
ABSTRACT

BROWN, JR., DWAYNE CHRISTIAN. Digital Nudges for Encouraging Developer Behaviors. (Under the
direction of Dr. Chris Parnin.)

Decision-making is a vital part of software engineering. Professional software engineers, or develop-

ers, are regularly faced with decisions in their work. Moreover, as societal dependence upon technology

increases, so does the complexity and impact of the choices programmers make during development

processes. Although effective decision-making is critical for developing and maintaining quality soft-

ware, developers frequently make bad decisions in practice. For example, software engineers often avoid

useful developer behaviors, or tools and practices designed to help developers complete programming

tasks. Despite scientific evidence of their benefit, studies show developers often ignore valuable behav-

iors such as adopting development tools, secure coding practices, ethical programming guidelines, and

other constructive activities.

To increase the adoption of developer behaviors, existing research suggests face-to-face recom-

mendations between colleagues is the most effective method for software engineers to learn about

development tools and practices. However, opportunities for these in-person interactions between

developers are declining as software engineering teams become more globally distributed and physically

isolated via increased remote work among programmers. Bots and automated tools have also been

utilized as a means to increase adoption of developer behaviors among software engineers. Yet, despite

the advantages of using bots for automating programming tasks, developers often find automated

recommendations from these systems to be ineffective and intrusive.

The goal of this research is to fill the gap created by the decline in face-to-face recommendations

and the inadequacy of automated approaches to increase the adoption of useful developer behaviors. To

achieve this goal, my work introduces developer recommendation choice architectures, a conceptual

framework for incorporating behavioral science concepts, specifically nudge theory, into automated

recommendations for developers. Nudge theory is a framework for improving human behavior that

focuses on influencing the environment surrounding decision-making, or choice architecture, without

1) providing incentives or 2) banning alternative options. In this work, I aim to use digital nudges, or

incorporate technology to nudge humans toward better decisions in digital choice environments, to

encourage software engineers to adopt better behaviors.

This dissertation advances knowledge in the field by using developer recommendation choice

architectures to design automated recommendations for improving the decision-making and behavior

of software engineers. This novel framework consists of three principles: actionability, feedback, and

locality. The thesis of this research argues that developer recommendation choice architectures can

nudge programmers to adopt better behaviors while developing software, resulting in enhanced code

quality and increased productivity for developers. To construct the framework and evaluate this thesis

statement, my dissertation consists of a collection of studies exploring recommendations to developers

in software engineering:



1. To learn what makes effective recommendations for developers, I conducted studies analyzing

two different recommendation techniques:

(a) First, I analyzed characteristics of peer interactions to determine why face-to-face recom-

mendations are effective. We found that tool suggestions from colleagues are beneficial for

improving developer behavior because of their ability to foster receptiveness, i.e. users are

likely to adopt familiar and desirable systems whereas politeness, persuasiveness, and types

of tools are less impactful for decisions.

(b) Next, I introduced the naive telemarketer design as a baseline approach for generating rec-

ommendations from bots. This approach was implemented in tool-recommender-bot, a

system for generating tool recommendations. We found our bot was ineffective for devel-

opers because it violated social context and interrupted developer workflow, motivating the

need for novel automated recommendation approaches.

2. To devise a new approach to improve automated recommendations, I used these findings and

concepts from nudge theory to formulate developer recommendation choice architectures. I con-

ducted a formative evaluation to explore the impact of this framework on automated suggestions

and show it creates preferable recommendations for software engineers.

3. To evaluate the conceptual framework, I analyzed developer recommendation choice architec-

tures within existing recommendation systems by conducting two studies investigating GitHub

suggested changes, a recent tool that incorporates all of the framework principles:

(a) The first of these studies explores styles of recommendations by observing developers inter-

acting with different recommender systems. Participants preferred tool recommendations

from the suggested changes feature over suggestions from other systems, such as email,

because of its clear communication and effortless workflow integration.

(b) The second study empirically analyzed the impact of suggested changes on GitHub de-

velopment practices. We found recommendations from this system are well-accepted by

programmers, improve the timing of recommendations between peers, boost coding activity,

and increase discussions between developers during code reviews.

4. To further evaluate developer recommendation choice architectures, I developed class-bot, an

automated system that integrates the framework principles to recommend beneficial developer

behaviors to students working on programming assignments. We found this system was useful for

enhancing the quality of students’ code and increasing their productivity.

The contributions of this work are developer recommendation choice architectures, a conceptual

framework for designing automated recommendations to developers, the above set of experiments

which motivate and provide evidence for the framework, and an automated recommender system that

incorporates the framework to make recommendations for developer behaviors. This dissertation

concludes with broader implications and future directions for using developer recommendation choice

architectures to improve the productivity, decision-making, and behavior of developers.



© Copyright 2021 by Dwayne Christian Brown, Jr.

All Rights Reserved



Digital Nudges for Encouraging Developer Behaviors

by
Dwayne Christian Brown, Jr.

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Computer Science

Raleigh, North Carolina

2021

APPROVED BY:

Dr. Sarah Heckman Dr. Kathryn Stolee

Dr. Anne McLaughlin Dr. Chris Parnin
Chair of Advisory Committee



DEDICATION

This work is dedicated to all of my family and friends.

“Rejoice in hope, be patient in tribulation, be constant in prayer.”

ROMANS 12:12

ii



BIOGRAPHY

Dwayne Christian Brown, Jr., also known as “Chris”, received his high school diploma from Rock Hill High

School in Rock Hill, SC. Afterwards, he obtained his Bachelor of Science degree in Computer Science

from Duke University in 2013, where he conducted research studying K-12 Computer Science education

and graduated with Distinction after completing his honors thesis, “Integrating Computer Science Into

Middle School Mathematics”, under the supervision of Dr. Susan Rodger. Upon the completion of his

undergraduate degree, Chris spent two years as a contracted Python developer working for Bank of

America in Charlotte, NC.

