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Abstract—To help users gain awareness of tools and features
available in applications, recommender systems can automatically
suggest useful tools. Such systems aim to present recommenda-
tions just like users would recommend tools to one another, but
little is known about the nature of these user-to-user recom-
mendations. This paper explores user-to-user recommendations
through a study of 13 pairs of software users performing data
analysis tasks. We found that users were more likely to adopt
tools when they were receptive to the recommendation, but
did not find the recommendations were any more likely to
be effective when they contained other characteristics such as
politeness, persuasiveness, or referred to observable tools. These
findings suggest that, for example, automated systems should
avoid recommending obscure and unfamiliar tools, but making
recommendations politely is not a critical design goal.

Index Terms—Peer Interaction; Tool Recommendation; Tool
Discovery

I. INTRODUCTION

To make users more efficient and effective, software applica-
tions contain numerous tools, or features that accomplish tasks.
Examples of such tools include FIND in Chrome, FLASH FILL
in Excel, and OPEN RESOURCE in Eclipse. Unfortunately,
many tools are underutilized because users are not even aware
such features exist [13]. The awareness problem becomes more
acute over time as applications become increasingly “bloated”
with new tools [25].

Applications have attempted to increase awareness through
various means. One well-known method is through documen-
tation, such as software help documents, which allow users
to search for features and discover tools to help accomplish
tasks. But documentation requires users to recognize a tool
might exist to make their work more efficient, and then search
through the documentation to discover that tool. Web searches
for tools likewise suffers from these problems. As Fischer and
colleagues argue, such passive help systems are ineffective and
inefficient for users [8].

As another way to solve the awareness problem, practi-
tioners and researchers have created active help systems in
the form of recommender systems to suggest new tools to
users. One of the most popular examples is Microsoft Clippy,
which recommended new tools in Microsoft Office products,
such as Word. But users found Clippy so undesirable that
Microsoft heralded its later removal from Office as a step

forward [27]. Researchers have suggested that Clippy was in-
effective because users found it interruptive [10], impolite [46],
and annoying [18].

In contrast to the inadequacy of system-to-user recommen-
dations, prior work has shown that user-to-user tool recom-
mendations are highly effective. When Murphy-Hill and Mur-
phy compared seven different ways users discover new tools,
users determined that the most effective way that they learned
about new tools was through peer interaction, the process of
users discovering tools from their peers while completing nor-
mal work activities [32], [31]. Such peer interaction can come
in two forms, peer observation and peer recommendation. Peer
observation is when a user sees a colleague using a tool that
he is unaware of. Peer recommendation occurs when a user
sees a colleague accomplish a task inefficiently or without a
tool, and recommends a tool.

In this research, our goal is to improve tool discovery by bet-
ter understanding peer interactions so that future recommender
systems can better approximate user-to-user recommendations.
Fischer suggests recommendation systems should help and
guide users in completing tasks “similar to a knowledgeable
colleague or assistant” [8], yet there is limited research on
how such user-to-user recommendations take place in practice.
Further study in this area is needed because problems with
system-to-user tools, such as Clippy, arise from the fact they
don’t simulate user-to-user interactions. To examine this, we
sought to answer the following research question:

RQ: What characteristics of peer interactions make
recommendations effective?

To answer this question, we conducted a study where we asked
13 pairs of users to complete data analysis tasks, observing
how they recommended tools to one another and how often
suggestions were used or ignored. The main contribution of
this paper is the first study, to our knowledge, to characterize
how software users make tool recommendations.

II. BACKGROUND

Our study builds on prior research examining the tool
adoption problem, technical approaches for improving tool
adoption, and how information workers learn from peers.

Previous work has explored the tool adoption problem in
a variety of areas. Researchers have examined end-users’
lack of tool adoption in software such as AutoCAD [13]978-1-5386-0443-4/17/$31.00 c©2017 IEEE



and Microsoft Word 97 [25]. In software engineering, re-
searchers have examined developer barriers to using debug-
ging [5], refactoring [29], security [48], static analysis [17],
and research-off-the-shelf (ROTS) [43] tools. The results of
our study aim to reduce these barriers to tool adoption by
improving understanding of what makes peer-to-peer tool
discovery effective.

