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ABSTRACT
Research shows that one of the most effective ways software engi-
neers discover useful developer behaviors, or tools and practices de-
signed to help developers complete programming tasks, is through
human-to-human recommendations from coworkers during work
activities. However, due to the increasingly distributed nature of the
software industry and development teams, opportunities for these
peer interactions are in decline. To overcome the deprecation of
peer interactions in software engineering, we explore the impact of
several system-to-human recommendation systems, including the
recently introduced suggested changes feature on GitHub which al-
lows users to propose code changes to developers on contributions
to repositories, to discover their impact on developer recommenda-
tions. In this work, we aim to study the effectiveness of suggested
changes for recommending developer behaviors by performing a
user study with professional software developers to compare static
analysis tool recommendations from emails, pull requests, issues,
and suggested changes. Our results provide insight into creating
systems for recommendations between developers and design im-
plications for improving automated recommendations to software
engineers.
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1 INTRODUCTION
Recommendations between peers is essential for workers to gain
knowledge and improve the quality of their work. Boud and col-
leagues note that adults predominantly learn from others at work [7].
Software engineering is no exception, as developers frequently
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learn and share information with each other. For example, Cock-
burn and Williams found that learning is one of the benefits of pair
programming, the practice of two developers writing code together
at the same computer [11]. Furthermore, research shows that peer
interactions, or the process of learning from colleagues in-person
during normal work activities, are useful for software engineering
tool recommendations [32, 33] and improving program comprehen-
sion [27]. Prior work suggests peer interactions are effective for
developer recommendations because of their ability to incorporate
receptiveness into suggestions for users [8].

While in-person recommendations are effective for increasing
knowledge between software engineers, they are becoming less
prevalent in the software industry. For example, even thoughMurphy-
Hill and colleagues found peer interactions are an effective mode
of tool discovery, he also discovered that these face-to-face recom-
mendations occur infrequently in the workplace [33]. Furthermore,
other work in software engineering points to a decrease in peer-to-
peer interactions for programmers. Research shows open spaces
designed to increase developer collaboration are unpopular among
software engineers and decrease communication and productiv-
ity [39]. Additionally, the increase of distributed development teams
and global software engineering has led to challenges in communi-
cation between developers [22].

To overcome the growing distribution of developers and decreas-
ing opportunities for peer interactions, researchers have explored
creating Recommender Systems for Software Engineering (RSSEs)
to improve recommendations to developers [38]. However, studies
such as [9] and [47] show that developers often find automated
recommendations ineffective and usually do not adopt suggestions
from these systems. Recently, GitHub introduced a new system for
recommendations between developers called suggested changes [18].
This feature allows developers to collaborate by proposing code
changes to contributors to improve code submitted to projects in
pull requests. While suggested changes are increasing in popularity
on GitHub, little is known about their impact on developer rec-
ommendations. To discover the impact of the suggested changes
feature on knowledge sharing between GitHub users, we seek to
answer the following research question:
RQ How well does the suggested changes feature generalize to

different styles of recommendations?
To answer this research question, we conducted a user study

evaluating static analysis tool recommendations with the suggested
changes feature, a use case different from its intended purpose.
We observed this to strictly evaluate the design of this feature for
making recommendations to software engineers. Our results show
that, compared to systems with different recommendation styles,
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programmers prefer suggested changes for developer recommenda-
tions. The goal of this work is to discover the impact of suggested
changes on knowledge sharing between developers and to provide
implications for improving recommendations to software engineers.
The main contribution of this work is the first study, to our knowl-
edge, to examine the GitHub suggested changes feature.

2 BACKGROUND
2.1 Suggested Changes
Suggested changes allow users to recommend improvements to
code on developers’ pull requests. Figure 1 presents how the sug-
gested changes feature works. After a user reviewing a pull request
notices a line of code that can be improved, they can click on the
plus (+) sign on the line of code in question to write a comment and
enter their proposed change. Figure 1a shows a reviewer typing
their suggested code change for a line on the pull request into a text
box. Once the reviewer is finished with their suggestion, they can
click on the “Start a review" button to submit the suggested change.
Finally, the contributor can see the suggested change on their pull
request, which is shown in Figure 1b. From here, the developer can
commit the change, edit the suggestion, or ignore the proposed
modification. If the developer accepts the change, the suggestion
will automatically be integrated into their pull request as a new
commit.

