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Abstract. Software engineering researchers create tools and practices
designed to help developers accomplish programming tasks. Unfortu-
nately, software engineers often ignore these useful resources in practice.
While automated recommender systems have been created to automat-
ically increase awareness and encourage adoption of developer actions,
research shows that face-to-face recommendations between colleagues is
still the most effective mode of discovery for software engineers. To im-
prove the effectiveness of automated tool recommendations, I propose
integrating concepts from nudge theory, a behavioral science framework
that examines how to influence human behavior and improve decision-
making. This work seeks to apply this theory into software engineering
to explore the impact of nudges for improving developer behavior and
introducing developer recommendation choice architectures to de-
sign and frame decisions in the context of adopting programming tools
and practices. The contributions of this work are: 1) a conceptual frame-
work explaining how to apply concepts from nudge theory when making
recommendations to software developers, 2) a set of experiments that
support and evaluate the conceptual framework, and 3) an automated
recommender system, nudge-bot, that utilizes the proposed framework to
recommend useful developer behaviors. My goal is to demonstrate that
automated nudges can encourage software engineers to adopt beneficial
developer behaviors.

Thesis Statement

By incorporating developer recommendation choice architectures
into recommendations for software engineers, we can nudge developers
to adopt behaviors useful for improving code quality and developer pro-
ductivity.

http://www4.ncsu.edu/~dcbrow10/
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1 Introduction

1.1 Developer Recommendations

Humans make approximately 35,000 decisions every day.1 Likewise, software en-
gineers are also frequently faced with choices to make while developing code.
As our society becomes more dependent on software products [3], it is becom-
ing increasingly important to find ways to improve the behavior and decision-
making of software developers. In his book The New Kingmakers: How Develop-
ers Conquered the World, Stephen O’Grady describes the influence of software
engineers’ choices on the economy and society by noting “Developers are the
most-important constituency in technology. They have the power to make or
break business, whether by their preferences, their passions, or their own prod-
ucts...Developers are now the real decision makers in technology. Learning how to
best negotiate with these New Kingmakers, therefore, could mean the difference
between success and failure” [89, p. 3-4]. Furthermore, the Hacker Noon blog
refers to decision-making as “the most undervalued skill in software engineer-
ing” and “the most important skill in software development”, even moreso than
coding skills.2 and Li and colleagues discovered that the ability to make effective
decisions is an important characteristic of being a great software engineer [68].

While decision-making is an important aspect of software engineering, de-
velopers often make less than ideal choices in their work. For example, software
engineers often avoid adopting useful developer behaviors, or processes designed
to support programmers in completing software development tasks. For instance,
Johnson and colleagues found that developers rarely use static analysis tools to
automatically check for defects and prevent errors in code [58]. To help develop-
ers make better decisions, software engineering researchers have explored creat-
ing recommender systems to automatically guide users. The ACM International
Conference on Recommender Systems (RecSys) defines recommender systems as
“software applications that aim to support users in their decision-making while
interacting with large information spaces” 3. Fischer and colleagues also argue
that active help systems that can automatically make recommendations to users
completing tasks are more effective than passive help systems requiring users to
seek help [42]. Similarly, recommendation systems for software engineering are
designed to actively assist developers in completing various tasks and provide
information when making decisions in their work [92]. For example, Spyglass is
an automated recommender system for software engineers that suggests code
navigation tools in the Eclipse integrated development environment (IDE) to
help developers save time and effort while searching through code to complete
programming tasks [112].

1 https://go.roberts.edu/leadingedge/the-great-choices-of-strategic-

leaders
2 https://hackernoon.com/decision-making-the-most-undervalued-skill-in-

software-engineering-f9b8e5835ca6
3 https://recsys.acm.org/, as quoted by [92]

https://go.roberts.edu/leadingedge/the-great-choices-of-strategic-leaders
https://go.roberts.edu/leadingedge/the-great-choices-of-strategic-leaders
https://hackernoon.com/decision-making-the-most-undervalued-skill-in-software-engineering-f9b8e5835ca6
https://hackernoon.com/decision-making-the-most-undervalued-skill-in-software-engineering-f9b8e5835ca6
https://recsys.acm.org/
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While many automated suggestion approaches have been developed to help
developers make better choices, research shows that face-to-face recommen-
dations between humans are the most effective. Murphy-Hill and colleagues
explored how developers discover new software engineering tools and found
that peer interactions, or the process of discovering tools from coworkers dur-
ing normal work activities, are more effective compared to other technical ap-
proaches [86]. The main reason developers provided for peer interactions be-
ing the most effective mode of tool discovery is the respect and trust built
between colleagues. However, even though face-to-face interactions are an ef-
fective method for developer recommendations, they are becoming less practical
for recommendations in software engineering. For example, Murphy-Hill also
discovered that peer interactions occur infrequently among developers in the
workplace [86]. There are many barriers to peer interactions in industry, such
as mandated tools and processes by management, physical isolation where pro-
grammers are increasingly working alone remotely, and developer inertia where
software engineers do not feel the need to share or adopt new practices and
tools [85]. Additionally, many automated systems have proven ineffective for
improving developer decision-making. For example, Viriyakattiyaporn and col-
leagues found that the inability to deliver suggestions in a timely manner discour-
aged programmers from adopting recommendations to improve code navigation
with Spyglass [111]. Thus, this points to a need for new paradigms for making
effective recommendations to developers.

1.2 Motivating Example

To understand the impact of the decline of peer interactions and inadequacy of
automated recommendation systems for software engineering on decision-making
for software engineers, consider the example of Cassius. Cassius is an experienced
software engineer maintaining several popular open source JavaScript projects
on GitHub. However, he is unaware of several major bugs that exist in his repos-
itories because he does not implement any static analysis tools in his projects.
This is primarily because he is not familiar with useful tools to help developers
automatically find and prevent defects in JavaScript code. Additionally, he is
not compelled to use these tools because he has not had any exposure to them
through his work and doesn’t want to go through the hassle of integrating new
systems into his workflow and development environment. Cassius normally works
from home remotely, so he does not have many opportunities to learn about
useful tools and processes during face-to-face interactions with peers. Various
automated recommendations have also been ineffective in persuading Cassius to
adopt new tools and practices. He often receives automated emails suggesting
new tools, but usually ignores the these messages as marketing and spam. He
also frequently observes pop-ups and tool tips recommending useful tools and
features in his integrated development environment (IDE), but Cassius usually
disregards those as well.



4 Brown, Jr.

One day, Cassius notices a new pull request on one of his repositories. The
pull request introduces Cassius to ESLint4, an open source static analysis tool for
finding errors in JavaScript code. He notices the description provides valuable
information such as what the tool does, how to use it, and an example bug
reported within his project’s code. After further inspection, he notices the PR
also modified the build configuration files to automatically add the tool for it
to run during the continuous integration builds for his project. He just needs
to merge the pull requests to add the static analysis tool to his repositories.
Furthermore, he notices the same pull request was opened by a bot on several of
his other JavaScript repositories. Due to the feedback, location, and accessibility
of the recommendation, Cassius decides to merge the pull requests and adopt
static code analysis into his repositories. In this proposal, I will discuss research
that investigates effective designs for automated recommendations to improve
developer behavior.

1.3 Research Overview

My research goal is, given a developer who is unaware of a useful developer be-
havior in a development situation, identify the most effective strategy to convince
them to adopt the behavior. This goal can also be summed up in the following
research question posed by Greg Wilson, software engineering researcher and
co-founder of Software Carpentry,5 who tweeted:

“I think the most interesting topic for software engineering research in the
next ten years is, ‘How do we get working programmers to actually adopt better
practices?’”.6

To encourage developers to adopt better practices, this work will analyze and
evaluate developer behavior adoption through the lens of behavioral science and
economics. Behavioral science research has examined how to encourage humans
to make better decisions, embrace beneficial behaviors, and accept new ideas.
One framework used to influence human behavior and decision-making is nudge
theory. A nudge refers to any factor that impacts how people make a decision
without providing incentives or banning alternatives [105]. Referring back to the
motivating example, the automated pull request Cassius receives is an exam-
ple of a nudge. Cassius is not rewarded for accepting the recommendation and
merging the pull request into his project. He is not prohibited from using other
static analysis tools besides ESLint or or just simply ignoring the suggestion and
closing the PR. In this thesis, I will argue that implementing recommendations
to software engineers as nudges can improve developer behavior. To study the
impact of integrating nudge theory into developer recommendations, I will ad-
here to the following plan of work: 1) determine what makes recommendations

4 https://eslint.org/
5 https://software-carpentry.org/
6 https://twitter.com/gvwilson/status/1142245508464795649?s=20

https://eslint.org/
https://software-carpentry.org/
https://twitter.com/gvwilson/status/1142245508464795649?s=20
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effective to developers, 2) examine existing tools for recommending developer
behaviors, and 3) create new automated systems and strategies to improve the
effectiveness of recommendations to developers.

1.4 Research Contributions

The expected contributions of the research for this thesis include:

– a conceptual framework that uses nudge theory to characterize failures and
propose improvements to developer recommendations,

– a set of experiments to evaluate and provide evidence for the conceptual
framework, and

– nudge-bot, an automated recommender system to nudge software engineers
to adopt developer behaviors based on our framework.

2 Background

This section provides background information on two concepts, nudge theory
and developer behaviors, that are key for the research presented in this proposal.

2.1 Nudge Theory

To encourage adoption of developer behaviors, we plan to incorporate concepts
from nudge theory. A nudge is defined as any factor “that alters behavior in a pre-
dictable way without forbidding alternatives or significantly changing economic
incentives” [105, p. 6]. Nudges impact how humans make common everyday de-
cisions, such as encouraging people to recycle more by increasing the size of
recycling bins7 and re-labelling trash cans as “landfills”8. In these cases, peo-
ple still have the option not to recycle and are not rewarded for recycling, but
are still persuaded by the size and naming of bins. Nudges are also used on a
much larger scale to impact human behavior and decision-making. For exam-
ple, the UK government implemented a Behavioural Insights Team9, also known
as the Nudge Unit, to improve behavior and decisions by citizens. An example
of a nudge from this team includes encouraging companies to improve the re-
cruitment of women, promotion of female employees, and reduce the gender pay
gap by providing guides and feedback to companies encouraging actions such
as including multiple women in the recruitment process, encouraging salary ne-
gotiations, introducing programs focused on increasing and fostering diversity,
and more.10 Similar nudge unit teams are becoming more popular around the

7 http://nudges.org/2011/05/02/a-strategy-for-recycling-change-the-

recyling-bin-to-garbage-bin-ratio/
8 http://nudges.org/2010/08/25/its-not-a-garbage-can-its-a-small-

landfill/
9 https://www.gov.uk/government/organisations/behavioural-insights-team

10 https://www.bi.team/blogs/new-for-employers-the-latest-evidence-on-

what-works-to-reduce-the-gender-pay-gap/

http://nudges.org/2011/05/02/a-strategy-for-recycling-change-the-recyling-bin-to-garbage-bin-ratio/
http://nudges.org/2011/05/02/a-strategy-for-recycling-change-the-recyling-bin-to-garbage-bin-ratio/
http://nudges.org/2010/08/25/its-not-a-garbage-can-its-a-small-landfill/
http://nudges.org/2010/08/25/its-not-a-garbage-can-its-a-small-landfill/
https://www.gov.uk/government/organisations/behavioural-insights-team
https://www.bi.team/blogs/new-for-employers-the-latest-evidence-on-what-works-to-reduce-the-gender-pay-gap/
https://www.bi.team/blogs/new-for-employers-the-latest-evidence-on-what-works-to-reduce-the-gender-pay-gap/
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world and have been implemented in other countries such as the United States,
Denmark, and Italy [9]. Nudges are useful for automated recommendations to
software engineers because they are interventions that are ”easy and cheap” [105,
p. 6]. Nudging for software engineers involves allowing alternative options for de-
velopers in addition to not providing incentives to encourage the selection of a
desired target behavior. In this work, I aim to study the impact of using nudges
to improve the decision-making of software engineers when faced with the choice
to adopt or ignore useful developer behaviors.