Toolsmiths and researchers have developed and evaluated
various system-to-user technical solutions for improving tool
adoption in software. OWL logs activities by Word users
to recommend tools and improve organization-wide learn-
ing [23]. ToolBox collects history from networked worksta-
tions to recommend Unix commands [24]. Spyglass observes
actions and suggests commands to help users navigate code
more efficiently [45]. Coronado proposes recommendations
to aid code search based on user queries [11]. Researchers
have also proposed using various techniques and algorithms
to automatically recommend tools, such as collaborative fil-
tering [30] and Information Foraging Theory [34]. Our work
aims to improve these and future technical approaches by
examining peer interactions and providing implications for
integrating qualities that make user-to-user recommendations
effective into recommendation systems.

Learning from peers, sometimes called over-the-shoulder
learning [44], has been shown to be effective in increasing
knowledge. For instance, Cockburn and Williams studied
pair programming, where two programmers develop software
together on the same computer. They found that the practice
improved learning as well as many more aspects of a project
for an organization [6]. Peer interaction, a form of over-the-
shoulder-learning where users learn about tools from cowork-
ers, has been shown to be effective but infrequent in interviews
and diary studies [31], [32]. This research introduced the
concept of peer interactions and was essential to our project.
While shown to be effective, prior research has not shown
under what conditions peer interactions are effective; our paper
fills this gap.

Several projects have explored integrating aspects of user-
to-user recommendations into recommender systems. Various
approaches have been used to simulate recommendations from
peers, including: continuous social screencasting to facilitate
peer interactions remotely through recorded videos of co-
workers [28]; idea gardening to collect ideas from end-users to
recommend solutions for overcoming barriers and completing
tasks [4], the personification of suggestions in Gidget, a code
debugging game, to improve learning for novice program-
mers [21]; gamifying tool adoption [41]; and crowdsourcing
recommendations [12]. Our research aims to provide new
implications for improving recommendation effectiveness in
automated recommender systems by conducting a novel study
to characterize peer interactions.

III. METHODOLOGY

We designed a user study to identify what makes peer
interactions an effective mode of tool discovery.

TABLE I
STUDENT PARTICIPANTS

Participant Gender Major
S1 Male Industrial Engineering �
S2 Male Computer Science �
S3 Male Computer Science �
S4 Male Computer Science �
S5 Male Computer Science �
S6 Male Computer Science �
S7 Male Computer Science �
S8 Male Computer Science �
S9 Male Industrial Engineering �
S10 Female Computer Science �
S11 Female Biochemistry �
S12 Female Biochemistry ♦
S13 Female Computer Science �
S14 Male Computer Science �

� Graduate Student ♦ Undergraduate Student

TABLE II
LAS PARTICIPANTS

Participant Gender Position
L1 Female Researcher
L2 Female Researcher
L3 Male Program Manager
L4 Female Director of Operations
L5 Male Researcher, Analyst
L6 Male Computer Engineer
L7 Female Researcher
L8 Male Language Analyst
L9 Female Engineer
L10 Female Engineer
L11 Female Intel Analyst, Researcher
L12 Male Systems Researcher

Participant had previous relationship with partner
Participant previously completed computer-based work with partner

A. Participants

Our study was divided into two phases, each with a different
sample population and procedure. The participants in the
first phase of our study were seven pairs of students from
North Carolina State University. Demographic information for
subjects in Phase 1 can be found in Table I.

In the second phase, participants consisted of six pairs
of professional knowledge workers from the Laboratory for
Analytic Sciences (LAS) at NC State.1 LAS participants had a
variety of educational backgrounds and occupations. Table II
presents details for pairs in Phase 2, including their role at
LAS, if they had a personal relationship, and if they previously
performed computer-based work together (excluding emails).
In total we had 26 participants form 13 groups in our study.

B. Study Design

We used data from the Titanic shipwreck used in the Kaggle
machine learning data science competition to develop tasks for
our study.2 The data was provided to participants for the tasks
in two separate comma-separated values files, TRAIN.CSV and
TEST.CSV. Preliminary tasks had participants examine data in

1https://ncsu-las.org/
2https://www.kaggle.com/c/titanic



TRAIN.CSV, which contained Titanic passengers’ identification
number, whether or not they survived, seat class, name, sex,
age, number of siblings and spouses on board, number of
parents and children on board, ticket number, ticket fare, cabin,
and the port they embarked from. One example of a task we
asked participants to complete is to find a pattern between
passengers’ age, gender, and the number of siblings and
spouses accompanying them. The tasks and datasets used for
the study are available with our supplementary materials [42].
The last preliminary task asked participants to rank the factors
of survival. In the final task, the participants used TEST.CSV
which was similar to TRAIN.CSV but had a different set of
passengers and no information on survival. We asked pairs
to predict whether eight passengers survived based on their
findings from the preliminary tasks.

