey. In 2019 international conference on
frontiers of information technology (fit). IEEE, 162–1624.

[23] Matthias Hölzl, Axel Rauschmayer, and Martin Wirsing. 2008. Engineering of
software-intensive systems: State of the art and research challenges. Software-
Intensive Systems and New Computing Paradigms: Challenges and Visions (2008),
1–44.

[24] Michael Howard and Steve Lipner. 2006. The security development lifecycle. Vol. 8.
Microsoft Press Redmond.

[25] Ronald Jabangwe, Kati Kuusinen, Klaus R Riisom, Martin S Hubel, Hasan M
Alradhi, and Niels Bonde Nielsen. 2021. Challenges and Solutions for Addressing
Software Security in Agile Software Development: A Literature Review and Rigor
and Relevance Assessment. Research Anthology on Recent Trends, Tools, and
Implications of Computer Programming (2021), 1875–1888.

[26] Ramtin Jabbari, Nauman bin Ali, Kai Petersen, and Binish Tanveer. 2016. What is
DevOps? A systematic mapping study on definitions and practices. In Proceedings
of the scientific workshop proceedings of XP2016. 1–11.

[27] Kiran Jammalamadaka and V Rama Krishna. 2013. Agile software development
and challenges. International Journal of Research in Engineering and Technology
2, 08 (2013), 125–129.

[28] Brittany Johnson, Christian Bird, Denae Ford, Nicole Forsgren, and Thomas
Zimmermann. 2023. Make Your Tools Sparkle with Trust: The PICSE Framework
for Trust in Software Tools. In 2023 IEEE/ACM 45th International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 409–419.

[29] Hossein Keramati and Seyed-Hassan Mirian-Hosseinabadi. 2008. Integrating soft-
ware development security activities with agile methodologies. In 2008 IEEE/ACS
International Conference on Computer Systems and Applications. IEEE, 749–754.

[30] Vidar Kongsli. 2006. Towards agile security in web applications. In Companion
to the 21st ACM SIGPLAN symposium on Object-oriented programming systems,
languages, and applications. 805–808.

[31] Anna Koskinen. 2019. DevSecOps: building security into the core of DevOps.
(2019).

[32] McKenzie L Kuhn. 2018. 147 million social security numbers for sale: Developing
data protection legislation after mass cybersecurity breaches. Iowa L. Rev. 104
(2018), 417.

[33] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A systematic study of automated program repair: Fixing 55 out of 105 bugs
for $8 each. In 2012 34th International Conference on Software Engineering (ICSE).
IEEE, 3–13.

[34] Lucy Ellen Lwakatare, Pasi Kuvaja, and Markku Oivo. 2016. Relationship of
devops to agile, lean and continuous deployment: A multivocal literature review
study. In Product-Focused Software Process Improvement: 17th International Con-
ference, PROFES 2016, Trondheim, Norway, November 22-24, 2016, Proceedings 17.
Springer, 399–415.

[35] Patrik Maier, Zhendong Ma, and Roderick Bloem. 2017. Towards a secure scrum
process for agile web application development. In Proceedings of the 12th Interna-
tional Conference on Availability, Reliability and Security. 1–8.

[36] Runfeng Mao, He Zhang, Qiming Dai, Huang Huang, Guoping Rong, Haifeng
Shen, Lianping Chen, and Kaixiang Lu. 2020. Preliminary findings about devsec-
ops from grey literature. In 2020 IEEE 20th international conference on software
quality, reliability and security (QRS). IEEE, 450–457.

[37] Grigori Melnik and Frank Maurer. 2005. A cross-program investigation of stu-
dents’ perceptions of agile methods. In Proceedings of the 27th international
Conference on Software Engineering. 481–488.

[38] ABM Moniruzzaman and Dr Syed Akhter Hossain. 2013. Comparative Study
on Agile software development methodologies. arXiv preprint arXiv:1307.3356
(2013).

[39] OWASP Foundation. [n. d.]. OWASP Application Security Verification Standard.
https://github.com/OWASP/ASVS.

[40] Kai Petersen and Claes Wohlin. 2010. The effect of moving from a plan-driven to
an incremental software development approachwith agile practices: An industrial
case study. Empirical Software Engineering 15 (2010), 654–693.

[41] Christoph Pohl and Hans-Joachim Hof. 2015. Secure scrum: Development of
secure software with scrum. arXiv preprint arXiv:1507.02992 (2015).

[42] Roshan Namal Rajapakse, Mansooreh Zahedi, and Muhammad Ali Babar. 2021.
An Empirical Analysis of Practitioners’ Perspectives on Security Tool Integration
into DevOps. In Proceedings of the 15th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM). 1–12.