Digital Nudges. Digital nudging refers to using technology and user interface
design elements to nudge user behaviors in digital choice environments [113].
For example, the FitBit11 smart watch nudges users to increase physical activ-
ity and adopt healthier lifestyle behaviors by monitoring exercise activity, pro-
viding feedback to users, and presenting data collected from friends and other
users [113]. Weinmann argues understanding digital nudges is becoming increas-
ingly important as more decisions are being made online because the designs of
these systems will “always (either deliberately or accidentally) influences peo-
ple’s choices” [113, p. 433]. Additionally, Mirsch and colleagues argue that im-
plementing digital nudging provides more advantages because they are “easier,
faster and cheaper” and provide a lot more specified functionality compared to
traditional nudges [79, p. 635]. While most prior work examining digital nudges
examines their impact on the decision-making of software users, there is lim-
ited work exploring how they influence the choices and behavior of software
developers. Software engineers are constantly presented with decisions in digital
choice environments while writing code, such as whether or not to adopt useful
programming behaviors and practices in their work.

Choice Architecture. Nudges and digital nudges are useful for improving hu-
man behavior because of their ability to influence the context and environment
surrounding decision-making, or choice architecture [106]. Thaler and Sunstein
note “nudges are everywhere” and “choice architecture, both good and bad,
is pervasive and unavoidable...Choice architects can preserve freedom of choice
while also nudging people in directions that will improve their lives” [105, p. 255].
Choice architecture is based on the fact that the presentation of choices often
impacts decisions made. For example, one specific concept in choice architecture
is the “default rule”, which suggests decision-makers are most likely to select de-
fault options when making decisions. For example, the Washington State Parks
Department modified the default for drivers to opt-out of an optional state park
fee and raised over $1 million to support their state parks.12 To increase the
effectiveness of developer recommendations, I plan to use choice architecture to
suggest design implications to automatically present developer behavior recom-
mendations in digital choice environments.

11 https://www.fitbit.com/
12 http://nudges.org/2009/10/21/switching-the-default-rule-to-save-state-

parks-in-washington-state/

https://www.fitbit.com/
http://nudges.org/2009/10/21/switching-the-default-rule-to-save-state-parks-in-washington-state/
http://nudges.org/2009/10/21/switching-the-default-rule-to-save-state-parks-in-washington-state/
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Throughout this proposal, the term nudge is used to describe the implemen-
tation of digital nudges to improve developer behavior. This includes designing
digital choice architectures that suggest beneficial practices to software engi-
neers without providing incentives, restricting options, or forcing actions. Fur-
thermore, while nudge theory can be applied to many different facets of software
engineering such as the design of IDEs, programming languages, and physical
workspaces, this work primarily focuses on implementing nudges and improving
choice architectures for developers while completing programming tasks. The pri-
mary developer decision-making environment used for this research is GitHub,
a popular online code hosting site with over 31 million developers, 96 million
repositories, and 1 billion of code contributions.13 To create these nudges, I plan
to design and evaluate automated recommendations with software robots, or
bots, to recommend developer behaviors. Thus, this work aims to discover if
nudges can encourage developers to adopt useful software engineering practices
when faced with choices during real-world programming situations.

2.2 Developer Behaviors

Developer behaviors refer to practices designed to support and aid software de-
velopers in the completion of programming tasks. An example of one of these
beneficial developer behaviors is tool adoption. The IEEE Software Engineering
Body of Knowledge (SWEBOK), a suite of widely accepted software engineering
practices and standards, suggests using development tools is a “good practice”
and can “enhance the chances of success over a wide range of project [103,
p. A-4]. Jazayeri further argues that development tools have become so vital
to software engineering that tool usage and the ability to switch between tools
should be integrated into software engineering education [57]. Researchers and
toolsmiths have created tools to help developers save time and effort complet-
ing programming tasks and evaluated their impact on development teams and
products. For example, static analysis tools are systems which automatically
examine code to find and detect errors without running the program. Studies
show static analysis tools provide many benefits to projects such as improving
code quality [6], preventing errors [19], decreasing debugging time [65], lowering
development costs, and reducing developer effort [100]. However, research also
shows developers often ignore these tools in practice. Johnson discovered that
developers often don’t use static analysis tools primarily because of their result
understandability, customizability, and false positives in the tool output [58].
Similarly, researchers have explored why software engineers avoid using develop-
ment tools for security [121], debugging [29], refactoring [82], documentation [45],
build automation [91], continuous integration [54], and more.

This developer behavior adoption problem also exists for other beneficial
software engineering activities outside of development tool usage. For instance,
research shows implementing agile software development methodologies provides
benefits to teams such as improved communication, faster releases, increased flex-
ibility in design, and improved code quality [16] and the SWEBOK presents agile

13 https://octoverse.github.com/

https://octoverse.github.com/
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as a useful software engineering method [103, p. 9-9]. However, Nerur outlined
challenges hindering migration to agile processes that impact the Management
and organization, People, Processes, and Technologies preventing teams from
adopting this practice [87]. The goal of my work is to make effective recommenda-
tions to software engineers to encourage adoption of useful developer behaviors.
Tilley and colleagues argue that adoption of research-off-the-shelf (ROTS) soft-
ware developed for industry practitioners should be a primary goal for software
engineering researchers [107]. Furthermore, Wohlin presents general challenges
with integrating empirical software engineering research from academia into in-
dustry including lack of trust, differing goals, and the transferring of knowledge
and technologies [120]. To help bridge the gap between software engineering re-
search and practice, I aim to explore the impact of using nudge theory to increase
awareness and encourage adoption of beneficial developer behaviors evaluated by
researchers for improving code quality and developer productivity in industry.

3 Preliminary Findings

To develop a conceptual framework for improving developer behavior recommen-
dations, we first performed evaluations examining development tool recommen-
dations to determine effective strategies.

3.1 [interactions] “How Software Users Recommend Tools to Each
Other” (Completed, Spring 2017)

Motivation: The first step in my plan of work is to explore what makes effec-
tive recommendations to software engineers. While many automated system-to-
user recommendation systems have been developed to increase awareness and
adoption of development tools, prior work shows that user-to-user tool recom-
mendations, or peer interactions, are the most effective method for discovering
new tools. There is limited research examining why user-to-user recommenda-
tions are so effective, and to better understand why users prefer recommenda-
tions from peers we conducted a user study to observe peer interactions and
analyze different characteristics of the recommendations. The characteristics we
analyzed were motivated by psychology and persuasion theory as well as prior
research examining peer interactions, and provide insights into why tool recom-
mendations between peers is effective and implications for improving automated
recommender systems.

Peer Interactions: Peer interactions are defined as the process of discover-
ing tools from colleagues during normal work activities [86]. Murphy-Hill and
colleagues examined different modes of tool discovery in software engineering, in-
cluding peer interactions, random tool encounters, tutorials, discussion threads,
written descriptions, and social media. They discovered that peer interactions
were the most effective way developers reported learning about new software
engineering tools [85,86]. There are two types of peer interactions that differ on
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how the recommendation is made between two colleagues: peer observation refers
to when a user sees a colleague using an unfamiliar tool that they are unaware
of and peer recommendation is when a user sees a colleague completing a task
inefficiently and suggests a tool.

Research Question:

RQ What characteristics of peer interactions make recommendations effective?

Methodology: To evaluate peer interactions in this study, we designed a mixed-
methods approach to collect qualitative and quantitative data collected from
observing participants.

Data Collection. To evaluate the effectiveness of peer interactions, we observed
pairs of software users completing data analysis tasks. We recruited undergrad-
uate and graduate students at North Carolina State University as well as pro-
fessional analysts from the NC State Laboratory for Analytic Sciences14 (LAS)
to participate in our study. For the remainder of this proposal, we will refer to
student participants with the S- prefix and LAS participants with the L- pre-
fix. Overall, 13 pairs of colleagues participated in this user study, seven pairs of
students and six pairs of professional analysts. We requested participants com-
plete a questionnaire survey to collect demographic information and conducted
a semi-structured post-interview to gather more data for our results.

The study tasks involved analyzing data from the Titanic shipwreck and solv-
ing problems based on the Kaggle data science competition [59]. For our study
we did not examine for correctness in task completion, but were interested in
how participants recommended tools to each other to solve the tasks. We allowed
participants to use the software of their choice for the tasks, but prohibited In-
ternet use to prevent participants form looking up information about the tasks
or how to use tools during the study. More information on the tasks, datasets,
and study materials are publicly available online.15 For each session, we screen
and voice recorded the participants while they completed the tasks.

Identifying peer interactions. To recognize peer interactions between partici-
pants completing the study tasks, we developed a model based of of the GOMS
(Goals, Operators, Methods, and Selection rules) model in Human-Computer
Interaction [37]. This model for recognizing peer interactions, shown in Figure 1,
is defined for two colleagues working together in a pair programming scenario
where the user actively operating the keyboard and mouse is the driver and their
peer is the navigator [32]. In Task Analysis, both peers analyze the task and de-
velop a strategy to complete it. Task Execution refers to when the driver begins
executing their strategy and the navigator notices a mismatch. Finally, in the

14 https://ncsu-las.org/
15 http://www4.ncsu.edu/~dcbrow10/files/peer-interaction/study.html

https://ncsu-las.org/
http://www4.ncsu.edu/~dcbrow10/files/peer-interaction/study.html
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Dialogue a tool is recommended by the navigator inquiring about the driver’s
tool or suggesting a new tool to complete the task more efficiently.

Task Analysis Task Execution Dialogue

Fig. 1: Recommendation Model

Characterizing peer interactions. We explored five characteristics of peer inter-
actions: Politeness, Persuasiveness, Receptiveness, Time Pressure, and Tool Ob-
servability. These characteristics were motivated from research in psychology and
qualitative results from Murphy-Hill’s prior work on peer interactions [85]. We
used prior work in other fields to compile a list of criteria for these characteristics
defined with examples from this evaluation in Table 1. For each characteristic,
we analyzed comments made in the dialogue between participants during peer
interactions to observe these criteria.

1) Politeness: Research suggests politeness is important for making effec-
tive recommendations. For example, Whitworth suggests the reason Microsoft’s
Clippy recommender system was unsuccessful is because it was impolite [115].
Murphy-Hill and colleagues found that respect and trust were important fac-
tors in peer interactions for software engineers [85]. To measure politeness, we
used Leech’s six maxims for politeness: Tact, Generosity, Approbation, Modesty,
Agreement, and Sympathy [66].

2) Persuasiveness: Prior work in persuasion theory suggests it is vital for
making effective suggestions. For example, O’Keefe argues that in a wide variety
of settings from courtrooms to families, “human decision making is shaped by
persuasive communication” [90, p. 31]. Fogg also suggests that persuasiveness
is necessary to convince users to adopt desired behaviors through software [44].
Shen et al. present three features of persuasive messages that were used to mea-
sure persuasiveness in peer recommendations between participants in this study:
Content, Structure, and Style [97].