Motivated by his previous research experiences, Chris decided to return to graduate school to pursue

a Ph.D. in Computer Science at North Carolina State University in 2015. He began his graduate career

working with Dr. Emerson Murphy-Hill, under whom he obtained a Master of Science in Computer

Science in 2017. During his time at NC State, Chris gained further industry experience through intern-

ships at Blackbaud (2016) and Red Hat (2017 and 2018). He also added teaching experiences as a TA for

undergraduate software engineering (CSC326) and Java programming concepts (CSC216) courses with

Dr. Sarah Heckman in addition to teaching the introductory Java programming course (CSC116) during

Summer 2020.

Chris’ doctoral research, under the advisement of Dr. Chris Parnin, explores improving the behavior

of software engineers by integrating concepts from behavioral science into bots and automated systems.

His research interests lie in the intersection of human factors, automation and tools, and empirical

software engineering. Chris’ research philosophy involves characterizing software engineering problems

and developing tools and techniques to help solve these issues, with the goal of improving the behavior,

productivity, and decision-making of programmers. He will join the Department of Computer Science

at Virginia Tech as an Assistant Professor in Fall 2021.

iii



ACKNOWLEDGEMENTS

First, I want to acknowledge my family, without whom this achievement would not have been possible.

Thank you to my wife (Bethany Wagner Brown), parents (Dwayne Sr. and Banita), siblings (Kristen,

Anita, and Nathaniel), grandfather (Walter White), and other relatives (Clifford, Waltrina, Cliff Jr., Walter,

Helen, and Kyle) for your prayers, confidence, and encouragement. Additionally, I want to thank the

many friends who provided support and encouragement throughout this process.

Next, I would like to thank the committee members for their time and feedback on my dissertation.

To my advisor, Dr. Chris Parnin, for welcoming me to his research group and providing valuable guidance

on my work. To Dr. Sarah Heckman, for believing in me as a TA, summer instructor, and providing

insight into research and teaching. To Dr. Katie Stolee, for recruiting me for collaborations to expand my

research knowledge and experience. And to Dr. Anne McLaughlin, for your collaboration and lending

your psychology expertise to this interdisciplinary work.

Additionally, I want to acknowledge Dr. John-Paul Ore who stepped in as an emergency substitute

committee member for my oral prelim exam. I am also extremely grateful for my undergraduate research

advisors: Dr. Chad Jenkins for providing my first research experience through the CRA Distributed

Research Experiences for Undergraduate (DREU) program and Dr. Susan Rodger, whose teaching,

advising, and mentorship was invaluable for my career and motivated me to major in Computer Science

at Duke University and to further pursue CS research.

I am very grateful to the current and past members of the software engineering research groups

at North Carolina State University, including alt-code, the now-defunct Developer Liberation Front,

RealSearch, RAISE, Dr. Stolee’s lab, and all of the other students and researchers that have come through

Engineering Building II rooms 3228 and 3229 over the years who have helped make NC State a Top 3 SE

research program in the world.1 I am proud to have been a part of this group and your collaborations,

data analysis, feedback, and casual discussions have elevated my research and made this work possible.

Additionally, these interactions have been dearly missed during the pandemic.

I would also like to thank other faculty, staff, and students in the department who have supported my

throughout the CSC PhD program at NC State, including Dr. Guoliang Jin, Dr. Jamie Jennings, Leslie Rand-

Picket and Kayla Bethea, Andrew Sleeth, the CSC Recruitment volunteers (both who recruited me and

who I’ve worked with to recruit others), the Bahlers intramural basketball team, and the accountability

writing group. Additionally, thanks to Jamin Quimby at Blackbaud and Og Maciel and Jake Callahan

with the Satellite QE team at Red Hat for organizing excellent internship experiences.

There are too many people to thank for their contributions and support of this work in a variety

of ways, and I sincerely apologize to anyone I overlooked. This work is primarily based on research

supported by the National Science Foundation grant #1714538. Finally, I would like to thank all of the

students and professional developers who volunteered their time to participate in the studies included

in this dissertation. Without them, this research would have been impossible.

1http://csrankings.org/#/index?soft&world

iv

http://csrankings.org/#/index?soft&world


TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1 THESIS STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 3 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 Developer Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Developer Behavior Adoption Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Nudge Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Digital Nudges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 Choice Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Scope of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4.1 Making Recommendations to Developers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4.2 Recommendation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4.3 Interdisciplinary Methods for Improving Behavior . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 4 Determining What Makes an Effective Developer Recommendation . . . . . . . . . . 18
4.1 Peer Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.1 Study Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Peer Interaction Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Naive Telemarketer Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.1 Study Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 tool-recommender-bot: Implementing the naive telemarketer design . . . . . . . 31
4.2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Discussion: Developer Recommendation Preconditions . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.1 Desire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.2 Familiarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.3 Social Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.4 Developer Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Chapter 5 Developing the Conceptual Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1 Developer Recommendation Choice Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.1 Actionability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.2 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

v



5.1.3 Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Preliminary Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 6 Analyzing Existing Recommendation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1 GitHub Suggested Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 Recommendation Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2.1 Study Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.2 Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 Developer Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3.1 Study Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3.2 Phase 1: An Empirical Study on GitHub Suggested Changes . . . . . . . . . . . . . . . . 63
6.3.3 Phase 2: Developer Feedback on Suggested Changes . . . . . . . . . . . . . . . . . . . . . . 68
6.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4.1 Actionability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4.2 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4.3 Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Chapter 7 Designing New Recommender Bots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.1 Study Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2 class-bot: Implementing Developer Recommendation Choice Architectures . . . . . . . 85
7.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.3.2 Determining the effectiveness of class-bot . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.4.1 RQ1: Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.4.2 RQ2: Productivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.4.3 Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Chapter 8 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.1 Thesis Statement Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.2.1 Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.2.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.3 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

vi



APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Appendix A Study Materials for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.1 “How Software Users Recommend Tools to Each Other” . . . . . . . . . . . . . . . . . . . 119
A.1.1 Study Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.1.2 Recommendation Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.1.3 Interview Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.1.4 Interaction Data List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.1.5 Peer Interaction Characteristic Scoring . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.1.6 Demographics Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.1.7 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.2 “Sorry to Bother You: Designing Bots for Effective Recommendations” . . . . . . . . . . 127
A.2.1 Naive Telemarketer Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.2.2 Study Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Appendix B Study Materials for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
B.1 “Sorry to Bother You Again: Developer Recommendation Choice Architectures for

