Analyzing the Impact of Patches in Computer Science
Education

Chris Brown
North Carolina State University

dcbrow10@ncsu.edu

ABSTRACT

Programming assignments assigned in introductory
computer science courses play a major role in de-
clining retention rates in the field despite increased
class sizes. Not every student can finish the assign-
ments successfully, and those who struggle gradually
lose interest without effective feedback and guid-
ance. Lack of interest in computer science will hurt
our society as our culture becomes more technology-
dependent. This project examines using code patches
for defects to solve prevalent problems in computer
science education by providing valuable feedback and
grading assignments in introductory programming
classes.

Keywords

automated program repair, computer science education, as-
signment feedback, automated grading

1. INTRODUCTION

Debugging is a very time-consuming [17] and expensive [2]
software development activity. Defects in code costs the
economy billions of dollars each year and a large amount of
developer time is consumed by manually finding and fixing
bugs. Debugging and creating understandable and main-
tainable patches for defects is important for developing and
sustaining usable software.

There has been increased research in automated program
repair to help solve this problems for software engineers
Researchers have developed various automated program re-
pair tools and techniques have been introduced to provide
efficient solutions to manual debugging and help reduce the
cost and time of finding, fixing, and validating bugs in code
by automating this process.

Automated program repair is an emerging research area in
computer science, however there is limited research explor-

! http://automated-program-repair.org

ACM ISBN 978-1-4503-2138-9.
DOI:/10.1145/1235

ing applications of code patches and automated program
repair outside of the software engineering industry. The
systems developed for automated program repair can poten-
tially be used to help solve more problems in the field. This
project aims to analyze the impact of automated program
repair and generated patches in other areas of computer sci-
ence, specifically focusing on improving CS education.

The ACM notes there is a “crisis” in computer science ed-
ucation, and predicted that a third of the technology jobs
needed in 2018 will not be able to be filled as our soci-
ety becomes more dependent on technology [19]. Computer
science education needs improvements in order to produce
more higher quality software engineers that have the knowl-
edge and ability to develop, debug, and support software
that impacts our daily lives. Automation has been shown
to be effective in computer science classes [18|, but this re-
search is novel in that it applies automated program repair
techniques to computer science education by analyzing the
effect of information collected from patches on grading in-
troductory programming assignments.

This research analyzes the impact automated program re-
pair can have on computer science education by making the
following contributions:

e Describing how automated program repair and bug
patches can improve current issues in computer sci-
ence education.

e Introducing a new algorithm for grading student as-

signments that incorporates information from bug patches.

e Evaluating the grading scheme on patches generated
from introductory programming assignments.

The rest of this paper is organized as follows: Section 2
discusses the problem, Section 3 describes previous research
related to automated program repair and computer science
education, Section 4 introduces the proposed grading algo-
rithm, Section 5 outlines the details of the experiment for
evaluating the algorithm, Section 6 presents the results, Sec-
tion 7 discusses the implications, implications, and future
work concerning this research, and Section 8 concludes.

2. MOTIVATION

Computer Science education is facing two significant prob-
lems that contribute to the crisis and will impact the future
of the field. The first is that enrollment in computer science
classes is increasing drastically. Many introductory college
programming courses accommodate hundreds of students.
The students come from a wide variety of backgrounds and
have different levels of previous programming experience.

10.1145/1235

The increase of class sizes make grading and assisting stu-
dents even more challenging and increase the amount of pres-
sure on the teaching staff. Large classes require more effec-
tive course management strategies |4] to avoid problems such
as grading inconsistency and unproductive feedback. This
increases the workload for professors and teaching assistants
as they try to provide resources along with preparing and
grading assignments.

Although enrollment in computer science classes is grow-
ing, studies have shown that the dropout rate also is increas-
ing. The Computer Science major has a low retention rate
among college students at 30-40% [1]. One main reason the
field has a low retention rate is related to the programming
projects assigned in introductory courses. Kay writes that
specifications for programming assignments are “notoriously
difficult” for novice programmers and course projects can be
“voluminous and require painstaking evaluation” [4]. Not
every student can understand and finish the assignments
successfully, and those who struggle gradually lose interest
without effective feedback and guidance.