3) Receptiveness: Prior work shows that receptivity is important for mak-
ing effective suggestions. For example, Fogg outlined best practices for creating
persuasive technologies to persuade users to adopt target behaviors. One key
practice is to choose an “audience that is most likely to be receptive to the
targeted behavior” [44]. Fogg provides two criteria to define a receptive audi-
ence: Demonstrate Desire and Familiarity. Users who demonstrate desire express
interest in discovering, using, or learning more information about target behav-
iors while users with familiarity express knowledge about the target behavior or
environment.

4) Time Pressure Research suggests time pressure can impact the outcome
of recommendations. For example, Andrews and Smith found that time con-
straints impact decision-making in marketing [4]. Additionally, Murphy-Hill and
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colleague identified time pressure as a barrier to peer interactions in the form
of project deadlines [85]. We did not strictly enforce a time limit for completing
tasks in this study, but the suggested time was one hour. We measured time
pressure by looking for statements mentioning time from participants and cate-
gorized peer interactions as either having time pressure or not.

5) Tool Observability Murphy-Hill and colleagues suggest that recommenda-
tions from systems should have noticeable causes and effects [85]. To analyze
this, we examined the observability of tools recommended between participants
in the study. Observability refers to whether or not tools are visible to users
through a graphical user interface. To determine if the perception of tools im-
pacts recommendations, we analyzed tools suggested between peers in our study
and categorized them as Observable or Non-observable.

Determining the effectiveness of peer interactions. To measure effectiveness, each
software tool recommendation between participants was categorized as effec-
tive, ineffective, and unknown. For effective recommendations, the recommendee
used a tool after it was suggested by their partner for the remainder of their
session for a majority of the opportunities it was applicable. For ineffective rec-
ommendations, the recommendee mostly ignored a tool recommended by their
partner when they had a chance to utilize it in the study. Finally, unknown rec-
ommendations were the case where there was not another opportunity for the
recommendee to use a suggested tool for the rest of their study session. Two
researchers independently viewed recordings of each session to note instances of
tool recommendations and categorize the peer interactions based on the criteria
defined for politeness (Cohen’s κ = 0.50), persuasiveness (Cohen’s κ = 0.28),
and receptiveness (Cohen’s κ = 0.51). The coders came together to discuss and
resolve any disagreements.

Results: In total, we discovered 142 total recommendations between partici-
pants in our user study: 71 effective; 35 ineffective; and 36 unknown. Table 2
presents the breakdown of effectiveness for each characteristic we examined in
our study. Out of the peer interaction characteristics we analyzed, receptiveness
was the only characteristic that significantly impacted the outcome of a tool
recommendation between peers (Wilcoxon, p = 0.0002, α = .05). These results
indicate that the receptiveness of users is what makes recommendations to de-
velopers effective. In this study, we defined receptiveness using two criteria from
prior work by Fogg on designing persuasive technology: Demonstrate Desire
and Familiarity [44]. We suggest integrating these concepts into automated
recommendations for developer behaviors to software engineers to improve the
effectiveness of suggestions and increase adoption of useful programming tools
and practices. These results were published in the 2017 Visual Languages and
Human-Centric Computing (VL/HCC) conference [26].
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Table 1: Peer interaction characteristics from interactions study
Politeness Criteria

Tact
Definition Minimize cost and maximize benefit to peer
Polite “We can do all of it together, just sort by level.” - S9
Impolite “We can do a histogram...which is always sort of a pain in the butt

to do in Excel.” - L14

Generosity
Definition Minimize benefit and maximize cost to self
Polite “CONCATENATE you can do. I can do this for you, very easily.”

- S10
Impolite “Maybe you should write a python script for this.” - L6

Approbation
Definition Minimize dispraise and maximize praise of peer
Polite “I’m not as good at the Excel stuff as you are.” - L5
Impolite “This[partner’s suggestion] is useless.” - S14

Modesty
Definition Minimize praise and maximize dispraise of self
Polite “From whatever limited knowledge of data analysis I have, I think

you need to create a linear regression model...” - S14
Impolite “I’m very good at Paint.” - S10

Agreement
Definition Minimize disagreement and maximize agreement between peers
Polite “Do you want to use Python?” - S8
Impolite “No, no, no...Don’t you want it comma separated? That’s what I’m

doing.” - S14

Sympathy
Definition Minimize antipathy and maximize sympathy between peers
Polite “We can try JMP...” [“I haven’t done anything in JMP.”] “Neither

have I!” - L14
Impolite “It doesn’t matter how you do it.” - L16

Persuasiveness Criteria

Content
Definition Recommender provides credible sources to verify use of the tool
Persuasive “Go here, go to Data. Highlight that...Data, Sort, and it lets you

pick two.” - L8
Unpersuasive “Let’s try to text filter, right?” - S5

Structure
Definition Messages are organized by climax-anticlimax order of arguments

and conclusion explicitness
Persuasive “I know that SUMIF is a type of function that allows you to combine

the capabilities of SUM over a range with a condition that needs to
be met.” - S3

Unpersuasive “There’s a thing on Excel where you can do that, where you can
say if it is this value, include, if it is not, exclude...Yeah, IF.” - S11

Style
Definition Messages should avoid hedging, hesitating, questioning intonations,

and powerless language
Persuasive “Click on title and do a Ctrl-A” - S13
Unpersuasive “I guess we’re going to have to use some math calculations here, or

a pivot table.” - L9

Receptiveness Criteria

Demonstrate Desire
Definition Participant shows interest in using or learning more about a tool
Receptive “That was cool, how [the column] just populated.” - S4
Unreceptive [“So you want to use R for it?”] “No, no, no...” - S14

Familiarity
Definition Participant explicitly expresses familiarity with the environment
Receptive “Control shift...how do I select it completely?” - S2
Unreceptive “I’ve never done anything in JMP.” - L10

Time Pressure Criteria

Time Pressure
Definition Participant makes statement regarding time to complete tasks
Yes [Python script] “Yeah, that would work, if we had time.” - L5
No No comments about time

Tool Observability Criteria

Observability
Definition The ability to view a tool through a GUI
Observable “Let’s deploy a histogram...Insert, Recommended Charts...” - S7
Non-Observable “Control-Shift-End” - S1
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Table 2: interactions Study Results
Effective Ineffective Unknown

n % n % n %

Politeness

Polite 14 52% 5 19% 8 30%
Neutral 52 50% 27 26% 25 24%
Impolite 5 45% 3 27% 3 27%

Persuasiveness

Persuasive 5 36% 4 29% 5 36%
Unpersuasive 66 52% 31 24% 31 24%

Receptiveness*

Receptive 39 61% 9 14% 16 25%
Neutral 27 48% 14 25% 15 27%
Unreceptive 5 23% 12 55% 5 23%

Time Pressure

Yes 7 37% 7 37% 5 26%
No 64 52% 28 23% 31 25%

Tool Observability

Observable 57 50% 30 26% 28 24%
Non-Observable 14 52% 5 19% 8 30%

Recommendation Type

Peer Observation 16 30% 5 9% 32 60%
Peer Recommendation 55 62% 30 34% 4 5%

3.2 [sorry] “Sorry to Bother You: Designing Bots for Effective
Recommendations” (Completed, Spring 2019)

Motivation: While recommendations between humans are effective for tool dis-
covery, they are not always the most practical way to increase awareness of useful
development tools. For example, Murphy-Hill and colleagues also discovered that
peer interactions occur infrequently in the workplace [86]. Furthermore, in Alone
Together Turkle describes how technology has negatively impacted communica-
tion and become a substitute for face-to-face interactions [109]. As development
teams become larger and more distributed, effective automated recommenda-
tions are necessary to improve tool adoption among software engineers. Research
shows bots are useful for automating tasks and improving user effectiveness and
efficiency [104]. However, they can also be inconvenient and frustrating during
interactions with humans. To better understand the impact of bots and identify
a baseline for automated recommendations, we created tool-recommender-bot
to make development tool recommendations to software engineers on GitHub
using a naive telemarketer design. In this study, we examined the effectiveness
of recommendations from tool-recommender-bot and gathered feedback from
developers who received a suggestion to better understand user reactions to re-
ceiving naive automated recommendations and set the groundwork for designing
better solutions in future approaches.
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naive telemarketer design: To evaluate a basic approach for making auto-
mated recommendations, we developed the naive telemarketer design. This de-
sign behaves similar to a telemarketer in that it “calls” users to deliver a static
message that never deviates from the script and lacks the social context neces-
sary to adjust messages, customize recommendations, or respond to questions
and feedback. naive telemarketer design sends developers a generic message with
information about a static analysis tool, displays a generic example featuring a
code snippet based on a common programming error, and provides sample output
from the tool. This is not the best approach for making recommendations, how-
ever we implemented this simple design to better understand how bots influence
human behavior and how developers respond to automated recommendations.
With this naive design, we developed a simple bot to evaluate and identify a
baseline for making automated recommendations for developers. We use our re-
sults and feedback from developers to motivate integrating concepts from nudge
theory to improve future automated recommendation designs.

Methodology:

Data Collection. Our evaluation sought to determine the effectiveness of our
naive telemarketer design recommendation approach to developers working on
real-world software applications. We randomly sampled public open source soft-
ware repositories on GitHub used in the evaluation for Repairnator16 [110], an
automated program repair bot [110]. The projects selected for this study had to
meet the following criteria:

– written in Java 8 or higher,
– successfully validate and compile with Maven,
– do not already include Error Prone in the build configuration

Based on these criteria, we identified 52 projects for our experiment that
received an automated pull request recommendation. The list of projects for
this evaluation is available online17.

Implementing the naive telemarketer design. To evaluate our naive telemarketer
design approach, we implemented tool-recommender-bot to make basic tool rec-
ommendations to GitHub developers. tool-recommender-bot integrates this sim-
ple approach by making generic recommendations as automated pull requests
on repositories. On GitHub, pull requests are the preferred method to propose
changes to repositories18. Automated pull requests have also been used by bots
in related work, for example by Mirhosseini and colleagues to encourage GitHub
developers to upgrade out-of-date dependencies for repositories [77]. Figure 2

16 https://github.com/Spirals-Team/repairnator/blob/master/resources/data/

results-buildtool.csv
17 https://go.ncsu.edu/botse-projects
18 https://help.github.com/articles/about-pull-requests/

https://github.com/Spirals-Team/repairnator/blob/master/resources/data/results-buildtool.csv
https://github.com/Spirals-Team/repairnator/blob/master/resources/data/results-buildtool.csv
https://go.ncsu.edu/botse-projects
https://help.github.com/articles/about-pull-requests/
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presents a screenshot of a recommendation from our system for this study. In
this experiment, tool-recommender-bot recommendations provided basic infor-
mation about the Java static analysis tool Error Prone (Fig. 2.A). It also
presents a simple coding error in Java, using “==” to evaluate string equality in-
stead of the String.equals() method (Fig. 2.B1), and the corresponding output
from Error Prone reporting a StringEquality error19 (Fig. 2.B2). To make
recommendations, tool-recommender-bot automatically adds the Error Prone
plugin to Maven20, to Project Object Model (pom.xml) configuration files and
created automated pull requests with the changes. An example pull request from
our system using the naive telemarketer design can be found here.21

Fig. 2: Example naive telemarketer design recommendation

Determining the effectiveness of recommendations. To measure the effective-
ness of naive telemarketer design, we observed the status of automated pull
requests from tool-recommender-bot. A merged automated pull request from
tool-recommender-bot indicates an effective recommendation because the devel-
oper showed a willingness to try Error Prone and integrate the static analysis
tool into the build for their repository by merging our changes into their code
base. A closed or ignored pull request left open from our system indicates an
ineffective recommendation because the developers did not attempt to integrate
the tool into their projects. We observed the automated pull requests for one
week to categorize the recommendations. The rate of effectiveness was calculated
by measuring the percentage of merged pull requests out of the total sent.