Designing Effective Bots” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
B.1.1 Actionable Recommendations Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Appendix C Study Materials for Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
C.1 “Comparing Different Developer Behavior Recommendation Styles” . . . . . . . . . . . 134

C.1.1 Recommendation Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
C.2 “Understanding the Impact of GitHub Suggested Changes on Recommendations

Between Developers” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
C.2.1 Suggested Changes Random Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
C.2.2 Suggestee Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
C.2.3 Suggester Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Appendix D Study Materials for Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
D.1 “Nudging Students Toward Better Software Engineering Behaviors” . . . . . . . . . . . . 144

D.1.1 Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

vii



LIST OF TABLES

Table 4.1 Definition and examples of the politeness peer interaction characteristic . . . . . 22
Table 4.2 Definition and examples of the persuasiveness peer interaction characteristic . 23
Table 4.3 Definition and examples of the receptiveness peer interaction characteristic . . . 23
Table 4.4 Definition and examples of the time pressure peer interaction characteristic . . . 23
Table 4.5 Definition and examples of the tool observability peer interaction characteristic . 24
Table 4.6 Peer Interaction Effectiveness Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 4.7 tool-recommender-bot Effectiveness Results . . . . . . . . . . . . . . . . . . . . . . . . . 34

Table 5.1 Developer Recommendation Choice Architectures . . . . . . . . . . . . . . . . . . . . . . 42
Table 5.2 Survey Results on the Actionability of Recommendations . . . . . . . . . . . . . . . . . 48

Table 6.1 Mapping recommendation styles to developer recommendation choice architec-
tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Table 6.2 Recommendation Styles Study Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 6.3 Survey Results on the Likelihood of Recommendation Style Adoption . . . . . . . . 58
Table 6.4 Developer Impact Study Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 6.5 GitHub Suggested Changes Categories Results . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 6.6 Contribution Acceptance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 6.7 Recommendation Acceptance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 6.8 Contribution Time (in days) Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 6.9 Recommendation Time (in days) Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 6.10 Recommendation Acceptance Time (in days) Results . . . . . . . . . . . . . . . . . . . . 73
Table 6.11 Pull Request Impact Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Table 7.1 class-bot Quality Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 7.2 class-bot Productivity Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Table A.1 Peer Interaction Study Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

viii



LIST OF FIGURES

Figure 4.1 Model to identify peer interactions between participants . . . . . . . . . . . . . . . . 26
Figure 4.2 Peer Interaction Characteristic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 4.3 Example automated pull request from tool-recommender-bot . . . . . . . . . . 32
Figure 4.4 Naive Telemarketer Design recommendation . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 4.5 Example of tool-recommender-bot causing project builds to fail . . . . . . . . . 39

Figure 5.1 Static recommendation to fix a PEP 3105 error . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 5.2 Actionable recommendation to fix a PEP 3105 error . . . . . . . . . . . . . . . . . . . . 47

Figure 6.1 Example of the GitHub suggested changes feature . . . . . . . . . . . . . . . . . . . . . 52
Figure 6.2 Example of the GitHub suggested changes recommendation style . . . . . . . . . . 56
Figure 6.3 Example pull request review comment with code . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 6.4 Categories of suggested changes Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 6.5 Survey Results on the Usefulness of GitHub suggested changes . . . . . . . . . . . . . 77

Figure 7.1 Example class-bot recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 7.2 Survey Results on the Usefulness of class-bot . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure A.1 Naive Telemarketer Design recommendation from tool-recommender-bot . . 127

Figure C.1 Example email recommendation style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Figure C.2 Example GitHub issue recommendation style . . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure C.3 Example GitHub pull request recommendation style . . . . . . . . . . . . . . . . . . . 135
Figure C.4 Example GitHub suggested changes recommendation style . . . . . . . . . . . . . . 136

ix



CHAPTER

1

THESIS STATEMENT

By incorporating developer recommendation choice architectures into recommendations for

software engineers, we can nudge developers to adopt behaviors useful for improving code

quality and developer productivity.

1



CHAPTER

2

INTRODUCTION

2.1 Motivation

Decision-Making in Software Engineering

Humans make approximately 35,000 decisions everyday,1 each with varying outcomes and conse-

quences, good or bad. Similarly, professional software engineers, or developers, are frequently faced

with consequential decisions in their work. For example, decision-making is regarded as the “most un-

dervalued” and “most important skill in software development”, even moreso than coding skills [Woo19],

and a “critical” characteristic of great software engineers [Li15]. The importance of these choices grows

as technology plays an increasingly vital role in our daily lives.

Tools and guidelines informed by science can encourage humans to make better decisions and

adopt beneficial behaviors. For example, the Center for Disease Control suggested wearing masks,

social distancing, and avoiding crowds to prevent the spread of coronavirus.2 In software engineering,

researchers have developed and evaluated a wide variety of developer behaviors, or tools and practices

designed to help developers complete programming tasks more effectively and efficiently, and show

these behaviors improve software development processes.

However, like many ignored safety guidelines during the pandemic, developers frequently avoid

useful developer behaviors in their work. For example, even though studies show static analysis tools

are beneficial for preventing errors [Aye10], decreasing debugging time [Lay07], and reducing devel-

oper effort [Sin17], research also shows software engineers rarely use these tools in practice [Joh13].

1https://go.roberts.edu/leadingedge/the-great-choices-of-strategic-leaders
2https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html
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Research also shows developers make other bad decisions while developing software such as avoiding

security tools [Wit15], storing passwords in configuration files [Rah19], failing to upgrade software

dependencies [Mir17a], and neglecting ethical programming guidelines [McN18].

This developer behavior adoption problem leads to negative consequences that are costly for users

and developers. For instance, developers at Zoom failed to secure the video conferencing platform,

which led to many “Zoom-bombing” attacks and security vulnerabilities.3 Additionally, software failures

impact billions of users and cost trillions of dollars to repair each year [Tri17]. As society becomes more

dependent on technology, it is becoming increasingly important to find ways to improve developer

behavior while developing and maintaining software to prevent bad decisions and reduce the impact of

their consequences on society.