The GitHub blog reports users have been “quick to adopt sug-
gested changes" into the code review process for their projects and
over 100,000 uses within weeks of the initial public beta release,
accounting for 4% of pull request comments and 10% of code re-
viewers during that time [19]. We examined the GitHub suggested
changes feature because it allows developers to make recommen-
dations to each other and have become very popular in the GitHub
development community. The design of this feature allows code
reviewers to make suggestions to programmers and allows de-
velopers to quickly and easily apply, reject, or edit the changes
recommended by reviewers. The popularity of suggested changes
show this feature is useful for recommendations between peers
in the context of code reviews and proposing code improvements.
We aim to evaluate the design of this novel feature for other types
developer recommendations to provide implications for the design
of future recommendation systems.

2.2 Developer Recommendations
Prior work has explored ways to make effective recommendations
to improve developer behaviors, or useful tools and practices to
help software engineers complete tasks more efficiently. Research
shows that in-person interactions between programmers are ef-
fective for developer recommendations. For example, Cockburn
and Williams suggest learning and sharing knowledge between
developers is a primary benefit of pair programming [11]. Addi-
tionally, Murphy-Hill explored seven methods software engineers
discover new development tools and found that peer interactions, or
the process of learning about tools from colleagues during normal
work activities, were the most effective mode of tool discovery [32].
Likewise, Maaleej also shows peer interactions are effective for
improving code comprehension [27].

Software engineering researchers have also created and evalu-
ated many systems to make recommendations to assist program-
mers. Fischer and colleagues argue that active help systems are more
effective for making recommendations to users completing tasks
compared to passive help systems, which require users to explicitly
seek help [14]. Robillard and colleagues discuss the importance
of Recommender Systems for Software Engineering (RSSEs) for
improving the decision-making of developers [38]. Prior work has
introduced a variety of tools to recommendmany tools and practices
to developers to aid in the completion of programming tasks. For
example, Spyglass is a recommender system that makes suggestions
to help developers navigate code more efficiently in Eclipse [48].

Furthermore, research has also explored improving the human
aspects of recommender systems. McNee and colleagues argue user-
centric recommendations and experiences are more important for
suggestions than accuracy [29]. Similarly, Konstan and colleagues
suggest evaluating systems based on user experience metrics is
more important than optimizing recommendation algorithms [25]
while Murphy discovered software engineers find trust more im-
portant than precision in recommender systems [31]. In this work,
we explore the suggested changes feature on GitHub to gain insight
into designing effective systems for developer recommendations.

3 METHODOLOGY
3.1 Data Collection
To answer our research question, we conducted a user study to
examine using the suggested changes feature for static analysis tool
recommendations. We observed tool recommendations because,
while studies shows static analysis tool usage is beneficial for soft-
ware engineering teams, research also suggests developers rarely
use them in practice [24]. 14 professional developers, presented in
Table 1, participated in this study averaging 5 years of industry
experience and working in various roles such as Software Engineer,
Quality Engineer, Consultant, Data Migration Consultant, Support
Specialist, User Researcher, and Technical Test Lead. We conducted
an interactive think aloud study for participants to provide feedback
on receiving recommendations with suggested changes.

3.2 Study Design
To determine the impact of suggested changes on developer recom-
mendations, we asked participants to interact with static analysis
tool recommendations from suggested changes, pull requests, is-
sues, and emails. Each participant evaluated recommendations from
all four systems simulated in an experimental repository they were
not familiar with for our study. Tool adoption is a developer behav-
ior beneficial for improving code quality and aiding programmers
in their work [3]. Each recommendation style contained similar
text recommending a static analysis tool to participants from each
system and slightly differed in the presentation. For example, Fig-
ure 2 presents the suggested change recommendation which rec-
ommends a tool to find and prevent coding errors and suggests a
fix for a reported bug. We selected these systems to compare with
suggested changes based on prior work showing they are effective
for recommendations:
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(a) Reviewer adds comment and suggested change to modified line of code (b) Developer can apply suggested change and commit to PR

Figure 1: GitHub Suggested Changes example

Email. Email is one of the most popular forms of communication
today, with approximately 4 billion users who send and receive over
293 billion emails every day [45]. Sterne and colleagues suggest
emails are the most powerful tool for reaching out and spreading
information to target audiences for marketing [43]. In software
engineering, Murphy-Hill and colleagues propose using email noti-
fications to deliver tool recommendations to developers [34]. For
example, the Coverity static analysis tool can alert developers of
potential code defects via email [12].