The first phase of the study required participants to complete
six preliminary tasks and the final task. For the second phase,
we removed two preliminary study tasks to give us more time
to debrief participants after the tasks were completed. The data
analysis tasks had the following characteristics:

• allow participants to use a variety of tools, with none of
them being the “right” tool;

• not require any specific domain knowledge to allow a
variety of software users to participate;

• allow participants to come to some solution quickly, but
be able to come up with better solutions using more
advanced tools, if they know them; and

• enable a simulation of a typical knowledge work situation
where pairs of software users work together at the same
computer [31].

So that we could observe any recommendations that might
occur, we required each pair to work together on the same
computer. One researcher moderated to answer questions about
the data and tasks. For each pair, we collected audio and screen
recordings while participants worked on the study tasks. We
provided participants with a laptop, an external mouse and
keyboard, paper, and writing utensils for taking notes.

Participants were allowed to choose any software for com-
pleting the tasks. However, we disallowed use of online
resources since solutions to the problem can be found online.
We did allow them to download software they needed at
the beginning of the session. Participants used a Windows
10 machine to complete the study with several data analysis
programs installed, including Microsoft Excel 2016 [7], JMP
Pro 12 [16], MySQL Workbench 6.3 [33], Python 2.7 [36],
PyCharm [35], R (command line and GUI) [37], and RStu-
dio [39]. Participants were allowed to request additional pro-
grams to use before the study if they were free and publicly
available. Periscope3 was the only software requested that we
were not able to provide because it is not free.

C. Debriefing

We debriefed participants after both phases of our study.
In the first phase, participants were emailed a survey that

3https://www.periscopedata.com/

asked about demographic information to gather participants’
major and classification. It also asked about recommendations
that occurred during the study. However, we found that par-
ticipants’ recollections were poor and their descriptions were
brief, or no responses were provided at all.

Consequently, for the second phase we switched to an
interview and questionnaire at the end of the session. The
interview was semi-structured and focused on one effective
and ineffective interaction. During each session, the researcher
who moderated took note of any possible occurrences of
peer interaction and selected two to discuss during the post-
interview. The questionnaire gathered information from partic-
ipants on previous years of experience with software used to
complete the tasks and relationship between pairs. To examine
the relationship, we asked partners to provide the number
of years they’ve known each other and the nature of their
relationship (Professional, Personal, Academic, or None), to
list software programs regularly used by the other participant
in the pair, and to describe past computer-based work they
completed together. We excluded “exchanging emails” as
computer-based work in our responses.

D. Data Analysis
We analyzed tool recommendations by coding the data we

collected. Two independent researchers reviewed and coded
screen recordings of each session to find and verify instances
of tool recommendations.

We coded screen recordings by:
• determining when a recommendation took place;
• determining if the recommendation was effective, and
• evaluating whether recommendations were polite, persua-

sive, under time pressure, or made about observable tools.
A list of the data we collected can be found with our study

materials [42]. In the remainder of this section, we describe
our coding criteria for each of these, which we arrived at
iteratively.

1) Recognizing Recommentations: We first explain
what we mean by tool recommendation. To identify tool
recommendations between peers, we created a model for
recommendations:

Task Analysis Task Execution Dialogue

Each node in this model represents a step the users take
in the process of tool recommendation. When explaining this
model, we use terms borrowed from pair programming to de-
scribe the roles for each user, referring to the person operating
the computer at the keyboard and mouse as the “driver” and
the person working with the driver as the “navigator” [6]. A
recommendation can come from either role within our model.
We next explain each step in detail.

In the task analysis step, users analyze the task and define
their strategy to accomplish the task. This step is based on
Kieras’ GOMS model [1], where both the driver and navigator
mentally divide the planned task into Goals, Operators, Meth-
ods, and Selection rules. Methods are a series of operators that



are used to accomplish specified goals, and selection rules are
applied when more than one method exists. Many applications
have multiple methods for users to complete a task and reach
a goal using different tools.

For example, two users working together and using the
same Excel software, independently plan different methods
for achieving the shared goal of calculating average grades
for a course. Adam, a novice user, plans the following op-
erators in his method: select an empty cell, navigate Excel’s
menus to choose the “AVERAGE” function, then enter A1,
A2, A3,. . . A15 as individual parameters in the Function Ar-
guments pop-up box. Meanwhile, Zach is an expert Excel user
and plans his operators as: select an empty cell, then type
“=AVERAGE(A1:A15)” in it.