Developer Recommendations

To help increase adoption of useful behaviors, researchers have explored using automated recommender

systems and bots to suggest actions to users. The ACM International Conference on Recommender

Systems (RecSys) defines recommender systems as “software applications that aim to support users in

their decision-making while interacting with large information spaces” 4. Likewise, recommendation

systems for software engineering are designed to actively assist developers in seeking information and

making decisions while developing software [Rob10]. Spyglass, for instance, is an automated recom-

mender system that suggests code navigation tools in the Eclipse integrated development environment

(IDE) to help developers save time and effort while searching through code to complete programming

tasks [Vir10].

However, research also suggests existing approaches for automated recommendation systems and

recommender bots are ineffective in their interactions with developers. For example, Viriyakattiya-

porn and colleagues found that the inability to deliver suggestions in a timely manner discouraged

programmers from adopting tool recommendations from Spyglass [Vir09]. Additionally, studies report

developers face many challenges interacting with bots in open source software [Wes18], have nega-

tive perceptions of bots to automatically manage software dependencies [Mir17a], and express more

frustration in conversations with chatbots compared to humans [Hil15].

While many automated approaches have been developed to help developers make better choices,

research shows that face-to-face recommendations between humans are the most effective. For example,

Murphy-Hill and colleagues found that peer interactions, or the process of learning about tools from

coworkers during normal work activities, are the most effective method for software engineering tool dis-

covery compared to other technical approaches such as tool encounters in development environments,

social media and websites, tutorials, and discussion threads online [MH11]. Additionally, research shows

knowledge sharing and learning from peers are benefits of pair programming, or developers working

together on the same computer to complete programming tasks [Coc01].

However, even though peer interactions are the most effective method for recommendations to

3https://blog.zoom.us/wordpress/2020/04/01/a-message-to-our-users/
4https://recsys.acm.org/, as quoted by [Rob10]
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developers, Murphy-Hill also found these recommendations between colleagues occur infrequently

in the workplace [MH11]. There are many barriers to peer interactions, such as increased physical

isolation due to remote work, developers working in different programming environments, and software

engineers being unwilling to learn and share tool knowledge [MH15]. The decline of peer interactions

and ineffectiveness of existing automated approaches point to the need for new methods to effectively

recommend beneficial behaviors to software engineers in their work.

2.2 Research Overview

To improve the effectiveness of automated recommendations encouraging developers to adopt better

practices, my research involves interdisciplinary work analyzing the developer behavior adoption

problem through the lens of behavioral science. Specifically, I explore using nudge theory, a behavioral

science concept for improving human behavior and decision-making, to encourage developers to

make better decisions and adopt beneficial behaviors. A nudge refers to any factor that impacts human

decision-making without providing incentives to individuals or banning alternative options [Tha09].

Additionally, digital nudges refer to using technology and user interfaces to influence user behavior

in digital choice environments [Wei16]. More details and examples of nudge theory can be found in

Chapter 3 of this dissertation.

In nudge theory, choice architecture is the idea that the way choices are framed and presented

impacts human decisions [Tha13]. To incorporate nudge theory into automated recommendations

for developer behavior, my research introduces developer recommendation choice architectures, a

conceptual framework to improve the way recommendations are displayed to software engineers in

their work. This framework consists of three design principles:

1. actionability, or the ease with which developers can adopt the target behavior

2. feedback, or the clarity and relevance of the information provided

3. locality, or the placement and timing of recommendations.

To construct and evaluate the framework, this work consists of mixed-methods studies collecting and

analyzing quantitative and qualitative data to characterize problems with developer recommendations

and evaluate tools and techniques to overcome these challenges. The thesis of this dissertation argues

we can encourage developers to adopt behaviors to improve the quality of their work and productivity

of their development processes by incorporating developer recommendation choice architectures into

automated recommendations.

2.3 Contributions

This research advances knowledge by making several contributions to defend the thesis statement

presented in Chapter 1:

By incorporating developer recommendation choice architectures into recommendations

for software engineers, we can nudge developers to adopt behaviors useful for improving

4



code quality and developer productivity.

To examine “recommendations for software engineers”, this research posits:

• a set of experiments investigating why peer interactions are effective for improving developer

behavior and introducing the naive telemarketer design baseline automated recommendation

approach to evaluate the ineffectiveness of recommendations from bots.

To explore how “we can nudge developers to adopt behaviors”, this work presents:

• a conceptual framework, developer recommendation choice architectures, to apply concepts

from nudge theory to improve the effectiveness of automated recommendations to software

engineers.

To defend the claim that “incorporating developer recommendation choice architectures into

recommendations for software engineers...can nudge developers to adopt behaviors useful for improving

code quality and developer productivity”, this research submits:

• a set of experiments analyzing GitHub suggested changes, an novel recommendation system that

incorporates the framework principles to support code recommendations between developers on

pull requests.

• class-bot, a novel automated recommender system that incorporates developer recommend-

ation choice architectures to generate digital nudges recommending useful developer behaviors

to programmers.

2.4 Outline

The remainder of this dissertation characterizes my research and presents experiment methods and

results used to provide evidence to support the thesis statement (Chapter 1) and investigate the research

problem and objectives (Chapter 2).

Chapter 3 provides background information for this research, including more details about developer

behavior and nudge theory, two concepts that are critical for the research presented in this dissertation,

and describes the existing literature related to this body of work.

Chapter 4 describes preliminary work examining different recommendation approaches to gain

insight into what makes an effective recommendation to developers and motivate the need for a novel

approach for suggesting developer behaviors.

Chapter 5 introduces developer recommendation choice architectures and presents a formative

evaluation exploring actionability, one of the developer recommendation choice architectures, to gather

insight on recommendations with this framework from developers.

Chapter 6 presents studies analyzing GitHub suggested changes, an existing recommender system

that incorporates the developer recommendation choice architectures principles, to evaluate the frame-

work by comparing this system to other recommendation styles and empirically analyzing its impact on

GitHub development practices.
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Chapter 7 introduces a novel recommendation system, class-bot, a tool designed to use de-

veloper recommendation choice architectures in automated notifications. This section presents the

results of a study using class-bot to improve the development behaviors of students on programming

assignments.