This project aims to use information gathered from patches
to improve both of these issues in computer science educa-
tion. Grading with patches can save time and effort for
teachers by efficiently analyzing and grading a large number
of assignments. It can also help keep students interesting
in computer science providing personalized evaluations and
fairer grades to each student. The proposed patch grading
formula uses data from patches to grade projects and the
new algorithm is introduced in Section 4.

3. RELATED WORK

This project builds on previous research in patch genera-
tion and automation in computer science education.

3.1 Patch Generation

There have been many advances in research for auto-
mated program repair in software engineering. Previous re-
search has introduced various tools for automated program
repair including PAR [6], Prophet [9], Angelix [11], Sem-
Fix [12], TrpAutoRepair [13], SearchRepair [5], GenProg |7],
and more. These tools utilize various techniques to automat-
ically create patches for defects in source code.

Researchers have uncovered many benefits of patches gen-
erated from automated program repair in the software engi-
neering industry. Zhong et al. performed an empirical study
on bug fixes using BUGSTAT to compare automatically gen-
erated patches compared to manual fixes by developers [20].
Le Goues and colleagues used GenProg on real-world C ap-
plications to reduce the cost of repairing 55 out of 105 defects
to approximately $8 each [7]. My project specifically focuses
on the impact patches can have on improving computer sci-
ence education.

Previous research studying patches have used student as-
signments for evaluation. Smith utilized the IntroClass bench-
mark to evaluate GenProg and TrpAutoRepair to study
overfitting patches to test cases [15]. D’Antoni and col-
leagues evaluated Qlose on student submissions from an in-
troductory programming course, but focused on observing
syntactic and semantic distances between source code and
tests in program repair [10]. These projects use introductory
programming assignments to analyze the quality of gener-
ated patches while my research will evaluate the impact of
patches from student assignments on improving computer

science education.

3.2 Computer Science Education

Researchers have also examined various ways to improve
assignments and feedback in computer science education.
Wilcox analyzed the importance of automation in under-
graduate computer science courses as enrollment increases [18].
He concluded that automated tools for grading, peer instruc-
tion, and tutorials can help improve student learning and
help teaching staffs. My project aims to improve automatic
grading by integrating data from patches to evaluate assign-
ment submissions using additional grading criteria.

Kaleeswaran and colleagues created a new method semi-
supervised verified feedback generation to automatically pro-
vide feedback for dynamic programming assignments |[3].
Their tool CoderAssist divides student submissions into clus-
ters based on solution strategies, requires the instructor to
provide a solution to each cluster, and then compares the
programs in each cluster to the given solution to provide
personalized feedback for each student. This project focuses
on using information gathered from patches to provide per-
sonalized evaluations to each student’s assignment.

Singh et al. created an approach to automatically gen-
erate feedback for programming assignments using synthe-
sis |14]. They evaluated their technique in an introductory
Python programming class taught as a massive open on-
line course (MOOC) at MIT and were able to provide au-
tomated feedback and solutions to thousands of students.
This project aims to improve computer science education
by automatically grading submissions based on bug patches
in addition to focusing on student feedback.

4. PATCH GRADING ALGORITHM

This project introduces a new grading scheme to calcu-
late more appropriate grades for assignment submissions
based on fixes for errors. Programming assignments have
mostly been graded by manually running student submis-
sions against a test suite provided by the instructor for grad-
ing. The grade is normally determined using a basic formula
that divides the number of passing tests by the total number
of test cases:

?:1 g(t’i)
n

Grade =

gn(t) = {(1)

This research proposes a new method for grading that im-
proves on traditional methods by utilizing information from
patches to evaluate assignments. The patch grading scheme
uses a weighted average to calculate a grade based on two
components, edit distance and class performance:

if pass,
if fail and no fix

1 if pass,
(05) * (1 _ edit)+ (05) * defects

max(lenl, len2) students

where n represents the total number of tests, t; is the ith
test case, defects is the number of submissions that failed
the same test case, students is the total number of students,

if fail and fix,
0 if fail and no fix

edit is the Levenshtein distanceE| between the code with and
without the patch, and lenl and len2 are the length of the
program before and after the patch is applied. The edit
distance is calculated using the percent match between the
buggy code and the patched version. Class performance in-
corporates the percentage of students in the class who had
the same failing test case in their submission, which can
represent confusion in the project requirements or imple-
mentation.