In the task execution step, the driver executes their method,
leading to the navigator noticing a mismatch between his
method and the driver’s method. This occurs differently for
peer recommendation and peer observation. During peer rec-
ommendation, the navigator observes the driver completing
a task in an inefficient way. For instance, suppose Adam is
driving and Zach observes Adam navigating to the “Formulas”
menu to find the AVERAGE function. Zach knows that it is
more efficient to type the function in a cell directly. During
peer observation, the driver executes their method, which is
unfamiliar to the navigator. In our example, if we reverse the
roles, Adam observes Zach driving and typing text into a cell.
Adam notices that AVERAGE was calculated by Zach without
using the menu, a method he was previously unaware of.

The dialogue step consists of a discussion between peers
after observing the discrepancy between the driver’s and
navigator’s methods. While dialogue is optional in peer inter-
action [32], observing dialog was crucial to our study because
without it we cannot be sure that a recommendation took place.

During peer recommendation, the navigator observes the
driver and then proposes a new method [31]. In this case,
the driver discovers a new tool from the navigator. Adam and
Zach demonstrate this if Zach observes Adam using the Excel
menu, and Zach interrupts to say “Just type AVERAGE into
the cell.” For peer observation, the dialogue occurs when the
navigator inquires about the driver’s actions after observing an
unfamiliar method. For example, when Adam observes Zach
calculate the mean by typing a function a cell, he asks “What
did you just do?”. This leads to Zach explaining his method.

2) Determining Effectiveness: To determine whether a rec-
ommendation was effective, we identified tasks for which the
recommendee could use the tool after the recommendation. We
identified such tasks as those that recommendees performed
where the tool could be used to efficiently complete the task.
We used the following criteria for categorizing effectiveness:

• Effective: Recommendee uses the tool after the recom-
mendation.

• Unknown: There were no opportunities to use the tool
later in the study after it was recommended.

• Ineffective: Recommendee ignores the recommended
tool after the recommendation.

3) Determining Characteristics: We analyzed the Dialogue
between participants to determine if the way a recommenda-
tion is made plays a role in its effectiveness. Based on prior
work, we selected five characteristics of the recommendation:
politeness, persuasiveness, receptiveness, time pressure, and
tool observability. We measured the first three characteristics
using a valence scale:
+1 Participant obeyed a specific characteristic

0 Participant neither obeyed nor violated a specific charac-
teristic

–1 Participant violated a specific characteristic
This scale was used to categorize recommendations by polite-
ness (polite, neutral, impolite), persuasiveness (persuasive, un-
persuasive), and receptiveness (receptive, neutral, unreceptive).
Persuasiveness did not include a neutral category because,
as we will show shortly, omitting any of its criteria was a
violation of the definition. We measured time pressure and
tool observability using a binary (time pressure or no time
pressure, observable or non-observable) scale.

We present these characteristics in the following paragraphs.
Each characteristic explanation consists of a table containing
the definition, as well as positive and negative examples of
each criteria. The quotes in the examples use participant
identifiers from our study, where L is the prefix indicating
professional participants and the S prefix represents a student.
The criteria list for each characteristic we used can be found
here [42].

a) Politeness: We hypothesize that recommendation po-
liteness improves tool adoption. Previous research supports
this hypothesis; Whitworth suggests that the reason Microsoft
Clippy made recommendations unsuccessfully was because it
was impolite [46]. When studying user-to-user recommenda-
tions, Murphy-Hill and colleaugues found that respect and trust
were important for the effectiveness of peer interactions [31].
To measure politeness, as shown in Table III, we use Leech’s
six maxims for politeness: Tact, Generosity, Approbation,
Modesty, Agreement, and Sympathy [22].

b) Persuasiveness: We hypothesize that persuasive rec-
ommendations are more effective than unpersuasive ones.
This hypothesis is supported by Fogg’s argument that per-
suasiveness is important in convincing users to adopt desired
behavior through software [9]. The criteria for persuasiveness
recommendations are presented in Table IV. We use the three
features of persuasive messages described by Shen and Bigsby:
Content, Structure, and Style [40].

c) Receptiveness: We hypothesize that receptiveness of
the recommendee improves the success of tool discovery.
Prior work suggests receptivity is important; the second step
of Fogg’s best practices for designing persuasive technology
is to “Choose a receptive audience” [9]. Fogg provides two
considerations for what makes a receptive audience: demon-
strating a desire to adopt the target behavior and familiarity
with the technology [9]. We used “Demonstrate Desire” and
“Familiarity” to categorize recommendations, and define these
criteria in Table V.