Chapter 8 revisits the thesis statement and the contributions of the research presented in this body

of work. This dissertation concludes with broader implications and future directions for developer

recommendation choice architectures, using this framework to continue observing and enhancing

developer behavior and motivating the design of future tools for making recommendations to improve

the productivity, decision-making, and behavior of developers.

Finally, the appendix includes supplemental information and study materials for the research and

experiments presented in this dissertation.
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CHAPTER

3

BACKGROUND

“I think the most interesting topic for software engineering research in the next ten years is,

‘How do we get working programmers to actually adopt better practices?’”1

3.1 Developer Behavior

Developer behavior refers to the wide array of practices designed to help software engineers complete

tasks while developing and maintaining software applications. Software engineering researchers have

analyzed countless developer behaviors and show these activities provide many benefits to development

teams. An example of a beneficial behavior is utilizing development tools to automatically complete

programming tasks. The IEEE Software Engineering Body of Knowledge (SWEBOK), a suite of widely

accepted software engineering practices and standards, suggests adopting development tools is a “good

practice” that can “enhance the chances of success over a wide range of project” [SWEBOK, p. A-4].

For example, using static analysis tools, or systems that automatically examine code to detect errors

without running the program, is a behavior useful for improving code quality [Aye10], preventing

errors [Bes10], decreasing debugging time [Lay07], lowering development costs [Le 12], and reducing

developer effort [Sin17].

However, despite scientific evidence of their benefit, studies also show software engineers often

avoid static analysis tools [Joh13], sparingly fix bugs reported during automated static analysis [Mar19],

and seek to ignore alert notifications from these systems [Imt19]. Software engineering researcher Greg

Wilson argues this tendency for developers to ignore useful programming tools and practices, or what I

refer to as the developer behavior adoption problem, is the most important research topic in the field for

1https://twitter.com/gvwilson/status/1142245508464795649?s=20

7

https://twitter.com/gvwilson/status/1142245508464795649?s=20


the next ten years.1 The goal of this research is to work towards a solutions to this problem by creating

effective systems that make convincing recommendations to encourage working programmers to adopt

better behaviors and practices.

3.1.1 Developer Behavior Adoption Problem

Software engineering literature suggests developers frequently ignore beneficial development practices

in their work, even though research outlines their advantages and benefits. For example, in addition to

ignoring static analysis tools, studies have explored challenges and reasons why developers in industry

avoid adopting automated tools for security [Xia14], debugging [Cao10], refactoring [MH08], documen-

tation [For02], build automation [Rah17], and continuous integration [Hil17]. Furthermore, researchers

have examined why developers fail to adopt additional useful programming behaviors such as secure

coding practices [Men18], adequate software testing [Whi00], agile development methodologies [Ner05],

ethical programming guidelines [McN18], and more.

Ultimately, the developer behavior adoption problem can be costly for software developers and

users. For example, the National Institute of Standards and Technology reports debugging, or the process

of finding and removing errors in code, is the most expensive and time-consuming development activity

using 50-75% of total costs and 70-80% of programmers’ time [NIST02]. Additionally, Tricentis reported

software failures impacted 3.7 billion users and lost over $1.7 trillion USD in 2017 [Tri17]. Furthermore,

poor developer decisions have increasing effects for society over the next ten years as we become more

dependent upon technology. Philosophy professor John K. Davis argues societal problems caused by

technology, such as fake news, election interference, and data privacy concerns, will worsen as the

power of technology outpaces the wisdom of humans [Dav20]. Thus, my research seeks to explore ways

to help developers make wiser decisions and avoid these consequences by increasing the adoption of

beneficial developer behaviors.

Disclaimer*

There are many reasons developers make poor choices and avoid beneficial programming behaviors.

Although the research presented in this dissertation primarily focuses on programmers, bad decision-

making in software engineering is not solely the fault of developers. While developer inertia, or the

unwillingness of programmers to adjust their existing workflow to learn new tools and practices, prevents

the adoption of valuable behaviors [MH11], many other barriers also prevent the adoption of developer

behaviors in industry. For example, as reliance on technology increases, so do the number and complexity

of decisions developers make in their work. Cognitive issues, including decision fatigue and choice

overload, where decision quality declines as humans make more decisions and are overwhelmed by the

amount of choices, can impair the decision-making of developers and lead to poor behaviors, such as

copy-and-paste programming [Mak11].

Companies can also prevent the adoption of developer behaviors. For example, Xiao and colleagues

found that a company’s policies and standards, culture, and structure play a role in developers’ adop-

tion of security tools [Xia14]. Similarly, Nerur and colleagues suggest management and organizations
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can block development teams from migrating to agile methodologies [Ner05]. Other barriers, such as

mandated tools and processes [MH15], time pressure and deadlines [Cos84], and globally distributed

development teams [Ebe08], inhibit developers from discovering and adopting beneficial programming

tools and practices in industry. Additionally, researchers at Google found that non-technical work factors,

such as enthusiasm, support from peers, and performance feedback, play the most important role in

the productivity of software developers [MH19b].

Furthermore, researchers and toolsmiths contribute to the developer behavior adoption prob-

lem. Tilley and colleagues suggest adoption should be the goal for research-off-the-shelf (ROTS) soft-

ware [Til03]. However, Norman argues research results and tools often fail to meet the needs of industry

developers, leading to a growing research-practice gap [Nor10]. For instance, Johnson and colleagues

found the main reasons developers avoid static analysis tools are the inability to understand results,

difficult customization and integration, and distrust of tool output [Joh13]. Additionally, Wohlin et

al. outline challenges integrating empirical software engineering research into industry, citing issues

such as lack of trust, differing goals, and poor knowledge exchange and integration [Woh13]. In this

work, I explore the developer behavior adoption problem from the perspective of software engineers by

using behavioral science concepts to answer the motivating research question: “How do we get working

programmers to actually adopt better practices?”.1

3.2 Nudge Theory

To encourage the adoption of useful developer behaviors, I explore incorporating concepts from nudge

theory to improve automated recommendations to developers. A nudge is defined as any factor “that

alters behavior in a predictable way without forbidding alternatives or significantly changing economic

incentives” [Tha09, p. 6]. For example, placing healthier foods at the front of a high school cafeteria in

a “convenience line” nudged students to increase consumption of fruits and vegetables [Han12]. This

example fits the definition of a nudge because students have the option to ignore the target behavior,

in this case eating healthy, to select unhealthy foods and they do not receive a reward for deciding to

choose healthier options. Nudges are also used to impact human behavior on a much larger scale, for

example the United States, the UK, Denmark, and Italy have implemented nudge unit teams to improve

the behavior and decision-making of citizens [Cap15]. Using nudge theory to improve the behavior

and decision-making of software engineers involves not providing incentives nor forcing developers to

adopt useful tools and practices.