Additionally, we encouraged developers to provide feedback on pull requests
by asking them to “Please feel free to add any comments below explaining why
you did or did not find this recommendation useful”. This was done to gather
qualitative data on how developers reacted to receiving naive telemarketer de-
sign recommendations from tool-recommender-bot. We aggregated and analyzed

19 http://errorprone.info/bugpattern/StringEquality
20 http://maven.apache.org
21 https://github.com/CSC-326/JSPDemo/pull/2

http://errorprone.info/bugpattern/StringEquality
http://maven.apache.org
https://github.com/CSC-326/JSPDemo/pull/2
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the comments made by GitHub developers on our automated recommendations.
Figure 3 presents a screenshot of example automated pull requests used in the
evaluation for this study.

(a) Pull request recommendation text (b) Pull request diff updating a pom.xml file

Fig. 3: Example automated pull request from the sorry study

Results: We found that bots with basic approaches are not effective for influ-
encing human behavior. Table 3 presents our findings from the evaluation. In
our study, naive telemarketer design only made two successful recommendations
out of 52 (4%). We also observed 10 closed pull requests and 40 recommen-
dations with no response from developers. We received 18 comment responses
from developers, most of which were negative feedback. Five of the comments
were related to improper formatting of the pom.xml file when adding the Error
Prone plugin, and eight were related to our automated pull requests breaking
builds for projects. Based on this feedback, we discovered the main drawbacks
to the naive telemarketer design were a lack of social context and interfer-
ing with developer workflow. To provide implications for future automated
recommender systems, we propose integrating concepts from nudge theory to ef-
fectively incorporate automated suggestions for developer behaviors in software
engineers’ social context and development workflow. The results of this research
were published and presented at the 1st International Workshop on Bots in Soft-
ware Engineering22 (BotSE 2019) at the International Conference on Software
Engineering (ICSE) [27].

22 https://botse.github.io/

https://botse.github.io/
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n Percent

Merged 2 4%

Closed 10 19%

No Response 40 77%

Table 3: sorry Study Results

4 Developer Recommendation Preconditions

Based on the results from these preliminary studies, we uncovered four con-
cepts for making effective developer recommendations. At the minimum, these
developer recommendation preconditions are required to make successful rec-
ommendations for software engineers. Below we define each of these concepts
and provide examples with data collected from the completed evaluations, other
software engineering research, and nudge theory literature:

4.1 Demonstrate Desire

In the interactions study, we found that participants expressing eagerness to
use a recommended tool led to more effective recommendations. For example,
during one study session a participant suggested using multi-level sorting func-
tionality in Excel. Their partner, L11, demonstrated a desire to use the tool by
responding “Oh! Add level! Yes, awesome!” and adopted multi-level sorting for
the remainder of the study tasks. This suggests recommending desirable tools
and behaviors can increase adoption among developers. Meanwhile, in another
case a participant asked their partner if they wanted to use the R statistical
computing software23 to complete a task, but their partner responds “No, no,
no...” (S14). This shows how a lack of desire to use a specific tool can negatively
impact the outcome of a recommendation.

Software engineering research also suggests desire impacts the activities and
behavior of developers. For example, Senyard and colleagues suggest that the
desire of developers is important for motivating programmers to contribute to
free and open source software and maintain successful projects [96]. Further-
more, Murphy-Hill and colleagues found that one barrier to peer interactions is
developer inertia. This refers to when programmers do not desire to share or
learn about new software engineering tools because they “feel that they do not
need to discover a new tool because existing tools will do the job” [85, p. 16].
These are examples of how the desire of software engineers can impact their
behavior and decision-making when completing programming tasks.

Behavioral science research shows that humans often make poor decisions
based on their desires. This is due to the fact that sometimes damaging behav-
iors provide short term benefits but have long term costs. Examples of these

23 https://www.r-project.org/

https://www.r-project.org/
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activities include smoking and eating junk food. Sunstein and Thaler argue hu-
mans need decision-making help in situations when “choices and their conse-
quences are separated in time...we get the pleasure now and suffer the conse-
quences later...[these] are prime candidates for nudges” [105, p. 75]. Nudges can
be used to encourage the adoption of better behaviors by raising awareness of
consequences for decisions. For example, nudges to teenagers in Montana were
able decrease smoking rates among students by educating them on the dangers
of smoking and providing information on the behaviors of peers [69]. In some
cases, poor developer behaviors may provide benefits to development teams. For
example, Xiao and colleagues found that developers avoid adopting security tools
that automatically check for vulnerabilities in code to save time and costs for
training and implementing new systems [121]. While avoiding useful developer
behaviors may provide some benefits such as saving time and money, ignoring
these practices can ultimately have serious consequences for development teams
and their products over time. Nudges such as providing improved and more
relevant feedback to users are an effective way to persuade developers to adopt
better behaviors they may find undesirable by providing information and insight
into the long term costs of avoiding these actions.

4.2 Familiarity

Another key takeaway from the interactions study is that users are more likely
to adopt recommendations for tools and concepts they are familiar with it. In
this study, we defined this criteria as users explicitly expressing familiarity with
the environment surrounding a recommended tool. An example of an familiarity
impacting the outcome of a recommendation in our experiment arose when L8
asked about using the COUNTIF function in Excel. L7 was familiar with the
function and used the tool replying “Yeah...here we go”. However, we also found
unfamiliarity negatively influenced adoption when a participant recommended
using R to create a plot for analyzing the data, but their partner responded “I
dont know R” (S9). In this case, the participant’s unfamiliarity with R led to an
ineffective recommendation.

Familiarity can also lead to developer inertia, where programmers prefer to
stick with their familiar tools and workflow and avoid adopting better behaviors.
Prior research also suggests familiarity can impact effectiveness and productiv-
ity at work. Goodman and colleagues found that the more knowledge employees
have about the workplace and environment, or work familiarity, improves per-
formance [47]. Similarly in software engineering, Espinosa and colleagues found
that familiarity impacts the completion of development tasks for distributed de-
velopment teams [40] while de Alwis and colleagues found that unfamiliarity
in the Eclipse IDE made developers feel disoriented and negatively impacted
productivity [35]. For improving development tool adoption, Murphy-Hill and
colleagues propose integrating familiarity into recommender systems by ranking
commands based on similarity with collaborative filtering [84]. Finally, Ko and
colleagues suggest the majority of developers’ time is spent learning about and
becoming familiar with unfamiliar code, and code comprehension can impact
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other development activities and behaviors such as code navigation, searching,
and tool usage [62]. This indicates that familiarity plays a role in developer
behavior and impacts their adoption of useful practices.

Research suggests humans are prone to make decisions based on previous ex-
periences and rarely select options that are unfamiliar. Thaler and Sunstein note
“it is particularly hard for people to make good decisions when they have trou-
ble translating the choices they face into the experiences they will have...when
people have a hard time predicting how their choices will end up affecting their
lives...a nudge might be welcomed” [105, p. 77-78]. One example of an unfa-
miliar problem for many families face is selecting student loans. To account for
unfamiliarity in student loan selections, Bettinger and colleagues implemented a
nudge to incorporate the Free Application for Federal Student Aid (FAFSA) for
student financial aid into the HR Block24 tax return software, which many are
more familiar with and utilize annually to complete their taxes. They found that
this nudge made it easier to compare loan options and increased college enroll-
ment among high school seniors [20]. Many software engineers are comfortable
with their current toolsets and environments, which leads to an unwillingness
to try new useful development tools and processes. Nudges such as providing
more information to software engineers when recommending unfamiliar develop-
ment tools can help increase awareness and inform developers of new and better
systems for completing programming tasks over their familiar methods.

4.3 Social Context

In the results from the sorry study, we found that one major issue with our naive
telemarketer design design is its lack of social context. Social context refers to
the standard practices and activities necessary to participate in software engi-
neering by interacting with developers and contributing to projects, specifically
in open source software. In the sorry evaluation, many developers complained
that tool-recommender-bot did not adhere to formatting guidelines when auto-
matically adding the Error Prone plugin to project pom.xml files. The most
common social context complaint we received from GitHub users was that tool-
recommender-bot messed up the whitespace of their project’s maven pom.xml
files when adding the Error Prone plugin (See Figure 3b). One developer
replied “The automated tool you use messed up the pom.xml formatting to an
extent that I could not see it” (P5). This suggests our bot’s inability to adjust
to the social context surrounding software development negatively impacted de-
velopers’ likelihood to adopt recommendations.

Prior work also shows that social context is important in making recommen-
dations to software engineers. Ahmadi goes as far as to argue that software engi-
neering is a social activity [2]. To make effective recommendations, studies show
it is important to integrate into this social context. For example, Wessel and col-
leagues evaluated the usage of bots in open source software and found that their

24 https://www.hrblock.com

https://www.hrblock.com
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inability to integrate into contributors’ social context due to limited decision-
making and poor feedback was the biggest challenge developers face interacting
with bots and desired better interactions with users [114]. Furthermore, prior
work found that bots emulating humans receive better responses from develop-
ers and are more effective than recognizable bot accounts [80]. Thus, effectively
integrating recommendations with the social context of software engineering can
impact developer adoption and perception of tools.

In Nudge, the authors note “one of the most effective ways to nudge (for
good or evil) is via social influence” [105, p. 54]. To study the impact of social
nudges, Schultz and colleagues conducted a study that provided feedback to
homeowners about the energy usage rates for their neighbors and households
in a neighborhood in San Marcos, CA. They found that this nudge was able to
drastically decrease usage and improve consumption decisions among users [95].
Social recommendations are popular within software engineering. For example,
badges are an effective way to present information about the status and condition
of public projects, which can impact the behavior of contributors and other
users [108]. In turn, we suggest nudges are an effective method to integrate
recommendations for software engineers to adopt useful developer behaviors into
the social environment of software engineering.

4.4 Developer Workflow

Another key result from sorry was that the naive telemarketer design in tool-
recommender-bot disrupted the workflow of developers, or the processes required
to complete programming tasks and deliver software. The most notable example
of this was the fact that our automated pull requests for Error Prone often
broke builds for repositories. Many projects have adopted continuous integration
systems, such as TravisCI,25 to automatically build and integrate changes into
projects. However, modifying projects to add a new static analysis tool often
introduced many new errors and caused the build to fail. An example of this
from our evaluation can be seen in Figure 4. Out of the 52 pull requests made,
at least 17 resulted in a broken build. Many developers complained about this in
their feedback on tool-recommender-bot, including P18 who commented “This
PR failed automatic checks, I think it should be closed”. This interruption of
developer workflow often discouraged users from merging pull requests from our
system and accepting the recommendation.

Other work in software engineering also notes the importance of integration
into the workflow of developers. For example, Sadowski found that one of the pri-
mary reasons developers at Google ignore static analysis tool warnings is because
they are not integrated into their workflow [93]. Additionally, Viriyakattiyaporn
and colleagues found that the inability to deliver suggestions within appropriate
workflows discouraged programmers from following recommendations to improve
code navigation with Spyglass [111] while Johnson and colleagues discovered that
software engineers reported avoiding static analysis tools in their work due to

25 https://travis-ci.org/

https://travis-ci.org/
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a lack of customizability and poor integration into their existing processes [58].
This points to a need to integrate recommendations to developer within their
workflow to increase the adoption of useful behaviors to improve code quality
and developer productivity.