Pull Requests. Pull requests allow developers to propose changes
to projects [16]. We examined pull requests because they are the
most popularmethod to recommend code changes to GitHub projects.
In 2019, there were over 200 million pull requests submitted and 87
million pull requests were merged into repositories on the site [17].
Pull requests are also used to make suggestions to repositories on
GitHub. Research shows that pull requests recommending enhance-
ments to projects are the most common type of PR submitted by
contributors and merged into repositories [36]. Additionally, prior
work has explored generating automated pull requests to encourage
developers to update package dependencies [30].

Issues. Issues are used track different types of information for
GitHub repositories [15]. Over 20 million issues were closed by de-
velopers on GitHub in 2019 [17]. Additionally, we examined issues
in this study because they are another method for users to make
recommendations to peers on the site. Bissyandé and colleagues ex-
plored the GitHub issue tracker and found that, while the majority
of issues with tags were labeled as “bugs", those labeled as “feature"
or “enhancement" are "equally important for issue reporters" [6]
while Krishna and colleagues also observed correlations between
issues and enhancements added to projects and forecasting using
predictive modeling [26]. Furthermore, Izquierdo and colleagues
implemented GiLA to analyze OSS project issue labels [23].

3.3 Data Analysis
Participants interacted with each recommendation using a sample
GitHub repository, and were asked to interact with each one as if
they received it for their own project. Then, we asked them to pro-
vide a five point Likert-scale rating on how likely they would adopt

the tool recommended from each system, to discuss what they like
and dislike about each system, and provide general insight into
what makes an effective recommendation during a semi-structured
interview. User study participants are indicated with a P-prefix.
Study sessions were audio and screen recorded. Two researchers
performed an open card sort to develop categories from participant
responses to gain insight for improving recommendations to soft-
ware engineers [5]. We grouped statements into themes based on
responses to what makes effective and ineffective recommendations
then analyzed and discussed our themes to sort the data into five
categories.

Figure 2: Mock Recommender system with suggested
changes

4 RESULTS
4.1 Participant Scoring
Based on the results from our user study, we found that suggested
changes were the preferred tool recommendation system by devel-
opers. Table 2 shows the average and median Likert scores repre-
senting the likelihood participants would adopt the tool from each
method of recommendation. The Kruskal-Wallis test was used to
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Participant Experience (years) GitHub Familiarity OSS Contribution Frequency Tool Usage Frequency
P1 30 Very Familiar Occasionally Very Frequently
P2 Less than 1 Moderately Familiar Never Never
P3 Less than 1 Very Familiar Rarely Moderately Frequent
P4 8 Very Familiar Very Frequently Very Frequently
P5 10 Familiar Rarely Moderately Frequent
P6 5 Moderately Familiar Occasionally Very Frequently
P7 6 Familiar Frequently Very Frequently
P8 6 Familiar Very Frequently Very Frequently
P9 Less than 1 Moderately Familiar Occasionally Very Frequently
P10 1 Moderately Familiar Occasionally Very Frequently
P11 3 Familiar Very Frequently Very Frequently
P12 3 Familiar Rarely Very Frequently
P13 1 Moderately Familiar Never Never
P14 1 Moderately Familiar Never Frequently

Table 1: User Study Participants

statistically measure differences in developer responses to tool rec-
ommendations from suggested changes, pull requests, issues, and
email. We found a significant difference in likelihood of adoption
provided by participants for the four systems for recommendations
(Kruskal-Wallis, H = 16.7527, p = .00079, α = .05). This shows that
the suggested changes feature is not only effective for recommend-
ing code improvements on pull requests, but developers also find it
effective for other types of recommendations, such as suggestions
for static analysis tools.