The advantages of the new method are that students will
be evaluated based on how close they were to the correct
implementation and how the rest of the class performed on
the same assignment. Patch grading prevents all submis-
sions from being penalized the same amount for failing test
cases. For example, two students can submit code that fail
the same test cases, but in one case the student may have
only made a typo in their submission while the other stu-
dent did not implement the functionality in their program.
If the grader uses g1, to evaluate the assignments, then both
students will receive the same grade. However, if g, is used
for grading then the first student will receive credit for try-
ing and putting effort into the the code submitted instead
of treating both versions equally.

The above formulas were implemented as Python scriptsEL
which were then evaluated and run on student submissions
to assignments from an introductory C programming class.
The study was designed to analyze the following research
questions:

RQ1 How often do grades calculated from patches differ
from basic grading?

RQ2 How do human patches differ from automatically gen-
erated patches when calculating grades?

The first research question aims to determine if using in-
formation from patches can improve grades evaluated only
using the number of passing and failing tests. The second
question investigates how automatically generated patches
compare to developer patches in the context of grading as-
signments.

S. METHODOLOGY

This section describes the evaluation benchmark, auto-
mated program repair tool, and experimental details used
to complete this research study.

5.1 IntroClass

The patch grading algorithm was evaluated using the In-
troClassﬁ program repair benchmark [8]. IntroClass is a col-
lection of student programs from an introductory C pro-
gramming class at UC Davis. The benchmark data con-
sists of 1,143 submissions from 259 students for six different
projects. It also provides black and white box test cases
for evaluating correctness. This study uses both sets of test
cases for grading in increase the amount of patches available
to use in the study.

https://rosettacode.org/wiki/Levenshtein_distance

3https://github.ncsu.edu/dcbrow10/auto-
grader/tree/CSC791

“https://github.com/ProgramRepair /IntroClass

5.2 SearchRepair

SearchRepair |5] is an automated program repair tool that
implements semantic code search |16]. This technique uses
the input-output behavior of a program to index code in
a database and search for fragments with the desired func-
tionality. After finding match among potential candidate
programs using symbolic execution, the tool synthesizes the
results and applies the fix to produce a correct version of the
code as output. Compared to other automated program re-
pair techniques, semantic code search creates higher quality
patches that generalize to the expected program behavior
and avoid deleting or modifying behavior by overfitting to
the test cases.

5.3 Study Design

The experiment was designed to analyze the impact of
using information from patches in grading programming as-
signments. The base and patch grading formulas from Sec-
tion 4 were implemented and run on projects in the Intro-
Class benchmark to automatically grade assignments using
only the test cases, data from SearchRepair patches, and
data from student patches. IntroClass contains multiple stu-
dent submissions for each project, which were used to simu-
late human patches in this experiment. Projects with code
that did not compile were discarded in the study, leaving
933 total assignments used in the evaluation.

6. RESULTS
6.1 Base Grading vs. Patch Grading

RQ1 aims to compare grades calculated with and without
patches. Table[T]displays the average grades from the results
of evaluating IntroClass projects using the basic grading for-
mula g, and the new patch grading formula g, presented in
Section 4. Patch grading with g, was calculated using an
average of patches generated from the SearchRepair auto-
mated program repair tool and patches written by students.
Each project saw an increase in the average grade students
earned when patches were used for grading, however the dif-
ference was not statistically significant. The statistical anal-
ysis was completed using a oneway analysis of variance t-test
to compare the grade values with and without a patch (p =
0.3321). Still, there is a noticeable difference when using
data from patches to grade assignments and project grades
for students increased by an average of approximately 4.47
points per submission when using patches for the evaluation.

6.2 Automated Patches vs. Human Patches

RQ2 focused on comparing automatically generated patches
to patches written by humans. Table 2khows the num-
ber of student patches greatly outweighed the number of
patches generated by SearchRepair. The study compared
930 human-written patches to 341 automatically generated
patches. This is expected since student pushes to their
repository were used to generate human patches and au-
tomated program repair tools are not able to find and fix
defects at the same rate as human developers.