Nudges are useful for integrating recommendations into user workflows. For
instance, a study conducted on Yale seniors found that a lecture on the risks of
tetanus was ineffective (3%) in convincing students to get a shot at the health
center. However, providing a campus map to students with the health center
circled in the same lecture convinced over nine times more people (28%) to get
the shot [67]. Even though the first group of students knew the location of the
health center, nudges such as providing more details allowed students to know
how to fit a visit into their weekly schedule and normal workflow. Software en-
gineering research shows that integration into developer workflows is vital. To
improve on the lack of tool adoption at Google, Sadowski implemented Tricorder
to run numerous program analysis tools on code during code reviews [94]. Sim-
ilarly, Balachandran found that integrating tools into the code review process
with Review Bot at VMWare was able to reduce developer effort and improved
code quality during code inspections [8]. These studies provide examples of how
integration into developer workflow increased adoption of development tools. We
believe this concept is key to improving the effectiveness of developer recommen-
dations and encouraging adoption of useful developer behaviors.

Fig. 4: Examples of automated pull requests from tool-recommender-bot causing
projects’ continuous integration builds to fail
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5 Developer Recommendation Choice Architectures

The preliminary results show that receptiveness and development context are
required for effective developer recommendations. To improve these recommen-
dations, I present the following developer recommendation choice archi-
tectures to design and frame decisions for software engineers based on nudge
theory and software engineering literature: actionability, feedback, and local-
ity. We aim to show that incorporating these choice architectures into developer
recommendations can improve the decision-making of software engineers.

5.1 Actionability

Actionability refers to the ease with which users can act on recommendations.
In nudge theory, research suggests actionability is a key concept for encouraging
humans to make better decisions. A simple nudge is to make target behaviors
easy to apply because “many people will take whatever option requires the least
effort, or the path of least resistance” [105, p. 85]. For example, one simple nudge
to improve the actionability of recommendations is to change the default rule.
Madrian and Shea implemented this nudge to encourage employees to enroll in
retirement plans. By having users opt-out of 401k plans instead of automati-
cally opting in, they discovered that this improved money saving behaviors and
encouraged more employees to join and enroll sooner, with 98% of new employ-
ees selecting a plan within 36 months [72]. In this instance, the easiest option to
adopt was the default selection. Software engineering research also shows action-
ability is important to developers. Heckman and colleagues examined the con-
cept of actionability through static analysis notifications in AAITs (actionable
alert identification techniques) to help developers identify and resolve defects in
code [53]. We propose making automated development tool recommendations
actionable will encourage the adoption from developers.

5.2 Feedback

Sunstein and Thaler note that “the best way to help Humans improve their per-
formance is to provide feedback” and “choices can be improved with better and
simpler information” [105, p. 92, 204]. For example, most people order familiar
and repeated meals at fast food restaurants, however nudges such as providing
information on the amount of calories in food and feedback on recommended
daily caloric intake encouraged consumers to purchase unfamiliar and health-
ier meals [119]. In this case, feedback refers to information provided to impact
developer behavior. Software engineering researchers also show that feedback to
developers is important. For instance, Barik and colleagues examined the impact
of compiler error message feedback on how developers resolved problems [10].
Furthermore, Cerezo and colleagues also suggest that user-driven communication
can improve the perception of chatbots as opposed to single-purpose bot-driven
techniques [30]. To improve the effectiveness of automated recommendations to
software engineers, we believe providing useful information and feedback will
improve the likelihood developers adopt useful behaviors.
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5.3 Locality

Locality refers to the setting of recommendations in the context of developers
completing programming tasks. To describe the locality of developer recom-
mendations, we divide this concept into two subcategories: spatial and temporal
locality.

Spatial: Spatial locality refers to the location where recommendations are made.
Nudge theory suggests that the location of recommendations matters when en-
couraging people to adopt useful behaviors. For example, Hanks found that
changing the location of vegetables, fruits, etc. in a high school cafeteria in-
creased the purchase and consumption of healthier foods by students [51]. Re-
search shows that the location of recommendations matters to developers and
they prefer notifications are placed in convenient locations. Johnson et al. re-
ported that developers felt inconvenienced leaving their normal coding environ-
ment to use development tools [58]. Similarly, de Alwis and colleagues found
that the inability to locate navigation and displays made developers feel disori-
ented in the Eclipse IDE [35]. In our prior work, we developed an Eclipse code
navigation plugin, Flower, which was developed with in situ navigation design
principles to avoid developer disorientation and switching between views. In our
evaluation of this tool, we found that the location of suggestions within the IDE
and led to increased efficiency with branchless navigation and positive responses
from participants on the user interface [102]. In designing choice architectures
for recommendations to developers, we propose making automated suggestions
to developers in familiar and convenient locations to target user receptivity and
encourage adoption.

Temporal: Temporal locality refers to the timing of when recommendations
are made to users. In nudge theory, timing plays a major role in impacting
human decision-making. For example, an effective nudge for farmers in Kenya
was to change the time of year for fertilizer discounts. This encouraged them
to make purchases earlier in time to improve the harvest of crops [39]. Software
engineering research also shows that behavioral recommendation timing is im-
portant in software engineering. For example, Distefano examined configuring
static analysis tools to run at diff time, or on patches submitted by developers
to review before merging into the code base, and found that this increased the
fix rate of reported bugs up to 70% compared to nearly 0% for times outside the
development workflow, such as assigning bug lists to developers from overnight
builds [38]. To incorporate nudges into software engineering recommendations
and choice architecture designs, we propose developing automated systems that
make timely suggestions to programmers within their workflow to increase their
desire to adopt useful behaviors and practices.
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6 Experiments and Evaluations

This section describes in progress and proposed studies to support this thesis.
The bracketed text represents short names for each experiment and the text in
parentheses displays the status and semester of submission.

6.1 [suggestions] “Understanding the Impact of GitHub Suggested
Changes on Recommendations Between Developers” (In
Submission, Fall 2019)

Motivation: GitHub recently introduced a new feature, suggested changes,26

which fosters peer interactions online by allowing developers to recommend code
changes to each other during code reviews through this novel system. We chose
to analyze this novel feature because it has become very popular on GitHub,
with developers “quick to adopt suggested changes” into their workflow and
totaled over 100,000 uses within weeks of the initial release, accounting for ap-
proximately 4% of pull request review comments and 10% of code reviewers.27

Additionally, the GitHub suggested changes feature can be considered an ex-
ample of a digital nudge and adheres to the developer recommendation choice
architectures. This research seeks to discover the impact of the recently intro-
duced suggested changes feature by gathering data about the developer usage
and effectiveness of these suggestions, collecting feedback from developers about
the new feature, and exploring how well the design of this feature generalizes
to other types of recommendations. To our knowledge, this is the first study to
analyze the suggested changes feature on GitHub. The results from this work
provide implications to improve the effectiveness of recommendations to devel-
opers and are used to motivate the design of future automated recommender
systems.

Suggested Changes: GitHub released suggested changes as a public beta fea-
ture in October 2018. This new feature to allow GitHub users to recommend
code changes on pull requests to software developers. Figures 5a-c present how
the suggested changes feature works. When a reviewer notices a line of code
that can be improved, they can click on the plus (+) sign on the line of code
in question to write a comment and create a suggestion. Then, the text box in
Figure 5a pops up for the users to enter their proposed change. Figure 5b shows
a developer typing their suggested code change for the pull request into the text
box. Once the reviewer is finished with their suggestion, they can click on the
“Start a review” button to submit the suggested change. Finally, the developer
who created the pull request can see the suggested change on their code, shown
in Figure 5c, and can commit, edit, or ignore the proposed modifications. Click-
ing “Commit changes” will automatically add the change to the pull request as

26 https://help.github.com/articles/incorporating-feedback-in-your-pull-

request/#applying-a-suggested-change
27 https://github.blog/2018-11-01-suggested-changes-update/

https://help.github.com/articles/incorporating-feedback-in-your-pull-request/#applying-a-suggested-change
https://help.github.com/articles/incorporating-feedback-in-your-pull-request/#applying-a-suggested-change
https://github.blog/2018-11-01-suggested-changes-update/
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a new commit. Suggested changes can be considered a nudge because they are
used to encourage developers to improve code in their pull requests without pro-
viding incentives for committing suggestions or prohibiting alternative changes
to improve the code. Additionally, this feature also implements our developer
recommendation choice architectures presented in Section 5: they are actionable
by allowing developers to immediately apply recommendations by clicking on a
button to commit (Figure 5c); provide specific feedback to users by providing
an improvement to the code with an optional comment (Figure 5b); have high
spatial locality with recommendations appearing to developers on the exact line
of code in their pull request; and have convenient temporal locality during code
reviews before merging the code.

Research Questions:

RQ1 What suggestions do developers make with suggested changes?
RQ2 How effective is the suggested changes feature on GitHub?
RQ3 How useful is the suggested changes feature for developers?
RQ4 How well does the suggested changes feature generalize to other types of

recommendations?

Proposed Methodology: For this research, we plan to conduct a multi-
methodology study divided into two phases to gather and analyze data to answer
each of our research questions.

Phase 1: An Empirical Study on GitHub Suggested Changes

The first phase of this work explores the usage and effectiveness of suggested
changes on GitHub to answer the first two research questions.

Data Collection. To collect suggested changes to classify for RQ1, we developed
a script to programmatically search for instances of the suggestions tag in pull
request comments (See Figure 5b). The suggestions tag indicates that reviewer
used this feature to propose a suggestion on a pull request. To gather projects
and pull requests to analyze, we used the GitHub API to sort repositories by
the most recently updated pull requests to compile a list of pull request with
suggested changes. The script for automatically detecting uses of the suggested
changes feature on GitHub pull requests is publicly available online.28

To explore the effectiveness suggested changes, pull requests, and issues for
recommendations to developers on GitHub, we mined GitHub repositories to
analyze these systems. We collected pull requests and issues on the top-forked
projects that have PRs with suggested changes. We analyzed the repositories
with the most forks because GitHub recommends forking projects to create pull

28 https://github.com/chbrown13/suggestions

https://github.com/chbrown13/suggestions
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(a) Reviewer adds a pull request comment

(b) Reviewer suggests a code change

(c) Developer applies suggestion from reviewer

Fig. 5: GitHub Suggested Changes Example
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requests,29 and suggested changes require PRs to make recommendations. Ad-
ditionally, our we limited our dataset to activity after October 2018 when the
suggested changes feature was introduced. To answer RQ2, we analyzed a total
of 3683 suggested changes from 11869 pull request review comments, 3882 pull
requests, and 3516 issues. We used two metrics to measure the effectiveness of
each system: acceptance and timing. A list of projects used for this evaluation is
available in Table 4.