TABLE III
DEFINITION OF POLITENESS CRITERIA AND EXAMPLES FROM THE USER STUDY

Politeness Criteria

Tact
Definition Minimize cost and maximize benefit to peer
Polite “We can do all of it together, just sort by level.” - S9
Impolite “We can do a histogram...which is always sort of a pain in the butt to do in Excel.” - L14

Generosity
Definition Minimize benefit and maximize cost to self
Polite “CONCATENATE you can do. I can do this for you, very easily.” - S10
Impolite “Maybe you should write a python script for this.” - L6

Approbation
Definition Minimize dispraise and maximize praise of peer
Polite “I’m not as good at the Excel stuff as you are.” - L5
Impolite “This[partner’s suggestion] is useless.” - S14

Modesty
Definition Minimize praise and maximize dispraise of self
Polite “From whatever limited knowledge of data analysis I have, I think you need to create a linear regression

model...” - S14
Impolite “I’m very good at Paint.” - S10

Agreement
Definition Minimize disagreement and maximize agreement between peers
Polite “Do you want to use Python?” - S8
Impolite “No, no, no...Don’t you want it comma separated? That’s what I’m doing.” - S14

Sympathy
Definition Minimize antipathy and maximize sympathy between peers
Polite “We can try JMP...” [“I haven’t done anything in JMP.”] “Neither have I!” - L14
Impolite “It doesn’t matter how you do it.” - L16

TABLE IV
DEFINITION OF PERSUASIVENESS CRITERIA AND EXAMPLES FROM THE USER STUDY

Persuasiveness Criteria

Content
Definition Recommender provides credible sources to verify use of the tool
Persuasive “Go here, go to Data. Highlight that...Data, Sort, and it lets you pick two.” - L8
Unpersuasive “Let’s try to text filter, right?” - S5

Structure
Definition Messages are organized by climax-anticlimax order of arguments and conclusion explicitness
Persuasive “I know that SUMIF is a type of function that allows you to combine the capabilities of SUM over a

range with a condition that needs to be met.” - S3
Unpersuasive “There’s a thing on Excel where you can do that, where you can say if it is this value, include, if it is

not, exclude...Yeah, IF.” - S11

Style
Definition Messages should avoid hedging, hesitating, questioning intonations, and powerless language
Persuasive “Control-Shift-End” - S1
Unpersuasive “I guess we’re going to have to use some math calculations here, or a pivot table.” - L9

TABLE V
DEFINITION OF RECEPTIVENESS CRITERIA AND EXAMPLES FROM THE USER STUDY

Receptiveness Criteria

Demonstrate Desire
Definition User showed interest in discovering, using, or learning more information about the

suggested tool
Receptive “That was cool, how [the column] just populated.” - S4
Unreceptive [“So you want to use R for it?”] “No, no, no...” - S14

Familiarity
Definition User explicitly expresses familiarity with the environment
Receptive “Control shift...how do I select it completely?” - S2
Unreceptive “I’ve never done anything in JMP.” - L10

d) Time Pressure: Based on prior work, we hypothesize
time pressure will negatively impact the effectiveness of
recommendations. Andrews and Smith assert time constraints
affect decision-making in marketing by stifling creativity,
reducing exploratory thinking, and forcing a dependence on
familiar approaches [2]. Additionally, Murphy-Hill and col-
league’s peer interaction study identified time pressure as
a barrier to peer interactions through external factors such
as project deadlines [31]. In our study we did not strictly
enforce time limits for completing tasks, but recommended
each pair spend approximately 7–8 minutes on each one.
We measured time pressure using statements mentioning time

from participants or the researcher who moderated before or
during a recommendation. If we determined a statement was
made regarding time, then we categorized the recommendation
as being under time pressure. For example, during one study
L13 was driving and noted “I think we have like, four minutes
left”, ignoring L14’s recommendation to use the IF function in
Excel. Time pressure caused the driver to continue using her
own methods and limited exploratory thinking for completing
the task.

e) Tool Observability: We hypothesize that recommen-
dations of observable tools, tools that the recommendee can
easily perceive during use, are more effective than imper-



ceptible ones. This hypothesis follows from Murphy-Hill and
colleagues’ suggestion that recommendation systems should
have noticeable causes and effects [31]. We examined this
by analyzing the tools recommended between participants in
our study, categorizing them into two different types of tools:
observable and non-observable.