Average Score Median
Suggestions 4 4
Pull Requests 3.71 4

Issues 2.86 3
Email 2.36 2

Table 2: Effectiveness for Developers

4.2 Qualitative Feedback
The user study was also a think aloud study and consisted of a
semi-structured interview, where we were particularly interested
in gaining insight into what developers believe makes an effective
recommendation based on their interactions with the suggested
changes feature compared to emails, pull requests, and issues, as
well as general recommendation systems.

Emails. The majority of participants rated static analysis tool
recommendations via email with a 1 or 2 (n = 11). Additionally, most
developers provided hostile feedback on email recommendations
such as “I hate emails" (P3), “if this came across unsolicited I would
feel sort of intruded upon" (P4), “would honestly be pretty suspicious
when I get any email asking to install software on my computer"
(P12), “if I see an email about something it actually gives me less of a
view of it" (P6), and “I’d immediately delete it...I wouldn’t even give it
a look. I’d actually probably not like that tool even more just because
their sending out spam emails". However, two participants did rate
email recommendations with a 5. In these cases, users preferred
email because “it feels personal" (P2) and “I like email more" (P11).

Issues. Most participants were noncommittal on static analysis
tool issue recommendations, with nine participants rating them
with a 3. The primary disadvantage provided for issues was that
a lack of examples and the amount of work it would take to learn
more about the tool. For example, P1 noted “I’d be much less likely
to integrate it [the tool]...that’s a lot of work", P4 stated “I see this as a
big time sync to go through and evaluate how many of those actually
are issues and how many are false positive things... just an example
of a few of them would make this more appealing", and P14 added “it
reads a little more spammy without a code example...It seems like you
could just post this message on any project. Why is this useful for my
project specifically? I have no idea". Additionally, P13 complained
“this one is a ton of words" about the issue recommendation.

Pull Requests. Developers were more interested in pull request
recommendations, with ten participants rating them with a 3 or
4. Participants were primarily interested in the ability to easily
integrate tools. For example, P4 noted with the pull request recom-
mendations, developers are “getting pretty quickly an explanation,
the actual issue in the code, and you know a basically free way to
incorporate that into the process as well as you know the tool itself ".
Additionally, P7 said “I’d be significantly more likely to try it if I
already have a pull request that has all the changes I need to get the
tool or something going in the project". Detractors to pull requests
mentioned the lack of information, such as P13 saying “it doesn’t
really outline the steps", and the method of using pull requests, such
as P8 stating PRs should “solve a problem rather than tell people they
should try to use this thing" and P14 adding “it’s not that they really
want to do a pull request. It’s not that their going to be adding to the
project...I don’t know why it’s a pull request specifically".

Suggested Changes. Participants significantly preferred static
analysis tool recommendations with suggested changes during code
reviews. 12 developers rated these suggestions with a 4 or 5. There
were a variety of reasons participants favored suggested change
recommendations. P8 praised the location of the recommendation
saying, “having it comment right here, ‘This fixes your bug!’ That’s
nice". Participants liked the visual aspects of the feature, for example
P13 noted that “this one is definitely better because it’s more visual".

4
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Developers also liked the details and information provided. For
example, P9 noted “it has a little more detail" and P10 mentioned
“this has very good detail, very detailed change of the code and so it’s
clear". One participant rated this feature with a 2 saying, “putting a
tool recommendation in a comment of a pull request, it’s kind of to
me out of place".

4.3 General Feedback
In addition to collecting feedback from participants on each recom-
mendation system, we also asked them to provide general insight
into what they find makes recommendations effective. Below we
present the five categories from our open card sort to describe
how software engineers perceive recommendations and provide
example quotes from participants:

Examples: Participants mentioned examples of how to use tools
are important before making decisions on adoption. Developers
desired to see examples of tool usage and output, view demos and
test tools locally. Additionally, respondents desired the ability to
easily access examples in the documentation and on the tool’s
website.