Classifying types of suggested changes. To categorize the types of changes devel-
opers suggest with this feature, we randomly sampled 100 recently updated pull
requests with an instance of the suggestions tag in the comments. A random
sample was used to avoid bias from classifying suggested changes from the same
GitHub users and projects. To identify categories of suggested changes, two re-
searchers performed an open coding by analyzing pull requests review comments
with the suggestions tag and code changes recommended by developers with
this feature (inter-rater agreement = 71%, Cohen’s κ = 0.5942). The two coders
then came together to discuss their results come to an agreement. Below we de-
fine and provide examples of the four identified categories for suggested changes:

Corrective: The corrective category refers to using suggested changes to fix
issues found in the code. Software engineering research shows corrective changes
are important for improving code quality. For example, Bacchelli and colleagues
found that finding defects is the primary motivation for software engineers to
conduct code reviews [7]. For example, Figure 6a presents a corrective suggested
change from a reviewer on a developer’s pull request. The suggestee referred
to a variable as a global variable instead of a class variable, and the suggester
proposes a fix by adding the self keyword.30

Improvement: Improvement suggested changes refer to when reviewers rec-
ommend code changes to refactor or optimize a contributor’s code. Developers at
Microsoft reported that code improvements are the primary benefit of code re-
views.31 Additionally, further analysis by Bacchelli and colleagues revealed that,
while developers reported correcting defects as the primary motivation for code
reviews, code improvements were the most frequently mentioned motivation [7].
Figure 6b presents an instance of an improvement suggested change, where the
suggester proposes improving the readability of the suggestee’s code by renaming
a variable from x to manifest.32

Formatting: The formatting category refers to refactoring code changes that
impact the style and presentation of the code. Fixing formatting issues is also an
important change to improve code. Bacchelli and colleagues reported developers
also found code reviews to be useful for ensuring code styles and standards are
consistent between programmers on development teams [7]. An example of a for-

29 https://help.github.com/en/articles/fork-a-repo
30 https://github.com/zeit/next.js/pull/7696#discussion_r302333269
31 https://www.michaelagreiler.com/code-reviews-at-microsoft-how-to-code-

review-at-a-large-software-company/
32 https://github.com/gatsbyjs/gatsby/pull/13471#discussion_r277948539

https://help.github.com/en/articles/fork-a-repo
https://github.com/zeit/next.js/pull/7696##discussion_r302333269
https://www.michaelagreiler.com/code-reviews-at-microsoft-how-to-code-review-at-a-large-software-company/
https://www.michaelagreiler.com/code-reviews-at-microsoft-how-to-code-review-at-a-large-software-company/
https://github.com/gatsbyjs/gatsby/pull/13471##discussion_r277948539
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matting suggestion is presented in Figure 6c.33 where the suggester recommends
changes to fix spacing issues in the suggester’s code that violate the Python
PEP8 whitespace standards.34

Non-Functional: Non-functional suggested changes refer to modifications
reviewers recommend outside of the code. This includes suggestions to fix spelling
and grammar issues or reword phrases in code documentation and comments.
Non-functional changes are prevalent in software engineering, for example Beller
and colleagues found that documentation changes are the most frequent type of
fixes applied during code reviews for open source software [17]. Figure 6d presents
an example of a non-functional suggested change. In this case, the suggester
discovers a typo where the suggestee misspelled deserialize in a documentation
files and uses the suggested changes feature to recommend a fix for the error.35

(a) Corrective:

(b) Improvement:

(c) Formatting:

(d) Non-Functional:

Fig. 6: Suggested Changes Categories

33 https://github.com/numba/numba/pull/4204#discussion_r310598073
34 https://www.python.org/dev/peps/pep-0008/#whitespace-in-expressions-

and-statements
35 https://github.com/microsoft/terminal/pull/1258#discussion_r293932790

https://github.com/numba/numba/pull/4204##discussion_r310598073
https://www.python.org/dev/peps/pep-0008/##whitespace-in-expressions-and-statements
https://www.python.org/dev/peps/pep-0008/##whitespace-in-expressions-and-statements
https://github.com/microsoft/terminal/pull/1258##discussion_r293932790
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Determining acceptance of recommendations. We define acceptance as the pro-
cess of users welcoming suggested changes recommended by another developer.
Accepting these suggestions indicates an effective recommendation because the
author trusts changes and believes it will be beneficial to the code. Research
shows this concept is important in software development. For example, to em-
phasize the importance of acceptance in software engineering, Middleton and
colleagues argue receiving code contributions from outside developers is essen-
tial for the maintenance and evolution of open source software [76].

Since the suggested changes feature is currently not supported by the GitHub
API,36 we extended the suggested changes detection script to examine commits
made on pull requests with suggestions. To determine whether suggestions were
accepted or rejected, our script found instances of pull requests with suggested
changes. Then, it parsed review comments on the PR to extract the recom-
mended code modifications between the suggestions tag and the ending ’’’.
Finally, it checked whether the suggested line of code was present in another
commit after the comment was made to the pull requests on the same file that
received the suggested change. Suggested changes with lines of code that were
found to be integrated in a subsequent commit on a pull request were considered
accepted, otherwise they were regarded as rejected.

To determine the acceptance of pull requests, we simply used the existing
GitHub status. In the pull-based software development model, accepted changes
must be merged into the source code [49]. In this case, a Merged PR is considered
accepted because the recommended code changes were reviewed and approved
by a maintainer to be integrated into the project. For issues, the only possible
statuses are Open or Closed. Thus, we were not able to automatically detect if
recommendations from this system were closed to be accepted into repositories
or closed to be ignored. To analyze only accepted issues with recommendations,
we filtered out issues with GitHub labels bug and duplicate to avoid bug re-
ports and multiple instances of the same issue.37 After automatically filtering
these labels, a researcher manually examined the title, description, discussion,
and status of issues to code issues based on two criteria: 1) if they contain a rec-
ommendation or no recommendation and 2) if the recommendation was accepted
or not accepted into the project. Accepted issues are those with recommendations
that are integrated with a pull request or commit to the repository.

Determining timing of recommendations. The second metric used to determine
the effectiveness of recommendations was the amount of time developers took
to accept a suggestion, or acceptance time, for each system. In behavioral eco-
nomics, Kocher and colleagues suggest the time to make decisions is important
to the quality of choices because “time is money” [63]. In software engineering,
research also shows that time can impact the cost and effort required to fix bugs
in code [65]. To measure timing for each system, we calculated the amount of

36 https://github.community/t5/GitHub-API-Development-and/Accessing-the-

new-quot-GitHub-Suggestions-quot-via-API-public/td-p/13922
37 https://help.github.com/en/articles/about-labels

https://github.community/t5/GitHub-API-Development-and/Accessing-the-new-quot-GitHub-Suggestions-quot-via-API-public/td-p/13922
https://github.community/t5/GitHub-API-Development-and/Accessing-the-new-quot-GitHub-Suggestions-quot-via-API-public/td-p/13922
https://help.github.com/en/articles/about-labels
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time between the creation of the recommendation and its acceptance into the
repository.

For suggested changes, we measured the acceptance time as the amount of
time between a reviewer commenting on a pull request with the suggestions

tag until the time a subsequent commit adding the suggested line of code was
created on the pull request. To measure the acceptance time for pull requests,
we used the GitHub API to calculate the difference between the time from when
a GitHub developer creates a pull request and when the pull request is merged
into the repository by a project maintainer. After manually inspecting issues
to determine they have an accepted recommendation, we used the GitHub API
to determine the acceptance time for these issues by calculating the difference
between the time the issue was created and the time it was closed.

Project Language Forks Suggestions PRs Issues

qmk/qmk firmware C 8723 3627 1997 290
h5bp/Front-end-Developer-Interview-Questions HTML 8325 1 35 5
Azure/azure-quickstart-templates PowerShell 7743 2 921 147
firebase/quickstart-android Java 5603 2 91 124
mavlink/qgroundcontrol C++ 1584 4 402 267
qgis/QGIS C++ 1516 47 436 2683

Table 4: RQ2 Study Projects

Phase 2: Developer Feedback on Suggested Changes The second phase
consisted of a survey and user study to answer the last two research questions
on the usefulness and generalizability of GitHub suggested changes.

Data Collection. To determine the usefulness of suggested changes, we surveyed
developers who interacted with the feature on GitHub. Surveys were emailed
to users with publicly available email addresses who either received or made a
suggestion on a pull request within the last six months. Our survey asked users
how useful they found the this feature using a 5-point Likert scale as well as free
response questions to provide details on what specifically they find useful or not
useful about the system and how it is integrated it into their project.

To answer RQ4, we conducted a user study to examine applying the suggested
changes feature to tool recommendations. We recruited 14 professional software
developers, presented in Table 5, to participate in this study. The participants av-
eraged 5 years of industry experience in various roles such as Software Engineer,
Software Developer, Quality Engineer, Consultant, Data Migration Consultant,
Support Specialist, User Researcher, and Technical Test Lead. Additionally, all
participants were at least somewhat familiar with GitHub. We conducted a think
aloud study with a semi-structured interview and audio and screen recorded all
sessions to collect feedback from developers on how well the suggested changes
feature translates to software engineering tool recommendations.
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Determining usefulness of suggestions. We emailed surveys to a total of 570
GitHub users who interacted with suggested changes and received 39 responses
(7% response rate). Throughout the remainder of this paper, we use the C-
prefix to describe a suggestee, or a contributor who received a suggested change
on their pull request, and the R- prefix to indicate a suggester, or a reviewer
who made a comment with the suggested changes feature on a pull request. We
aggregated the Likert scores to examine the overall usefulness, then two experts
open coded the open-ended responses from developers on the useful (72%, κ
= 0.6828) and unuseful (77%, κ = 0.7125) aspects of suggested changes. The
researchers discussed derived categories and came to a consensus on themes
found in comments. To resolve disagreements in coding statements, the first
author acted as the tie-breaker. The primary inconsistencies in coding came from
determining the existence of multiple themes since responses from developers
could span more than one category.

Determining the generalizability of recommendations. To determine the impact
of suggested changes on tool recommendations, we asked participants to interact
with sample recommendations from a suggested change, pull request, issue, and
email. Participants were asked to provide a Likert-scale ranking on how likely
they would adopt the tool and to discuss what they like and dislike about each
system as well as provide insight into what makes tool recommendations effective
in general. Figure 7 presents an example of the prototype suggested change
recommendation system, using the feature to suggest a fix for a bug reported by
static analysis output and recommend a tool for developers to find and prevent
errors in the future. Staged recommendations for pull requests, issues, and emails
contained similar text suggesting tools to participants from each system. To
analyze feedback on this design, we aggregated the Likert scores and open-ended
feedback from participants. For the rest of this paper, user study participants are
indicated with a P-prefix. We transcribed and analyzed recordings of sessions
to present feedback from developers on receiving tool recommendations with
suggested changes.