Observable refers to tools that are visible through a user
interface. Examples of observable tools recommended by
participants during our study include complete applications
such as PyCharm and R, in addition to features such as Sort,
Recommended Charts, Text to Columns, and pivot tables in
Excel. Non-observable tools are features that do not have
a user interface, such as keyboard shortcuts. Examples we
observed include Control-Space in PyCharm for code com-
pletion, dragging the corner of a cell to automatically copy a
formula in Excel, Control-V to paste, and Control-S to save.

4) Resolving Coding Disagreements: Occasionally, the two
researchers disagreed about the codes they applied. We cal-
culated our interrater agreement for politeness (κ = 0.50),
persuasiveness (κ = 0.28), and receptiveness (κ = 0.51)
using Cohen’s Kappa. According to Landis’ measurement of
observer agreement, which has been used by other studies in
this field, our agreement for politeness and persuasiveness had
a moderate strength of agreement while persuasiveness had a
fair strength of agreement [19]. To resolve disagreements, the
two researchers watched the video of the instance in question
together, explained the reasoning behind their individual rat-
ing, debated the reasoning behind their decision, and came to
an agreement after the discussion.

IV. RESULTS

We observed 142 recommendations in our study. We cate-
gorized 71 as effective, 35 as ineffective, and 36 as unknown.
Each pair averaged approximately 11 recommendations with
a maximum of 26 and minimum of 3. The first phase of the
study contributed 99 recommendations with 48 effective, 22
ineffective, and 29 unknown between students. The second
phase added 43 recommendations, consisting of 23 effective,
13 ineffective, and 7 unknown between data analysts. For
statistical analysis, we used Wilcoxon rank sum test to evaluate
ordinal data and Pearson’s chi-squared test for categorical data.
All tests were calculated with an alpha level of α = .05 and
odds ratios (OR) were used to measure effect size.

A. Characteristics

We categorized each recommendation based on politeness,
persuasiveness, receptiveness, time pressure, and tool observ-
ability. Figure 1 presents the classifications of peer interactions
for each of the characteristics we observed. Table VI displays
the rate of effectiveness for the peer interaction characteristics.

1) Politeness: We found that polite recommendations were
not significantly more likely to be adopted than impolite
recommendations (Wilcoxon, p = 0.4936), but polite inter-
actions did have higher odds of effectiveness (OR = 0.6786).
Fischer claims that systems should make recommendations
like a trusted peer [8]. Recommender systems are more like a
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Fig. 1. Breakdown of 142 recommendations for each characteristic

stranger than a peer and while politeness may not be necessary
in interactions between peers, it may be more important for
system-to-user recommendations [46]. In fact, we categorized
most interactions as neutral because many participants sug-
gested tools without explicitly obeying our politeness criteria.

2) Persuasiveness: We actually found that unpersuasive
recommendations were 1.5 times as likely to be adopted
(OR = 1.4722), though this difference was not statistically
significant (Wilcoxon, p = 0.4556, OR = 1.4722). This
stands in contrast to Fogg’s argument that persuasiveness is
important to convince users to adopt a desired behavior [9].
Participants in our study were rarely persuasive during interac-
tions according to our criteria; there were only 14 persuasive
recommendations in total.

3) Receptiveness: We found that receptive recommenda-
tions were significantly more effective than unreceptive ones
(Wilcoxon, p = 0.0002, OR = 0.2840). Receptive interactions
had the highest rate of effectiveness out of all the characteris-
tics we studied, with approximately 61% of recommendations
classified as receptive also categorized as effective. Our results
confirm Fogg’s suggestion that a recommender systems should
choose a receptive audience [9].

4) Time Pressure: Recommendations without time pressure
were more than twice as likely to be effective (OR = 2.2857),
however time pressure did not play a significant role in
effectiveness (Pearson, p = 0.1470). The high odds of ef-
fectiveness for recommendations without time pressure align
with Murphy-Hill’s claim that time constraints hinder peer
interaction [31]. We categorized seven interactions as being
under time pressure.