Table [3] provides an outline of how automated patches
and human patches both compare to no patch. There was
no difference between the average grades calculated using
no patches and the SearchRepair patches for the first two
projects because the tool did not produce any patches for
digits and only generated one patch for checksum, which did

Project | No Patch | Patch
checksum 74.89 78.40
digits 86.70 88.07
grade 72.22 77.08
median 80.75 85.30
smallest 64.13 74.00
syllables 68.15 70.51
Overall 74.47 78.89

Table 1: Average grades calculated with and with-
out patches

Project | Automated | Human
checksum 1 57
digits 0 164
grade 118 232
median 95 197
smallest 108 143
syllables 19 137
Overall 341 79.04

Table 2: Number of patches for each patch genera-
tion type

not make an impact in the overall average grade. However,
as the number of automatically generated patches increased
number automated patches the patch grading algorithm im-
proved grades at a higher rates than the human patches.
The average difference between grades using the two dif-
ferent types of patches was 1.76 points in favor of human-
written patches. Again, using the oneway analysis of vari-
ance t-test the results show that there is not statistically sig-
nificant difference between using human or machine gener-
ated patches when grading student assignments (p = 0.9435).

7. DISCUSSION

This section discusses implications of the results, limita-
tions of this research, and future work.

7.1 Impact

Using patches to grade assignments can be beneficial for
students and instructors in introductory programming classes.
Patch grading can impact the problems of increasing class
sizes and drop out rates among universities to improve com-
puter science education.

7.1.1 Enrollment

Implementing patch grading can benefit instructors by

Project | No Patch | Automated | Human
checksum 74.89 74.89 81.90
digits 86.70 86.70 89.44
grade 72.22 77.92 76.24
median 80.75 86.13 84.47
smallest 64.13 76.43 71.57
syllables 68.15 70.40 70.61
Overall 74.47 78.75 79.04

Table 3: Average grades calculated with no patch,
patches from SearchRepair, and student patches

Grade | No Patch | Automated | Human
A 323 422 385
B 190 211 197
C 71 63 76
D 82 53 58
F 267 184 217

Table 4: Distribution of letter grades generated with
no patch, automated patches, and human patches

providing a scalable solution to automatically evaluating
student assignments as enrollment in introductory program-
ming courses rises. The mean time to calculate the grades
using information from patches in our experiment was ap-
proximately 14 minutes (846 s) for each IntroClass project
ranging from approximately 2.5 minutes (checksum) to 30
minutes (grade). Although the average time for grading
without using patches was shorter around 8 minutes (476.5),
utilizing patch grading is much more efficient than manually
inspecting programs to analyze additional evaluation criteria
such as edit distance and class performance for each student
submission, and provides better results.

7.1.2 Retention

Patch grading can also help increase the retention rate
in computer science by improving student grades on assign-
ments. Frustrations with grades and feedback on assign-
ments can discourage beginning programmers from continu-
ing in CS, and patch grading significantly improved the eval-
uations of student projects compared to not using patches.
Table E| shows the distribution of letter grades from the ex-
periment. Patch grading calculated at least the same grade
for both types of patches, and when patches were available
then less students failed and they performed better over-
all in general. The impact of patch grading for class sizes
can also benefit students in increase retention by providing
more time for the teaching staff to be available to work with
students and help with questions.

7.2 Limitations

There are several threats to the validity of this evaluation
and disadvantages of the proposed patch grading formula.
Project submissions were used as human-written patches in
the experiment, but student pushes to their project repos-
itory are not always representative of a patch to fix a bug.
The grades calculated may also be skewed lower because of
early submissions from students while they work on their im-
plementation that will fail more test cases and account for
the high number of F’s observed. Failing test cases were used
to determine students with the same error, but it’s possible
student submissions can fail the same test cases but have
different problems in the code. A disadvantage of using
IntroClass is that some submissions are non-deterministic
and are able to produce different results when they are run,
which could change the grading because test results can
vary. Patches from SearchRepair were used to represent au-
tomated program repair tools, but different program repair
tools and techniques use different methods to find bugs and
generate patches.