3.2.1 Digital Nudges

Digital nudging refers to using technology and user interface design elements to nudge user behaviors

in digital choice environments [Wei16]. For example, the FitBit2 smart watch nudges users to increase

physical activity and adopt healthier lifestyle behaviors by monitoring exercise activity, providing

feedback to users, and presenting data collected from friends and other users [Wei16]. Prior work has

2https://www.fitbit.com/
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also explored using digital nudges online to improve human behaviors such as enhancing user privacy

and security decisions [Acq17], increasing financial savings [Mad01], influencing social media sharing

practices [Hua18], and reducing social media usage [Pur20].

Mirsch and colleagues argue implementing digital nudges are “easier, faster and cheaper” and

provide more functionality than regular nudges [Mir17b, p. 635]. Furthermore, as more decisions are

being made online, Weinmann argues digital nudges are becoming increasingly important because the

design of interfaces will “always (either deliberately or accidentally) influences people’s choices” [Wei16,

p. 433]. While the majority of prior work in digital nudges studies their impact on the decision-making

and behavior of software users, there is limited work exploring how they influence software developers,

who are frequently faced with decisions in their work in digital choice environments, such as whether or

not to adopt developer behaviors. This research aims to use digital nudges to encourage developers to

adopt better practices by introducing and evaluating developer recommendation choice architectures.

3.2.2 Choice Architecture

Nudges and digital nudges are effective for improving human behavior is because of their ability to

influence the context and environment surrounding decision-making, or choice architecture [Tha13].

Choice architecture suggests the way decisions are framed and presented impacts the choices humans

make. For example, changing the location of fruits and vegetables makes the choice of whether or not

to eat healthy easier for humans. Another instance of a choice architecture is the “default rule”, which

suggests most decision-makers will select the default options when making decisions and has been

shown to be effective for improving human behavior. For instance, the Square mobile payment app3

sets the default behavior for users to tip merchants or actively choose a “no tipping” option. By using

the default rule to make tipping the primary action, Square merchants in total earned over $70 million

in tips in 2013.4

Thaler and Sunstein note “nudges are everywhere” because “choice architecture, both good and bad,

is pervasive and unavoidable...Choice architects can preserve freedom of choice while also nudging

people in directions that will improve their lives” [Tha09, p. 255]. Johnson and colleagues introduce

11 practical tools for choice architecture to convince people to adopt target behaviors and make bet-

ter decisions [Joh12]. The research presented in this dissertation introduces and evaluates developer

recommendation choice architectures, a novel approach that incorporates this concept into automated

recommendations to developers. I aim to show that using choice architecture to improve the design

and presentation of developer behavior decisions to software engineers within the context of their work

can encourage working programmers to adopt better practices.

3https://squareup.com/us/en
4https://www.fastcompany.com/3022182/how-square-registers-ui-guilts-you-into-leaving-tips
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3.3 Scope of Work

Throughout the rest of this dissertation, the term nudge is used to describe automated notifications

recommending beneficial developer behaviors to software engineers as digital nudges. The nudges

studied and created in this work do not provide incentives for developers choosing to adopt behaviors

and allow developers to ignore our recommendations and choose alternate actions. Moreover, while

nudges can be applied to many different aspects of software engineering, such as the IDE design,

programming languages, and physical workspaces, my research aims to discover if nudges can encourage

developers to adopt useful software engineering practices when faced with decisions while completing

real-world programming tasks. The primary developer decision-making environment used to examine

nudges for this research is GitHub, a popular online code hosting site with over 31 million developers,

96 million repositories, and 1 billion of code contributions [Oct].5 To evaluate nudges and automated

recommendations, I developed software robots, or bots, to recommend beneficial developer behaviors

on public open source repositories to GitHub users.

3.4 Related Work

3.4.1 Making Recommendations to Developers

This work builds upon prior research exploring methods for making recommendations to software

engineers. For the purpose of this research, developer recommendations refer to any means of making

suggestions or conveying information to improve the behavior of software engineers. To increase adop-

tion of useful developer behaviors, prior work has investigated a variety of developer recommendation

methods to suggest tools and practices to software engineers.

3.4.1.1 Peer Learning

Learning from peers, or human-to-human recommendations between with developers, has been shown

to be an effective method for increasing knowledge. Twidale posits over-the-shoulder learning, or in-

formal collaborative learning and help-giving sessions between colleagues, as an effective approach

for learning during computer supported work [Twi05]. For example, Murphy-Hill et al. explored how

software engineers learn about new development tools and found that peer interactions were the most

effective method for software engineers to discover development tools compared to other technical

methods [MH15]. Likewise, research shows peer debriefings, or discussions between developers, are

effective for improving code comprehension [Maa14] and coworker recommendations are the most

popular method for spreading knowledge and increasing security tool adoption [Xia14].

Another form of over-the-shoulder learning in software engineering is pair programming, or two

developers working together to write code at the same machine. Cockburn and Williams found one of

the benefits of this practice is learning from coworkers [Coc01]. Similarly, Begel and Nagappan found

5https://octoverse.github.com/
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developers at Microsoft reported that the spreading of code understanding and learning from partners

were some of the main advantages of pair programming [Beg08]. Peer code reviews, where programmers

critique code contributions before integrating them into source code, provide further opportunities

for developers to learn from each other. For example, research shows programmers find peer code

reviews beneficial for finding defects and improving code in addition to learning and knowledge transfer

between developers [Bac13]. Furthermore, Cohen and colleagues argue over-the-shoulder reviews are

the most common type of peer code review in practice, and suggest these reviews “lend themselves to

learning and sharing between developers” [Coh06, p. 27].