Expected Results: From this evaluation, I expect to gain insight into the
GitHub suggested changes feature. For RQ1, we hypothesize that suggested
changes are useful for recommending a wide variety of code changes. For RQ2,
we hypothesize suggested changes are as effective as other systems for recom-
mendations between users on GitHub. For RQ3, we expect users find this new
feature very useful for suggesting and receiving code change recommendations.
Finally, for RQ4 we believe the design of this system can generalize to other
types of recommendations and is preferred by software developers for recom-
mending static analysis tools. Overall, we expect the results from this study
to motivate the use of digital nudges for making effective recommendations to
developers. The results of this evaluation were submitted for publication to the
2020 International Conference on Software Engineering (ICSE 2020).38

38 https://conf.researchr.org/home/icse-2020

https://conf.researchr.org/home/icse-2020
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ID Experience (yrs) GitHub Familiarity OSS Contributions Tool Usage

P1 30 Very Familiar Occasionally Very Frequently
P2 Less than 1 Moderately Familiar Never Never
P3 Less than 1 Very Familiar Rarely Moderately Frequent
P4 8 Very Familiar Very Frequently Very Frequently
P5 10 Familiar Rarely Moderately Frequent
P6 5 Moderately Familiar Occasionally Very Frequently
P7 6 Familiar Frequently Very Frequently
P8 6 Familiar Very Frequently Very Frequently
P9 Less than 1 Moderately Familiar Occasionally Very Frequently
P10 1 Moderately Familiar Occasionally Very Frequently
P11 3 Familiar Very Frequently Very Frequently
P12 3 Familiar Rarely Very Frequently
P13 1 Moderately Familiar Never Never
P14 1 Moderately Familiar Never Frequently

Table 5: RQ4 User Study Participants

Fig. 7: Mock Recommender system with suggested changes
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6.2 [nudge-bot] “Nudging Students Toward Better Software
Engineering Behaviors” (Proposed, Spring 2020)

Motivation: To integrate user receptiveness [26] and improve on the effective-
ness of a naive bot [27] for making suggestions to improve developer behavior, we
propose implementing a new bot to nudge software engineers to adopt developer
behaviors. To understand the impact of implementing automated recommenda-
tions as digital nudges, we plan to implement and evaluate a novel recommen-
dation approach in a new system: nudge-bot. While tool-recommender-bot and
the naive telemarketer design approach failed to effectively recommend static
analysis tools to developers, we aim to enhance nudge-bot by incorporating our
conceptual framework for designing effective developer recommendations in ad-
dition to design implications from the results of the suggestions study exam-
ining an existing system that can be considered a digital nudge. To evaluate this
system, we plan to examine how recommendations from nudge-bot improve the
decision-making and behavior of students in a college-level software engineering
course. While research shows that automation is useful to help with grading and
teaching in introductory computer science courses [101] and providing feedback
to students [55], there is little to no work exploring the use of automated recom-
mendations to improve student behavior. We aim to show that this new system
can improve student behavior in software engineering education and the results
from this evaluation can provide implications for making effective recommenda-
tions to improve the behavior of software engineers in industry.

Software Engineering Education: Research suggests improvements are needed
for software engineering education and the future of the software industry. The
ACM notes that there is a “crisis” in Computer Science Education that will
result in necessary computing-related jobs going unfilled [118]. Furthermore,
even though the computer science major is one of the most popular fields of
study at universities, it also has a very high attrition and failure rate [14]. For
software engineering education, a subset of computer science, researchers have
explored problems with effectively preparing students for industry. Jazayeri out-
lines challenges of teaching software engineering and provides ideas for a new
curriculum and skills to educate successful software engineers [57]. Furthermore,
Devadiga argues that topics taught in school are often unrelated to industry
practice and suggests merging with startups to improve SE education [36]. Ad-
ditionally, Heckman and colleagues present “the good, the bad, and the ugly”
of teaching software engineering to students using an open source software sys-
tem [52]. Several issues they found include delayed feedback, group dynamics,
high workload, and aggressive scheduling. We aim to improve on these prob-
lems in software engineering education by using nudges to encourage students
to adopt useful developer behaviors.

Research Questions:

RQ1 How do nudges influence software engineering student productivity?
RQ2 How do nudges impact the quality of software engineering student projects?
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Proposed Methodology: To evaluate integrating nudge theory into developer
recommendations, we plan to conduct a mixed-methods research study.

Data Collection. The data for this evaluation will be collected from the un-
dergraduate (CSC 326) Software Engineering course at North Carolina State
University. The final project for the course will require students to maintain
and add new features to iTrust39, an electronic health records system. First, we
will analyze data by mining team GitHub repos for final projects from previous
semesters of CSC 326. This will help us determine which project milestones to
nudge for as well as when to nudge. During this stage, we will collect information
from iTrust repositories and past teams such as overall project grade, submission
times, total number of commits, amount of time to complete various milestones,
and code contributions by each group member. While the project requirements
change for the team project each semester, each iteration of the class will have
similar milestones to complete every year. Additionally, we plan to conduct to
pilot and test nudge-bot this semester on a project for the graduate software
engineering course (CSC 510).

After examining projects from prior semesters to determine the best behav-
iors and timing for nudges, we plan to mine repositories for the CSC 326 final
project in Spring 2020 to answer our research questions. Participants will be
volunteer software engineering groups from the class who opt-in to receiving no-
tifications from a bot and consent to using the data collected for this research.
We plan to gather quantitative data based on student behaviors and performance
while developing their iTrust project based on recommendations from nudge-bot.
Additionally, we plan collect qualitative data by surveying students to gather
feedback and learn about their perception of nudges from our automated system.

Implementing nudge-bot. To build our new nudge-bot recommender system, we
utilize the GitHub API to mine repositories and track behaviors of students.
This system will implement several different types of interventions to encour-
age students to adopt better behaviors based on monitored activity. We plan
to design our bot to incorporate results from the prior work to address our
conceptual framework for making effective recommendations to developers. In
our evaluation, nudge-bot will send notifications to students encouraging them
to adopt better software development behaviors for their project. The input to
the system will be a YAML configuration file mapping project milestones with
deadlines and containing other information such as project team members and
contact information. nudge-bot will be deployed on Jenkins servers used for the
CSC 326 course. Our goal is for software engineering educators to be able to
customize nudge-bot and integrate it into their SE courses and projects, and for
software engineering researchers to be able to extend this system to recommend
useful behaviors to professional developers contributing to software applications.
The code for nudge-bot will also be open sourced and publicly available online.40

39 https://github.ncsu.edu/engr-csc326-staff/iTrust2-v5
40 https://github.com/chbrown13/nudge-bot

https://github.ncsu.edu/engr-csc326-staff/iTrust2-v5
https://github.com/chbrown13/nudge-bot
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Defining student behaviors. To answer RQ1, we will observe the impact of nudges
on influence software engineering student project management behaviors. We
aim to show that nudging students to adopt useful project management behav-
iors can improve the quality of their project and development productivity.

Project Management: Poor project management is a problem that nega-
tively impacts software engineering students Beaubouef and colleagues note that
poor project management is a hindrance for computer science students and leads
to poor performance in programming classes and high attrition among CS ma-
jors [14]. Additionally, this is a problem that also applies to professional software
engineers in industry. Charrette argues that billions of dollars are wasted every
year due to failing software projects, and suggests these project fail because of
poor project management factors such as inadequate project goals, inaccurate es-
timates, ill-defined requirements, poor communication, and sloppy development
practices [31]. The increase of distributed development teams in the software
engineering industry has also led to additional project management challenges
in global software development, including a lack of cultural understanding, com-
munication, managing time differences, knowledge management and transfer in
teams, trust, geographical distances, and more [88]. By implementing nudge-bot
to influence project management behaviors in students, we aim to show that
our results can translate to the software engineering industry and improving the
behavior of professional developers.

For the CSC326 software engineering final project, students are asked to
complete a variety of requirements for the iTrust system. For example, devel-
opment process requirements for the assignment include adding a project wiki
page, using GitHub issues, maintaining a passing build on Jenkins, and using a
development branch.41. Additionally, the project requires various functional re-
quirements to add new functionality to iTrust42. For project milestones, we plan
to nudge students who have not started on specific tasks with an approaching
deadline to encourage them to begin. To measure project management, we will
compile a list of the functional requirements implemented and process require-
ments met by teams by observing GitHub repositories. We hypothesize creating
nudges to encourage good project management behaviors for students and will
in turn help them complete more requirements as well as adopt good practices
to improve the development quality and productivity for their final project.

Nudging student behaviors. Nudges will incorporate the basic content for devel-
oper recommendations (desire, familiarity, social context, and developer work-
flow) as well as our developer recommendation choice architectures (actionabil-
ity, feedback, and spatial and temporal locality) to automatically recommend
better project management behaviors to students for their final team project.
To explore the impact of actionability in developer recommendations, we plan to
implement nudge-bot to create active and passive actionable nudges to students.

41 https://pages.github.ncsu.edu/engr-csc326-staff/326-course-page/team-

project/tp-process
42 https://pages.github.ncsu.edu/engr-csc326-staff/326-course-page/team-

project/problem-stmt#required-elements

https://pages.github.ncsu.edu/engr-csc326-staff/326-course-page/team-project/tp-process
https://pages.github.ncsu.edu/engr-csc326-staff/326-course-page/team-project/tp-process
https://pages.github.ncsu.edu/engr-csc326-staff/326-course-page/team-project/problem-stmt##required-elements
https://pages.github.ncsu.edu/engr-csc326-staff/326-course-page/team-project/problem-stmt##required-elements
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Active: Active nudges are actionable automated interventions that partially
complete programming tasks for students. We plan to determine if these recom-
mendations will encourage users to adopt better behaviors and finish develop-
ment tasks. For example, the GitHub Projects43 is a useful feature for users to
organize and track progress of their work using a project board. Tasks are cre-
ated as cards and moved between columns on the board to indicate the status
and track progress for each card. To encourage projects with GitHub Project
boards to be active in completing tasks, an example active nudge is to auto-
matically create cards with requirements for students to complete for their team
project on their repositories. By doing this, we aim to increase awareness for
students about this feature and encourage them to use project boards and cards
to improve their project management activities. Overall, we hypothesize active
nudges will effectively encourage software engineering students to adopt behav-
iors to improve project management and collaboration.

Passive: Passive nudges will be automated notifications that encourage stu-
dents to adopt improved behaviors without impacting the project. These will
be actionable visual indicators to recommend developer behaviors that would
be useful to improve their project without automatically completing tasks for
students. For instance, a passive nudge to encourage students to move tasks on a
GitHub Projects board is to create badges to indicate their usage on a repository.
Figure 8 presents an example of this, displaying a red badge to show developers
are not active on their GitHub Project board (i.e. cards remain in the same
column) while a green badge indicates they are active in tracking tasks on their
board (i.e. cards exist and are moved between columns consistently). Research
shows that badges on have been widely adopted on GitHub and repositories
with this feature have a higher quality of code for the signals they indicate [108].
Furthermore, badges fit into the nudge theory framework by not providing in-
centives or preventing options for developers. Additionally, we plan to create a
badge for the overall project health. This metric will indicate the likelihood a
project will pass based on various factors, such as the amount of requirements
completed and the recency of activities such as commits and PRs to prevent
team procrastination. We hypothesize passive nudges such as these will be able
to encourage students to adopt useful developer behaviors for managing project
tasks and increasing team collaboration.

Fig. 8: Example of Project Health badges to nudge developer behaviors

43 https://help.github.com/en/github/managing-your-work-on-github/about-

project-boards

https://help.github.com/en/github/managing-your-work-on-github/about-project-boards
https://help.github.com/en/github/managing-your-work-on-github/about-project-boards
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Table 6 presents several examples of student behaviors with potential nudges
that would be implemented in our new system. The complete list of developer
behavior nudges for nudge-bot will be finalized after collecting data from projects
from previous semesters of CSC 326, discussions with the instructors of the
course for next semester, and the requirements for the final project in Spring 2020
are officially set. More details and information about the course and milestones
to complete for the team project this semester are available online.44

Behavior Nudge

Manage development tasks Badge to indicate project health (passive)
Implement feature (i.e. diabetes) Automated PR with empty class (i.e. Diabetes.java)

(active)

Table 6: Examples of nudges for software engineering students

Defining student productivity. To answer RQ1, we will measure student produc-
tivity using two metrics: the total amount of time for teams to complete assign-
ments and the amount of functional requirements met for the team project.