Disadvantages of the patch grading algorithm include de-
pendencies on code size and an inability to generalize to
other patch generation tools. The percent match and Leven-

shtein distance utilize the number of characters in the code,
which could penalize student submissions with more lines of
code and longer variable or method names. The formula also
requires the generated patches to be applied to the source
code, but not all automated program repair tools present
patches in the same way, such as Angelix |11] which gener-
ates .patch files that show changes similar in a format only
displaying the difference of what lines should be changed by
adding and removing from the original code.

7.3 Future Work

Future work includes improving the patch grading formula
and implementing it into an automated program repair tool.
The edit distance in the proposed algorithm can be improved
by using tokens instead of the text to calculate the edit dis-
tance, which would prevent code size from factoring into the
grades. Class performance will be improved by making ad-
vancements to the search for similar defects. Rather than
just using failing test cases, patch grading can be used to
identify submissions that have similar errors in the code.
This information would be used to provide better feedback
to instructors on what programming concepts and class ma-
terials students are having trouble understanding and may
not have been clear in the lecture.

Future research also involves improving patch grading to
include more evaluation criteria that instructors may expect
from students in their classes, such as documentation and
comments, student-written unit tests, code style, design, etc.
Efforts can also be made to the implementation used in this
study to improve the performance and efficiency, make the
tool more usable, and modifying the script to allow it to
generalize to different projects and folder structures other
than IntroClass.

Another research area to develop for patch grading is how
to determine the actual knowledge of a student, such as dif-
ferentiating between a typo and confusion on a programming
concept, and what information students should receive in
their customized feedback to help them increase their pro-
gramming knowledge and become better and software engi-
neers. Assignment grading and feedback to students should
contain information that will be useful to them not only for
the class but also for their future careers as developers.

The patch grading formula will also be implemented into
an automated program repair tool that will be able to au-
tomatically repair, grade, and provide feedback on assign-
ments to improve the experience for students and teachers
in introductory programming courses. Teachers will receive
feedback on the performance of the class and students will
receive patches to view correct implementations of their pro-
gram. The tool will be evaluated on student projects and
integrated it into introductory programming courses to an-
alyze it’s impact on instructor effort, feedback quality, and
computer science retention rates.

8. CONCLUSION

Patches can impact computer science education by provid-
ing information to improve grading introductory program-

ming assignments. This research discussed two growing trends

that are problematic for computer science education and
for our society in general, introduced a new grading tech-
nique that incorporates information gather from patches to
grade project submissions using edit distance and class per-
formance, and implemented and evaluated the algorithm on

introductory student programming assignments in C. The
patch grading formula was able to increase the performance
of students on their submissions on average and compare
the results with automatically generated and human-written
patches. The automated grading technique can assist teach-
ers in grading a large number of student assignments and the
evaluation based on patches can calculate fairer and person-
alized grades for students to help reduce frustrations and
increase their interest in computer science.

9. ACKNOWLEDGEMENTS

Special thanks to Yalin Ke for providing the SearchRepair
patches for IntroClass at the last minute, Dr. Stolee for
teaching the class and extending the final deadline, and Dr.
Stolee and Dr. Jin for their advising and feedback on this
project.

10. REFERENCES

[1] T. Beaubouef and J. Mason. Why the high attrition
rate for computer science students: Some thoughts
and observations. SIGCSE Bull., 37(2):103-106, June
2005.

[2] T. Britton, L. Jeng, G. Carver, and P. Cheak.
Reversible debugging software éAIJquantify the time
and cost saved using reversible debuggersé[&i, 2013.

[3] S. Kaleeswaran, A. Santhiar, A. Kanade, and
S. Gulwani. Semi-supervised verified feedback
generation. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2016, pages 739-750,
New York, NY, USA, 2016. ACM.

[4] D. G. Kay. Large introductory computer science
classes: Strategies for effective course management. In
Proceedings of the Twenty-ninth SIGCSE Technical
Symposium on Computer Science Education, SIGCSE
'98, pages 131-134, New York, NY, USA, 1998. ACM.

[5] Y. Ke, K. T. Stolee, C. L. Goues, and Y. Brun.
Repairing programs with semantic code search (t). In
Proceedings of the 2015 30th IEEE/ACM
International Conference on Automated Software
Engineering (ASE), ASE 15, pages 295-306,
Washington, DC, USA, 2015. IEEE Computer Society.