[43] Thorsten Rangnau, Remco v Buijtenen, Frank Fransen, and Fatih Turkmen. 2020.
Continuous security testing: A case study on integrating dynamic security testing
tools in ci/cd pipelines. In 2020 IEEE 24th International Enterprise Distributed Object
Computing Conference (EDOC). IEEE, 145–154.

[44] Kalle Rindell, Sami Hyrynsalmi, and Ville Leppänen. 2017. Busting amyth: Review
of agile security engineering methods. In Proceedings of the 12th International
Conference on Availability, Reliability and Security. 1–10.

[45] Pilar Rodríguez, Mika Mäntylä, Markku Oivo, Lucy Ellen Lwakatare, Pertti Sep-
pänen, and Pasi Kuvaja. 2019. Advances in using agile and lean processes for
software development. In Advances in Computers. Vol. 113. Elsevier, 135–224.

[46] Sabbir M Saleh, Syed Maruful Huq, and M Ashikur Rahman. 2019. Comparative
study within Scrum, Kanban, XP focused on their practices. In 2019 International
Conference on Electrical, Computer and Communication Engineering (ECCE). IEEE,
1–6.

[47] P Salini and S Kanmani. 2012. Survey and analysis on security requirements
engineering. Computers & Electrical Engineering 38, 6 (2012), 1785–1797.

[48] Phillip Schneider, Markus Voggenreiter, Abdullah Gulraiz, and Florian Matthes.
2022. Semantic Similarity-Based Clustering of Findings From Security Testing
Tools. arXiv preprint arXiv:2211.11057 (2022).

[49] Malcolm Shore, Sherali Zeadally, and Astha Keshariya. 2021. Zero trust: the what,
how, why, and when. Computer 54, 11 (2021), 26–35.

[50] Guttorm Sindre and Andreas L Opdahl. 2005. Eliciting security requirements
with misuse cases. Requirements engineering 10 (2005), 34–44.

677

https://github.com/OWASP/ASVS

Securing Agile: Assessing the Impact of Security Activities on Agile Development EASE 2024, June 18–21, 2024, Salerno, Italy

[51] Justin Smith, Lisa Nguyen Do, and EmersonMurphy-Hill. 2020. Why can’t johnny
fix vulnerabilities: A usability evaluation of static analysis tools for security. In
Proceedings of the Sixteenth Symposium on Usable Privacy and Security.

[52] Justin Smith, Christopher Theisen, and Titus Barik. 2020. A case study of software
security red teams at Microsoft. In 2020 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, 1–10.

[53] Sonia, Archana Singhal, and Hema Banati. 2014. FISA-XP: An agile-based inte-
gration of security activities with extreme programming. ACM SIGSOFT Software
Engineering Notes 39, 3 (2014), 1–14.

[54] Yaroslav Stefinko, Andrian Piskozub, and Roman Banakh. 2016. Manual and au-
tomated penetration testing. Benefits and drawbacks. Modern tendency. In 2016
13th international conference on modern problems of radio engineering, telecom-
munications and computer science (TCSET). IEEE, 488–491.

[55] Marianne Swanson, Joan Hash, and Pauline Bowen. 2006. Guide for Devel-
oping Security Plans for Federal Information Systems. National Institute
of Standards and Technology. https://nvlpubs.nist.gov/nistpubs/legacy/sp/
nistspecialpublication800-18r1.pdf.

[56] Laurie Williams, Gary McGraw, and Sammy Migues. 2018. Engineering security
vulnerability prevention, detection, and response. IEEE Software 35, 5 (2018),
76–80.

[57] Shundan Xiao, Jim Witschey, and Emerson Murphy-Hill. 2014. Social influences
on secure development tool adoption: why security tools spread. In Proceedings
of the 17th ACM conference on Computer supported cooperative work & social
computing. 1095–1106.

[58] Shahid Kamal Tipu Ziauddin and Shahrukh Zia. 2012. An effort estimation model
for agile software development. Advances in computer science and its applications
(ACSA) 2, 1 (2012), 314–324.

678

https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-18r1.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-18r1.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Security
	2.2 Agile

	3 Related Work
	4 Methodology
	4.1 Data Collection
	4.2 Participant Recruitment
	4.3 Survey Structure
	4.4 Data Analysis
	4.5 Participants

	5 Results
	5.1 [RQ-Willing]RQ1: Security Activities in Agile, Perceived Effectiveness & Willingness to Adopt
	5.2 [RQ-Velocity]RQ2: Impact on Productivity
	5.3 [RQ-Confidence]RQ3: Impact of Software Activities

	6 Discussion
	6.1 Increase Automation
	6.2 Improve Feedback

	7 Limitations and Future Work
	8 Conclusion
	References