While peer learning is effective for making recommendations and presenting knowledge to develop-

ers, studies show opportunities for these human-to-human interactions are declining. For example,

Murphy-Hill and colleagues found peer interactions are the most effective mode of tool discovery,

they also found these in-person recommendations occur infrequently in practice [MH11]. Additionally,

Herbsleb argues the increase of global software engineering and distributed development teams limits

changes for peer learning and causes less frequent and less effective communication between develop-

ers due to different time zones, cultural differences, and geographic distance [Her07]. Another factor is

the increase in remote work among software engineers. Turkle argues that as humans increasingly work

and collaborate in isolated environments, technology will replace face-to-face communications [Tur17].

Thus, it is necessary to explore technical approaches to make recommendations for developer behaviors.

3.4.1.2 Online Programming Communities

In-person human-to-human recommendations are in decline, however prior work has also explored the

impact of online programming communities, or socio-technical websites dedicated to sharing knowl-

edge and information specifically to programmers. In general, research shows online communities

are beneficial for knowledge sharing across geographic locations and positional status [Hwa15]. As op-

posed to over the shoulder learning through human-to-human recommendations, online programming

communities support learning from peers through many-to-many and many-to-one recommenda-

tions [Jen17]. Software engineering researchers have explored recommendations and developer learning

in online programming communities. For example, Stack Overflow is a popular online question and

answer site where developers can receive answers to their questions or respond to queries on many

different programming topics. Research suggests comments on Stack Overflow posts are valuable for

learning due to their ability to provide improvements and explanations [Sen20].

Additionally, researchers have explored the impact of online programming communities on rec-

ommendations to developers through social media. For example, prior work argues that social media

has changed the way developers learn and share information GitHub [Beg10]. Specifically, Singer et al.

analyzed Twitter and found the popular social media platform is beneficial for increasing awareness and

knowledge of development practices [Sin14]. Aniche and colleagues also examined modern news aggre-

gators about software development, such as Hacker News and r/programming on Reddit, and found the

purpose of most posts on these platforms are geared towards learning. Additionally, they found that

receiving knowledge to apply different perspectives to existing work and making recommendations are
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the primary motivation for developers to post and respond to posts in these communities [Ani18].

Furthermore, prior work has explored recommendations to developers on code collaboration web-

sites such as GitHub. For instance, research shows that badges on GitHub repositories are beneficial for

improving the behavior of developers in terms of the quality of projects [Dab12], GitHub Discussions are

valuable for learning between users [Hat21], and pull requests provide opportunities for programmers to

learn from looking at other developers’ code [Kal15]. While online programming communities are useful

for providing information and making recommendations to developers, these platforms are passive

help systems, or resources that require users to explicitly seek help. Prior work suggests these manual

help-seeking systems are ineffective for making recommendations [Fis84].

3.4.1.3 Other Passive Approaches

Previous research has explored a variety of other methods for making recommendations to software

engineers. For example, prior work has also proposed continuous social screencasting [MH12a] and live-

coding [Bla14] as a mechanisms for developers to learn from peers virtually. Likewise, researchers have

explored using crowdsourcing to provide recommendations to developers to recommend programming

tasks [Mao15] and increase understanding of Java APIs [Sun19]. Prior work has also proposed using

gamification to encourage developers to adopt better tools and practices through various methods

such as Blaze, a system that uses points and leaderboards to improve programmer behavior [Sni14],

Free Hugs, an environment where developers create alter egos that evolve as players adopt better

practices [Rya06], and analyzing development tool usage through Serious Game Design Assessment

(SGDA) frameworks [Bar16]. Additionally, Murphy-Hill and colleagues posit Testing on the Toilet as a

method for recommending development tools to programmers through restroom advertising [MH19a].

However, similar to seeking help in online programming communities, these developer recommend-

ation approaches are examples of passive help systems. Previous research by Fischer and colleagues

argues active help systems that can automatically make recommendations to users while completing

tasks are more effective than manual and static methods for software users [Fis84]. As opportunities for

peer learning decline and static recommendation methods remain insufficient, automated approaches

are needed to make recommendations and convey information to developers. Thus, the primary focus of

my research involves analyzing and developing active help systems to recommend developer behaviors

to software engineers. In the next section, I present relevant work studying automated techniques for

making developer recommendations.

3.4.2 Recommendation Systems

Recommender systems, or tools that automatically collects inputs and aggregates and presents desired

outputs to those seeking recommendations, are useful for assisting users in making choices when faced

with insufficient personal experience [Res97]. Prior work suggests these active help systems are more

valuable for making recommendations to humans than passive systems. For example, Schafer and

colleagues show that Automatic recommendations are more effective than Manual recommendations

in e-commerce websites to suggest products to customers [Sch99]. Research has explored the concept
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of recommender systems for generating recommendations to software users. For example, automated

systems have been used to recommend entertainment content on Netflix [GU16].

Prior work offers tools and algorithms to generate a variety of recommendations to users. For

example, Amazon implemented item-to-item collaborative filtering to recommend products to cus-

tomers [Lin03], Yahoo! employs a contextual-bandit approach to recommend personalized news arti-

cles [Li10], OWL uses organization-wide learning to log user commands to recommend tools Microsoft

Word [Lin00a], the Lumière Project uses Bayesian network models to predict the goals and needs of

software users [Hor98], and YouTube uses a batch-oriented pre-computation algorithm to recommend

videos to users on the world’s most popular online video community [Dav10]. The research presented

in this dissertation aims to study recommender systems focused on delivering recommendations to

improve the behavior and decision-making of software engineers.

3.4.2.1 Recommendation Systems for Software Engineering

Recommendations systems for software engineering (RSSEs) are active help systems designed to assist

and guide the actions of developers while completing programming tasks [Rob10]. RSSEs are made up

of three components: 1) a data collection mechanism; 2) a recommendation engine to analyze input

and generate recommendations; and 3) a user interface to present recommendations. For example,

Hipikat observes the current state of source code to recommend software development artifacts, such as

Bugzilla issue reports, to developers via an Eclipse IDE plugin [Cub03]. Software engineering researchers

and toolsmiths have created and evaluated a variety of RSSEs to help developers complete a wide

range of programming tasks. For example, Spyglass [Vir10], Tricorder [Sad15], Prompter [Pon14], and

Dhruv [Ank06] are automated systems developed to recommend code navigation techniques, program

analysis behaviors, Stack Overflow posts, and bug report artifacts to software engineers. According to

Gasparic and Janes, the majority of RSSEs recommend source code changes and coding artifacts to

developers and the primary goals of most systems are to support a lack of knowledge among software

engineers and overcome insufficient help from existing tools [Gas16].