[6] D. Kim, J. Nam, J. Song, and S. Kim. Automatic
patch generation learned from human-written patches.
In Proceedings of the 2013 International Conference
on Software Engineering, ICSE 13, pages 802-811,
Piscataway, NJ, USA, 2013. IEEE Press.

[7] C. Le Goues, M. Dewey-Vogt, S. Forrest, and
W. Weimer. A systematic study of automated
program repair: Fixing 55 out of 105 bugs for $8 each.
In Proceedings of the 34th International Conference on
Software Engineering, ICSE ’12, pages 3—-13,
Piscataway, NJ, USA, 2012. IEEE Press.

[8] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun,
P. Devanbu, S. Forrest, and W. Weimer. | The
ManyBugs and IntroClass Benchmarks for Automated
Repair of C Programs. IEFEE Transactions on
Software Engineering (TSE), 41(12):1236-1256,
December 2015. DOI: 10.1109/TSE.2015.2454513.

[9] F. Long and M. Rinard. Automatic patch generation
by learning correct code. SIGPLAN Not.,
51(1):298-312, Jan. 2016.

http://people.cs.umass.edu/brun/pubs/pubs/LeGoues15tse.pdf
http://people.cs.umass.edu/brun/pubs/pubs/LeGoues15tse.pdf
http://people.cs.umass.edu/brun/pubs/pubs/LeGoues15tse.pdf
http://dx.doi.org/10.1109/TSE.2015.2454513

[10]

[11]

[12]

[14]

[15]

[16]

[17]

[18]

R. S. Loris D’Antoni, Roopsha Samanta. Qlose:
Program repair with quantiative objectives. In 27th
International Conference on Computer Aided
Verification (CAV 2016), July 2016.

S. Mechtaev, J. Yi, and A. Roychoudhury. Angelix:
Scalable multiline program patch synthesis via
symbolic analysis. In Proceedings of the 38th
International Conference on Software Engineering,
ICSE ’16, pages 691-701, New York, NY, USA, 2016.
ACM.

H. D. T. Nguyen, D. Qi, A. Roychoudhury, and

S. Chandra. Semfix: Program repair via semantic
analysis. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE 13, pages
772-781, Piscataway, NJ, USA, 2013. IEEE Press.

Y. Qi, X. Mao, and Y. Lei. Efficient automated
program repair through fault-recorded testing
prioritization. In Proceedings of the 2013 IEEE
International Conference on Software Maintenance,
ICSM ’13, pages 180-189, Washington, DC, USA,
2013. IEEE Computer Society.

R. Singh, S. Gulwani, and A. Solar-Lezama.
Automated feedback generation for introductory
programming assignments. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI "13,
pages 15—26, New York, NY, USA, 2013. ACM.

E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun. Is
the cure worse than the disease? overfitting in
automated program repair. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, pages 532-543, New
York, NY, USA, 2015. ACM.

K. T. Stolee, S. Elbaum, and D. Dobos. Solving the
search for source code. ACM Trans. Softw. Eng.
Methodol., 23(3):26:1-26:45, June 2014.

C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller.
How long will it take to fix this bug? In Proceedings of
the Fourth International Workshop on Mining
Software Repositories, MSR, 07, pages 1—,
Washington, DC, USA, 2007. IEEE Computer Society.
C. Wilcox. The role of automation in undergraduate
computer science education. In Proceedings of the 46th
ACM Technical Symposium on Computer Science
Education, SIGCSE ’15, pages 90-95, New York, NY,
USA, 2015. ACM.

C. Wilson, A. for Computing Machinery, and C. S. T.
Association. Running the Empty: Failure to Teach
K-12 Computer Science in the Digital Age.
Association for Computing Machinery, 2010.

H. Zhong and Z. Su. An empirical study on real bug
fixes. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1, ICSE
'15, pages 913-923, Piscataway, NJ, USA, 2015. IEEE
Press.

	Introduction
	Motivation
	Related Work
	Patch Generation
	Computer Science Education

	Patch Grading Algorithm
	Methodology
	IntroClass
	SearchRepair
	Study Design

	Results
	Base Grading vs. Patch Grading
	Automated Patches vs. Human Patches

	Discussion
	Impact
	Enrollment
	Retention

	Limitations
	Future Work

	Conclusion
	Acknowledgements
	References