5) Tool Observability: We found that observable tools were
recommended no more effectively than non-observable tools
(Pearson, p = 0.4928), but recommendations consisting of
non-observable tools were twice as effective compared to those
referring to observable ones (OR = 2.4060). This finding
contrasts with Murphy-Hill and colleagues’ suggestion that
effective recommender systems should make tools’ causes and
effects visible [32]. Observable features were more recom-
mended in our study, with 115 recommendations compared to
only 27 for non-observable tools.



TABLE VI
RATE OF EFFECTIVENESS FOR RESULTS

Effective Ineffective Unknown
n % n % n %

Politeness
Polite 14 52% 5 19% 8 30%
Neutral 52 50% 27 26% 25 24%
Impolite 5 45% 3 27% 3 27%
Persuasiveness
Persuasive 5 36% 4 29% 5 36%
Unpersuasive 66 52% 31 24% 31 24%
Receptiveness*
Receptive 39 61% 9 14% 16 25%
Neutral 27 48% 14 25% 15 27%
Unreceptive 5 23% 12 55% 5 23%
Time Pressure
Yes 7 37% 7 37% 5 26%
No 64 52% 28 23% 31 25%
Tool Observability
Observable 57 50% 30 26% 28 24%
Non-Observable 14 52% 5 19% 8 30%
Recommendation Type
Peer Observation 16 30% 5 9% 32 60%
Peer Recommendation 55 62% 30 34% 4 5%

B. Other Findings

Beyond the five characteristics we studied as part of our
research question, several other interesting findings emerged.

First, we found that peer recommendations (n = 89)
occurred more often than peer observations (n = 53). Al-
though peer recommendations had higher odds of effective-
ness, the difference was not statistically significant (Pearson,
p = 0.3163, OR = 0.5729).

Second, while most subjects responded to questioning about
effectiveness by alluding to characteristics we studied, they
rarely used them when making recommendations. When we
asked participants why they suggested a certain tool, 69% used
“I” statements noting their own knowledge and experience. S7
embodies this attitude by stating he suggested using Find in
Excel because “This was a better way to solve the problem
at hand and I have used it in similar situations”. When
asked about the phrasing of recommendations, 74% mentioned
using language that was shorter and easier for themselves. S2
demonstrates this by noting he made his recommendation to
use Control-Shift-End in Excel in the “simplest way I could
phrase it”. This suggests that most of the time recommenders
were not implementing characteristics such as politeness and
persuasiveness when offering suggestions to their partner.

Third, some partners had previous interactions before par-
ticipating in our study. We examined this to see if it impacted
effectiveness. In Phase 2, four pairs noted having a personal
relationship with their partner while two had previously done
computer-based work together. We found that relationship
(Pearson, p = 0.0781, OR = 0.2400) and prior collaboration
(Pearson, p = 0.828, OR = 0.3214) had higher odds of
effectiveness but did not significantly impact our results.

V. DISCUSSION

This section presents our observations, implications for
recommender systems, threats to the validity, and future work.

A. Observations

Our results were unable to show politeness, persuasiveness,
time pressure, and tool observability significantly impacted
tool recommendations. Furthermore, contrary to our original
hypotheses, we found that unpersuasive recommendations and
non-observable tools had higher odds of effectiveness. Alter-
nate theories may explain these findings.

The ad hoc nature of interactions in our study could have
limited persuasiveness between peers. Restricting internet use
also played a role, with participants often unsure about tool
usage and wanting to look up information online. Many
subjects violated the persuasiveness criteria by questioning
their recommendation and using weak language. The criteria
expected detailed recommendations, but participants were of-
ten brief and concise. This complies with previous research by
Wood and colleagues who found that the length of messages
has little impact on persuasiveness [47].

We expected observable tools to be more effectively rec-
ommended than non-observable features, but this was not the
case in our results. Keyboard shortcuts are non-observable,
and previous research points out they are more efficient
than observable tools such as menus [20] and are also more
beneficial for cognitive learning and recall [3].

We also distinguished peer observations and recommen-
dations from “expected recommendations”. Expected peer
interactions are instances of tool learning that occur when the
driver actively seeks help by asking for a recommendation,
expecting to discover a new tool to complete the task. These



help-seeking recommendations rarely occurred in our study,
as we only found 9 occurrences compared to 142 instances of
proactive help-giving suggestions between peers. This moti-
vates the need for active recommender systems because users
rarely seek help from new tools in their work and automatic
recommendations can increase tool discovery and adoption.