Time: We will examine time to discover if nudging developers impacts im-
proves productivity and prevents procrastination on the final project. To measure
time, we plan to calculate the overall amount of time needed to complete the
project as well as time submitting milestones ahead of deadlines. Professional
software engineers are often poor at estimating time to complete projects and
fall behind schedule [31]. In SE education, Beaubouef and colleagues note that
CS students often procrastinate and delay in completing tasks for their class
programming assignments, which leads to lower grades and increased frustra-
tion [14]. However, Willman and colleagues also found that higher performing
students start and end activities earlier than their peers [116]. To encourage
students to start and submit deliverables for the final CSC 326 project, we aim
to nudge students to adopt better project management behaviors helping them
to be more productive and finish tasks sooner.

Functional Requirements: Another metric for measuring productivity is
to observe the number of functional processes, or technical deliverables and func-
tionality added to iTrust for the final project. Prior work explores using function
points, or the amount of functionality a system provides to users, as a metric to
measure productivity [22] and predict developer effort [74]. Examples of func-
tional requirements for the CSC 326 project this semester include adding new
features such as an Oral Glucose Tolerance Test, diabetes diagnoses, and blood
sugar data entry.45 Additionally, we will observe GitHub activity for projects

44 https://pages.github.ncsu.edu/engr-csc326-staff/326-course-page/team-

project/
45 https://pages.github.ncsu.edu/engr-csc326-staff/326-course-page/team-

project/problem-stmt

https://pages.github.ncsu.edu/engr-csc326-staff/326-course-page/team-project/
https://pages.github.ncsu.edu/engr-csc326-staff/326-course-page/team-project/
https://pages.github.ncsu.edu/engr-csc326-staff/326-course-page/team-project/problem-stmt
https://pages.github.ncsu.edu/engr-csc326-staff/326-course-page/team-project/problem-stmt
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including commits, issues, and pull requests to measure productivity. We hy-
pothesize that interventions from nudge-bot will encourage students to complete
more functional requirements and be more productive on their final projects.

Defining project code quality. To answer RQ2, we will examine code quality by
observing two metrics: grades and process requirements.

Grade: To determine if nudges impact code quality, the first metric we plan
to examine is the final project grade. Figas and colleagues note that extrinsic mo-
tivators such as incentives and grades are key in motivating software engineering
students to perform well on group projects [41]. Additionally, Wilson and Shrock
found that performance in early computer science courses can predict success in
future CS classes [117]. In the undergraduate software engineering course, the
grading rubric for the final project consists of real-world software engineering
quality metrics and process requirements, in addition to assessing the quality
of the functional requirements implemented by teams on their project.46 We
hypothesize that recommendations from nudge-bot will improve overall student
grades on their final team project.

Process Requirements: Process requirements refer to tasks that deal with
the code and development processes. Karunasekera suggests using team pro-
cesses, process adherence, and quality to assess student projects to prepare
software engineering students for industry careers [61]. Additionally, software
engineering industry research shows that individual programming, development
team, and organizational processes are vital to the success of software engi-
neering products [33]. Similarly, the CSC 326 final project requires students to
follow development processes that impact code quality such as adhering to the
NCSU department Java style guide,47 passing unit tests, at least 70% test cov-
erage, documenting code, conducting code reviews, adding a project wiki page
and README, and maintaining passing project builds. We aim to show that
both active and passive nudges to software engineering students can increase the
amount of technical and team processes accomplished by development teams on
their final projects.

Expected Results: We hypothesize that active and passive nudges to soft-
ware engineering students will improve their behavior while working on teams
to complete a development project. Specifically, we believe that sending auto-
mated notifications to CSC 326 students from nudge-bot will: 1) increase the
amount of functional and process requirements implemented for development
teams on the iTrust healthcare system, 2) reduce the amount of time students
procrastinate and complete work on their projects, and 3) improve the overall
software quality and student grades for the team project.

46 https://pages.github.ncsu.edu/engr-csc326-staff/326-course-page/team-

project/#grade-categories
47 https://pages.github.ncsu.edu/engr-csc116-staff/CSC116-Materials/

course-resources/style-guidelines/

https://pages.github.ncsu.edu/engr-csc326-staff/326-course-page/team-project/##grade-categories
https://pages.github.ncsu.edu/engr-csc326-staff/326-course-page/team-project/##grade-categories
https://pages.github.ncsu.edu/engr-csc116-staff/CSC116-Materials/course-resources/style-guidelines/
https://pages.github.ncsu.edu/engr-csc116-staff/CSC116-Materials/course-resources/style-guidelines/
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7 Related Work

My research is based on prior work that explores making recommendations to
developers and technical approaches to improving software engineer behavior.

7.1 Developer Recommendations

Prior work has investigated different methods for making effective recommenda-
tions to software developers. One such method is in-person interactions between
with colleagues, which research suggests is the most effective way to make sug-
gestions to software engineers. Murphy-Hill explored seven methods software
engineers learn about new development tools and found that peer interactions
were the most effective [85]. Additionally, Cockburn and Williams suggest that
collaboration occurring pair programming is useful for saving time and money in
addition to improving developer work satisfaction, design quality, code reviews,
problem solving abilities, learning, team building, communication, and project
management within an organization [32]. Likewise, Maaleej also analyzed peer
debriefings, or discussions between developers, and found that these peer inter-
actions are effective for improving code comprehension [71]. While these studies
show recommendations between developers is effective, my work aims to use
nudge theory to improve automated developer recommendations.

Researchers have also explored the impact of passive help systems on devel-
oper learning. These static systems include Stack Overflow [13], Twitter [99],
Hacker News [11], GitHub [34], software documentation [45], and social media
in general [15]. Furthermore, prior work has proposed and evaluated methods
to improve developer recommendations and help solve the software engineer-
ing adoption problem. Examples of these methods include idea gardening [28],
automated pull requests [77], continuous screencasting [83], live-coding [21],
crowdsourcing [48], explorative and exploitative searching [60], logging activ-
ities [73], organization-wide learning [70], shared knowledge bases [112], and
gamification [12]. Additionally, software engineering researchers have also sug-
gested using theories from other fields to improve developer recommendations.
For example, Fleming and colleagues examined applying information foraging
theory, the study of how humans search for information, to software engineering
and how programmers seek information [43]. Furthermore, Singer explored inte-
grating concepts from diffusion of innovations, a sociology theory for explaining
how knowledge and ideas spread, to increase tool adoption among software de-
velopers [98]. To our knowledge, our work is the first research to integrate nudge
theory into developer recommendations to improve the decision-making and be-
havior of software engineers.

7.2 Recommendation Systems for Software Engineering

Software engineering researchers and toolsmithshave developed and evaluated
many active help systems to assist programmers. Robillard and colleagues de-
fine and provide examples of RSSEs in the context of software development [92].
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Prior work has introduced a variety of tools to make recommendations and help
developers complete a wide range of programming tasks. For example, Spyglass
improves code navigation [112], ToolBox recommends Unix commands [73], Tri-
corder suggests static analysis bugs to fix [94], Coronado recommends queries to
improve code searching [46], Dhruv suggests developers and artifacts to resolve
bug reports [5], and many more. Besides these active help systems, research has
also explored the use of software robots, or bots, to automatically make rec-
ommendations to developers. For example, David-DM48 and Greenkeeper49 are
bots designed to recommend dependency updates for developers [78]. Beschast-
nikh and colleagues also implemented analysis bots to increase the adoption of
software engineering research in industry [18].

In addition to developing automated recommender systems, research has also
explored ways to improve the overall effectiveness of these systems. Fogg also out-
lines design principles for creating and designing persuasive technologies to en-
courage users to adopt target behaviors [44]. Furthermore, McNee and colleagues
argue that the accuracy of recommender systems is not sufficient for increas-
ing adoption and suggest developers of recommender systems must implement
user-centric recommendations focused on user experiences and expectations [75].
Similarly, Konstan and colleagues posit that evaluating user experiences metrics
is more important for automated recommender systems than optimizing recom-
mendation algorithms [64]. For RSSEs, Murphy and Murphy-Hill explored the
concept of trust in recommender systems for software development and found
that trust was more important than precision for software engineers [81]. Our
work also seeks to improve the effectiveness of recommender bots by focusing on
integrating concepts from nudge theory in recommendations to improve devel-
oper decision-making and behavior.

7.3 Nudge Theory in Software

To our knowledge, this is the first work exploring the impact of nudge theory on
software developers. However, prior work has examined using digital nudges to
influence the behavior of software users. For example, Weinmann and colleagues
argue that user interface design can impact user behavior and decision-making in
digital choice environments [113]. Acquisti and colleagues explored using digital
nudges to improve user privacy and security decisions online [1]. Likewise, Huang
and colleagues found that digitally nudging social media users impacted social
sharing behavior [56]. Additionally, Gupta and colleagues studied using digital
nudge interventions to improve distributed team performance on the Test of
Collective Intelligence, an online evaluation to measure the ability of team to
collaborate and complete a series of tasks [50]. While these studies show that
digital nudges are effective for impacting the behavior of software users, we
aim to discover if the nudge theory framework can also improve behavior and
decision-making of software developers.

48 https://david-dm.org/
49 https://greenkeeper.io/

https://david-dm.org/
https://greenkeeper.io/
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8 Research Plan

This section presents the research plan for the completion of the work presented
in this proposal for my dissertation. All studies are referred to by their short
names given in Sections 3 and 6.

8.1 Completed Projects

I have completed and published the following projects for this research proposal:

interactions: VL/HCC 2017 [26]

sorry: BotSE 2019 [27]

The preliminary research outlined in this proposal was also presented and
published at the Doctoral Symposium for the International Conference on Soft-
ware Engineering (ICSE 2019) in Montreal, Canada [23]. Additionally, this work
has been presented at various industry conferences including QECampX 2018 [24],50

a Red Hat quality engineering conference, and DevConf 2019 [25],51 an open
source conference for software developers and technologists.

8.2 Upcoming Projects

The following projects are currently under submission or in progress for publi-
cation and plan to complete in Spring 2020:

suggestions: ICSE 2020*

Dissertation: Summer/Fall 2020*

nudge-bot : ICSE SEET 2021*

The GitHub suggested changes study is currently under submission to ICSE
2020. We plan to complete the evaluation for nudge-bot next semester and sub-
mit our results to the Software Engineering Education and Training track at
ICSE 2021. Additionally, I plan to complete the majority of the drafting for my
dissertation in Spring 2020.

8.3 Proposed Timeline

Table 7 presents a detailed timeline outlining the completion of the remaining re-
search proposed in this document. This plan does not include completed projects
and preliminary work.

50 https://www.qecamp.com/, requires Red Hat employee login
51 https://devconf.info/us/2019

https://www.qecamp.com/
https://devconf.info/us/2019
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Table 7: Research Timeline
Sept Oct Nov Dec Jan Feb Mar Apr May June July Aug Sept Oct

suggestions

Data Analysis

Rebuttal

nudge-bot

Development

Pilot

Data Collection

Data Analysis

Writing

Submission

Dissertation

Writing

Defense

* These milestones depend on acceptance and publication into top software
engineering conferences. In case of paper rejection or other schedule delays, ad-
ditional submission venues include ASE, MSR, VL/HCC, CSCW, RecSys, TSE,
and TOSEM, along with other peer-reviewed software engineering conferences
and journals.

9 Thesis Contract

My dissertation will consist of the following deliverables for the committee upon
the completion of this research:

� Dissertation chapter on the interactions study.

� Dissertation chapter on the sorry study.

� Dissertation chapter on the suggestions study.

� Dissertation chapter on the nudge-bot study.
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