“In general I think showing an example of the type of
error that it would find, cause that immediately shows
some value, I think that helps a lot" (P4)

Integration: This category refers to how well tools integrate
into the workflow of developers. Participants noted how easy it is to
install the tool, howwell it works with other tools and build systems,
the impact on resources (i.e. memory, GPU, lagging, etc.), how
relevant it is to their project and needs, and if it adheres to company
policies and mandates for tools are important considerations for
adoption.

“I want something that I can install it and use it as
quickly as possible with as minimal fussing with it and
setup as possible." (P5)

Marketing: For recommendations, developers noted that text
sounding like advertising or marketing notifications would deter
them from adopting suggestions. Responses were wary of emails,
critical of unsolicited messages, and desired human-like communi-
cation.

“I’m not sure how the bot would generate the text to
do the recommendation but try to make it seem a little
more human? Rather than it was written by someone
in an advertising agency or something." (P7)

Popularity: Information about the popularity of tools was a
very prominent factor for developers in making decisions on tool
adoption. Participants noted seeking reviews, peers, social media
and other resources before accepting recommendations.

“Try to highlight the popularity, popularity is so cru-
cial...I care about the adoption. The current adoption,
that’s a testimony of the strength" (P13)

Reliability: This refers to how trustworthy developers find tools
and their sources. Participants stated that reliable tool output and
usage as well as active development on the tool itself impact if
recommendations are effective.

“[It] definitely needs to work reliably. Any time a tool
starts doing things like it occasionally has problems

that’s something that makes me want to stop using it...I
want the tool to be more reliable than that." (P8)

5 DISCUSSION
Our results suggest that the GitHub suggested changes feature is
an effective system for making recommendations to developers.
Our results show developers preferred development tool recom-
mendations with this feature over recommendations from other
systems. Based on our evaluation, we use our results to provide
implications for software engineers to make effective recommen-
dations to colleagues and to software engineering researchers for
designing systems for developer recommendations. To overcome
the “alone together" recommendation barrier, we provide implica-
tions for improving developer recommendations based on feedback
from developers on recommendation content and design.

5.1 Recommendation Content
Many participants noted that the content presented in recommenda-
tions impacts their decision onwhether or not to adopt the target be-
havior. Here, we discuss the themes within recommendations them-
selves that encourage developers to adopt new behaviors. Based
on feedback from participants, developers are more likely to adopt
recommendations that easily integrate into their workflow and are
popular among the software engineering community.

5.1.1 Workflow Details. Our results show that the impact of tools
on workflow plays a major role in influencing the adoption. Other
software engineering literature also shows that workflow integra-
tion is a key factor in developer adoption. For example, Brown and
colleagues found that developers ignored automated tool recom-
mendations because did not integrate well into their workflow, i.e.
breaking CI builds [9]. Furthermore, Tonder and colleagues argue
that successful bot integration with human workflows is important
for improving their effectiveness [46]. We propose incorporating
information about workflow impact into recommendations to im-
prove recommendations and increase adoption of useful developer
behaviors. To provide context for this concept, we discuss Relevance
and Integration.

Integration. Our results show that the ability to integrate recom-
mended tools into existing workflows and processes also impacts
the effectiveness of recommendations. For example, P1 desired
“simple integration". Furthermore, participants mentioned “I want
something that I can install it and use it as quickly as possible with
as minimal fussing with it and setup as possible" (P5) and “ideally, I
want it to be super easy to add to whatever CI or test runner system
I’ve got" (P8). Wasserman outlines tool integration techniques for
software engineering environments [49]. Additionally, P6 also ex-
pressed a desire to demo tools before adoption, which could help
improve integration. Furthermore, software engineering research
shows the ability to integrate tools impacts usage, such as Favre
and colleagues work outlining challenges for tool adoption in large
software companies [13]. To incorporate this concept into devel-
oper recommendations, suggestions should provide information on
integration such as how to install the tool, how to integrate it into
CI build systems, whether it has a plugin for certain IDEs, etc.
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Relevance. Furthermore, an important concept for integration
is how relevant tools are to developers’ work. Study participants
provided statements such as “it depends on if it’s something I really
need or want" (P2), “the recommendation itself matters less than how
much I need the thing...If I don’t need it then I’m not going to try it"
(P9), and “I mainly do a lot of web development and data stuff. I don’t
really care about a new runtime for a new platform I’m never going
to see I’m my work" (P12). Developers also noted the relevance of
information presented in our suggested changes recommendation,
such as P8 stating “Having it comment right here this fixes your bug?
That’s nice". Prior work in recommender systems for software engi-
neering also incorporates relevance into suggestions. For example,
ToolBox is a community constructed recommender system that uses
logged actions from users over a shared network to recommend
relevant Unix commands [28]. To create effective recommendations,
systems should note how products and behaviors are relevant to
software engineers and improving their work.