B. Implications

Our results indicate receptiveness significantly impacts the
outcome of peer interactions. Receptiveness is difficult to
implement since it depends on how recommendees respond
to suggestions, which recommenders cannot control. Our re-
ceptiveness criteria concern users’ desire and familiarity, and
incorporating these into automated recommendation systems
can help improve the tool discovery problem.

a) Demonstrate Desire: We captured demonstrating de-
sire by looking for instances where recommendees explicitly
expressed eagerness to use a recommended tool. During a
study, L11 was driving when L12 suggested using multi-level
sort in Excel. L11 was unfamiliar with that functionality, but
demonstrated a desire by responding “Oh! Add level! Yes,
awesome!”. The recommendation was then adopted for the
remaining tasks after L11 expressed interest in using the tool.

Our results suggest recommending desireable tools can
increase tool adoption. History-based recommendations sys-
tems suggest software features using past actions to measure
desire [30]. Futhermore, Fischer notes systems should not
respond to behavior but actively make suggestions while users
are working [8], and predicting desire with goal-recognition
techniques such as the Lumière Project can anticipate user
goals and needs to effectively recommend useful tools [14].
How recommendations are made can also impact desire, and
previous research in diffusion of innovations shows message
communication can influence distribution and reception [38].

b) Foster Familiarity: Previous research suggests users
are more likely to adopt target behaviors they are familiar with
it [9]. For example, during an interaction S10 recommended
creating a plot in R and persuasively added it takes about two
lines of code. However S9 responds saying “I don’t know R”,
and her unfamiliarity led to an ineffective recommendation
where a potentially helpful tool was ignored.

According to our results, recommending familiar tools can
increase effectiveness. One challenge with this is fostering
familiarity while proposing new and unfamiliar tools. History-
based systems can incorporate familiarity by making sugges-
tions similar to functionality users already use. For example,
users who often utilize GUI features are more likely to
adopt observable tools than keyboard shortcuts. Murphy-Hill
and colleagues have also explored integrating familiarity in
systems by using collaborative filtering to rank tools based on
similarity to commands used by colleagues [30].

VI. THREATS TO VALIDITY

One internal threat to validity is the Hawthorne Effect,
where participants modify behavior due to knowing they are
being studied [26]. To minimize observer expectancy and

altering behavior, we did not inform subjects of our objective
until debriefing. Additionally, the data was contained in two
comma-separated values files but Microsoft Excel was the
default program to open .csv files. Most pairs used Excel to
complete the tasks, however we allowed groups to choose any
software for the study. Likewise, participants had to request
software without specific knowledge of the tasks. This may
have limited informed decisions about programs, such as
one participant (L13) noting during a study she should have
requested Tableau. 4 Still, we specified beforehand the study
required data analysis software. Another internal threat is that
our valence scoring system treated compliances and violations
of criteria equally, but this is not accurate in real-world
situations. For instance, polite statements do not necessarily
cancel out impolite remarks.

A threat to external validity is that we only observed
politeness, persuasiveness, receptiveness, time pressure, and
types of tools. Other traits may influence effectiveness, but
prior research suggests these impact peer interactions. We also
measured short-term recommendation effectiveness and not
long-term adoption. Futhermore, we categorized recommen-
dations from explicit statements and did not account for im-
plicit behavior. We minimized these by defining effectiveness,
criteria, and scoring systems based on observable behavior.
Another threat is that the 13 pairs we studied may not represent
all computer users. Finally, different cultures have varying
definitions for characteristics. For example, Huang compared
Leech’s maxims used in our study with Chinese concepts of
politeness [15].

VII. FUTURE WORK

Future research includes examining additional characteris-
tics that may impact the effectiveness of user-to-user rec-
ommendations such as experience, length, task difficulty, or
disruption from work. Studies could also examine how our
results translate to long-term tool adoption. Future work can
improve generalizability by studying additional populations
and tool domains, for example software engineers completing
refactoring tasks. Further research could also see how our
findings apply to co-located teams or larger groups. Finally,
future work will involve developing and evaluating automated
recommendation systems that incorporate user receptivity.

VIII. CONCLUSION

This research examines what makes peer interactions effec-
tive as a means to make automated recommender systems more
effective. Our results suggest that the receptiveness of recom-
mendees has a significant impact on the effectiveness of peer
interactions. This suggests that automated recommendation
systems should clearly recommend tools early in users’ actions
based on their desire and knowledge in order to increase tool
discoverability and adoption in software.

4http://www.tableau.com/trial/data-analysis-software
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