5.1.2 Social Perspectives. Social perspectives in recommendations
refers focusing on aspects of community in suggestions to potential
users. In our results, we found most participants consider a variety
of social aspects when deciding whether or not to adopt new tools.
Ahmadi argues software engineering is a social activity [2], while
Begel and colleagues explore the impact of social media on collabo-
ration and knowledge sharing between software engineers [4]. Prior
work suggests that community facets of software engineering can
impact developer behavior and performance. For example, Steglich
and colleagues show that social factors of software engineering
impact mobile software ecosystem developers [42] and Brown and
colleagues found that the inability to adhere to social aspects of
software engineering prevented developers from adopting tools
recommended by a bot [9]. Our results suggest researchers should
integrate social influences into recommender systems. To increase
the effectiveness of these systems, we propose implementing social
recommendations by focusing on popularity and other sources.

Popularity. This concept refers to the reputation and adoption
of tools and practices. In our study, we found that most developers
desired information about tools from other users when making de-
cisions. For example, participants said “one of the things I want to see
is what other people think about it" (P3), “howmany people use it...the
popularity of the tool being used would influence me to try that" (P6),
“when there’s a buzz around a tool, that’s when you know it’s good and
you know it’s worth checking out" (P12), and “try to highlight the pop-
ularity, popularity is so crucial" (P13). Participants also mentioned
learning about tools from peers. For instance, P6 noted an effec-
tive recommendation is “word of mouth and people that I actually
trust who use it". Prior work also shows popularity and reputation
impact adoption of developer behaviors. For example, Aggarwal
and colleagues found that popularity metrics on GitHub impact
updates to repositories and contributions from collaborators [1]. To
increase effectiveness of recommendations, researchers should con-
sider incorporating popularity statistics such as users, downloads,
social media followers and likes, etc. to encourage adoption.

Other Sources. Several developers noted they preferred to see
tools in multiple sources before adoption. For instance, participants
mentioned desiring to see recommended tools from more familiar

sources such as Google, Twitter, StackOverflow or StackExchange,
tool websites, meetup groups, conference talks, and more. P4 also
noted “I think also in the recommendation having a lot of references
is helpful", P1 added “I sort of want to hear about it where I hear
about other programming tools", and P5 wanted to be able to “Google
the tool’s name...[and get] a link on the first page". Prior work also
shows that external sources play a role in developers’ decisions to
make decisions. For example, Xiao and colleagues found that soft-
ware engineers trust security tool recommendations from credible
sources on the Internet as much as in person recommendations from
peers [50]. To improve developer recommendations, we propose in-
tegrating additional details about the desired tool or behavior from
multiple sources to help programmers make informed decisions
and increase adoption.

5.2 Recommendation Design
In addition to content, our results suggest the design of recom-
mendations also impacts the decision outcome. Based on feedback
from developers, we propose design implications for improving the
effectiveness developer recommendations.

Examples. When commenting on what makes effective recom-
mendations in our study, participants mentioned the presence of
examples is important. For example, P5 desired “a website that had
examples with how to run it", P10 stated “It would be better if they
can show me some examples with some very clear results like this
is something you can get with our tool", and P14 noted “specific ex-
amples...would be a lot more compelling". However, developers did
not want to have to “go to their website and have to click through a
million different links to get an example. And sometimes they don’t
even have examples" (P5). Additionally, developers also desired the
ability to test tools themselves saying, “I would like to try it by
myself first" (P11) and “I would test it out locally" (P8). Valaer and
colleagues also show that examples are important in software engi-
neering for helping developers choose user interface development
tools [44]. To improve the design of recommendations, messages
should include examples of how to use tools and sample output for
users to observe.

Marketing. In our user study, participants also expressed disdain
for recommendations that sound non-human or like advertisements.
For example, P5 mentioned “I’m not somebody who likes to get un-
solicited marketing stuff " while P1 and P7 added “email...there’s so
much stuff that comes through email" and “email is definitely a no".
Another example of this is that developers found recommendations
with “a ton of words" and that “way too lengthy" (P13) to be inef-
fective. Meanwhile, P10 prefers recommendations “just getting to
the point, don’t show some other useless stuff which may confuse
the potential user". Meanwhile, developers praised the suggested
changes recommendation because it provides a “nice, concrete er-
ror" (P8). In general, P13 did not like lengthy recommendations
because “it will take me a long time to digest it". Similarly, Cerezo
and colleagues suggest implementing user-driven communication
to improve developer chatbots [10]. The negative perception of
marketing among developers can also be seen from the backlash
received by the maintainers of the JavaScript Standard Style guide,
linter, and formatting tool [41], who attempted to raise funds for
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development by incorporating advertisements within the terminal.1
When creating recommender systems, designers should create short
and concise recommendations to developers.

6 LIMITATIONS
An internal threat to the user study is response bias from par-
ticipants. To avoid bias from participants’ past experiences with
existing tools or preferred programming languages in our evalu-
ation, tools were recommended with made-up names (ABC, DEF,
GHI, and JKL) and varying programming languages (JavaScript,
Java, and Python). The order each participant interacted with the
recommendation systems was randomized to avoid order bias in
our results. We also allowed participants to revise scores for previ-
ous recommendation systems in the study as they interacted with
the other systems.

An external threat to the validity of our results is that we general-
ize what makes an effective recommendations for developers when
in reality each person has their own preferences for what makes
good suggestions. Our sample size is also small, so our results may
not generalize to all GitHub users and software developers. Even
though we attempted to recruit a diverse sample of participants
based on various characteristics such as gender, race, and age, the
majority of participants in our user study were White males be-
tween the ages of 25-34. However, we found the population of our
participation sample (16% female, 31% non-White) was consistent
with data from recent studies on women [35] and minorities [37]
in the software industry. Additionally, these results may not gen-
eralize to other code hosting platforms, such as GitLab [20], and
other open or closed source software applications.

7 FUTUREWORK
Further research involves developing recommendation systems that
incorporate workflow details and social perspectives into developer
recommendations. We envision implementing the prototype recom-
mendation system from our evaluation in Figure 2 to automatically
suggest fixes to programming errors and recommend static analysis
tools to developers. To improve this system, we plan to add work-
flow details, i.e. providing information to users about how to install
and integrate tools into existing processes. We also aim to include
social perspectives in recommendation context by incorporating
user reviews and adoption rates. Additionally, we aim to design
systems with specific examples as well as user-centric text that
does not sound like marketing ads. We also hope to expand this
work by creating recommendations for improving other developer
behaviors such as code reviews and testing.

Research could also explore automated recommendations to de-
velopers on platforms and programming communities other than
GitHub, such as StackOverflow [40], Hacker News [21], and Git-
Lab [20]. To account for individual developer preferences for effec-
tive suggestions, future work could explore creating customized
recommendations to programmers based on characteristics such as
recent development activity and experience. Furthermore, AI and
machine learning techniques, such as collaborative filtering, can be
applied with our implications into recommender systems to predict
poor developer behaviors and proactively send recommendations.

1https://github.com/standard/standard/issues/1381

8 CONCLUSION
We analyzed the GitHub suggested changes feature, a system that
allows users to recommend code changes to developers on pull
requests, in the context of development tool recommendations. We
evaluated recommendations with this feature by performing a user
study with 14 professional software developers. Our results suggest
software engineers find this system effective for development tool
recommendations and significantly prefer it to other recommen-
dation styles. To improve the effectiveness of future recommender
systems, we encourage researchers to improve the content of sug-
gestions by incorporating workflow details and social perspectives
and improve the design of recommendations by including examples
and using user-centric language.
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