Similar to general recommender systems, RSSEs can be implemented with a variety of different meth-

ods to recommend developer behaviors through differing means. For example, Stench Spyglass [Vir10]

and Prompter [Pon14] provide information to developers within their development environment as

Eclipse plugins whereas Dhruv presents recommendations in the OpenACS Bugtracker6 [Ank06] and

Tricorder is integrated into project builds at Google [Sad15]. Additionally, previous research shows RSSEs

are valuable for providing information to developers throughout the different phases of the software

development processes [Pak14]. Prior work has also analyzed various recommendation algorithms in

RSSEs, such as sorting by popularity, history-based recommendations, and collaborative filtering, to

propose novel techniques [MH12b]. However, studies show developers often ignore recommendations

from these systems. For example, prior work by Viriyakattiyaporn and Murphy suggests that the inability

to make noticeable and timely recommendations led to ignored suggestions from Spyglass [Vir09].

My research seeks to improve the effectiveness of recommendation systems for software engineering

6https://www.project-open.com/en/package-bug-tracker
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that refer to tools and systems designed to provide information to developers while developing and

maintaining software.

In addition to creating automated recommender systems, research has explored ways to design

effective recommendations. For instance, Fogg also outlines design principles for creating and designing

persuasive technologies to encourage users to adopt target behaviors [Fog09]. Generally, researchers

have motivated the need to focus on user experiences and design in recommendation systems to

encourage the adoption of target behaviors. For example, McNee and colleagues argue user-centric

recommendations focused on experiences and expectations are more important than the accuracy

of recommender systems [McN06]. Similarly, Konstan and Riedl suggest evaluating user experiences

metrics is more important for automated recommender systems than optimizing recommendation

algorithms [Kon12]. For RSSEs, Murphy and Murphy-Hill analyzed recommender systems for software

development and found that trust was more important than precision for software engineers, and con-

clude that “trust trumps precision” [Mur10]while Bavota and colleagues posit guidelines for designing

systems to recommend code refactoring changes and argue the usability of refactoring recommendation

systems is critical [Bav14].

While research suggests most RSSEs present results to users as lists [Gas16], software engineering

researchers have evaluated specific design decisions for improving automated developer recommen-

dations. For example, prior work with Smith and Murphy-Hill found in-situ design principles for a

code navigation tool increased branchless navigation and was preferred by users [Smi17]. Johnson and

colleagues propose using developers’ experiences to customize programming tools and environments

with bespoke tools [Joh15]. To study the initiation of system recommendations, Xiao et al. examined

proactive and reactive user interface assistants and found that invocations not requiring user initiation

were effective for applying and recalling commands [Xia03]. Furthermore, Robillard and colleagues

present categories for design decisions to consider when developing RSSEs, including the context and

input, recommendation engine and data source, and the output mode [Rob10]. My research proposes a

new approach, developer recommendation choice architectures, to improve the design of recommender

bots by integrating concepts from nudge theory in systems to improve the decision-making and behavior

of developers.

3.4.2.2 Recommender Bots

Research has explored the use of software robots, or bots, to automatically make recommendations

to users. For example, prior work has explored the usage of bots on social media platforms such as

Twitter [Edw14] and e-commerce websites [Red18]. Prior work posits DevBots, or automated systems

to support software development tasks [Erl19]. For example, David-DM7 and Greenkeeper8 are bots

designed to recommend dependency updates for source code, Repairnator is a system that automatically

fixes continuous integration build errors [Url18], ReviewBot automates static analysis and recommends

pull request reviewers during code reviews [Bal13], and Mediam seeks to increase the adoption of

7https://david-dm.org/
8https://greenkeeper.io/
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analyses and techniques evaluated in software engineering research in industry [Bes17]. For the purposes

of my research, I refer to DevBots created to automate tasks and convey information to software engineers

as bots.

Bots have been highly adopted among software development teams. For example, research shows

approximately a third the repositories on GitHub employ a type of bot on their project [Wes18]. How-

ever, prior work suggests recommendations from bots are insufficient for improving the behavior of

developers. For example, Wessel and colleagues found that bots are useful for automating a variety of

development tasks in open source software but also show software engineers reported facing many

challenges interacting and comprehending feedback from these automated systems [Wes18]. Similarly,

Erlenhov et al. discovered programmers find development bots inconvenient due to their interruption

and noise, lack of trust, and poor usability [Erl20]while Mirhosseini and Parnin found that developers

were overwhelmed by bots generating automated pull requests on repositories [Mir17a]. Additionally,

studies show developers exhibit more frustration through inappropriate language and negative emo-

tions during interactions with chatbots [Hil15], pull requests from bots take significantly longer to review

than those submitted by humans [Wyr21], and systems emulating humans with human-presenting

profiles are more effective than noticeable bot accounts [Mur16a].

Prior work points to bot-human interactions as a primary factor in the reception of automated

notifications. For example, the Principles of bot design from Microsoft suggest that “how smart the

bot is” does not influence its success but delivering “a great user experience” does.9 Similarly, Storey

and Zagalsky note reducing interruptions, supporting context switching, and incorporating situational

awareness into bots can improve the productivity of developers [Sto16]. Cerezo et al. also suggest user-

driven communication can improve the perception and adoption of recommendations from chatbots

rather than using single-purpose bot-driven techniques [Cer19]. My research aims to advance work in

this field by utilizing interdisciplinary concepts to improve the design of automated recommendations

from bots to increase their effectiveness for encouraging developers to adopt useful tools and behaviors.

3.4.3 Interdisciplinary Methods for Improving Behavior

Finally, my research applies concepts from behavioral science to improve the behavior and decision-

making of software engineers. Prior work has similarly explored using interdisciplinary techniques to

improve developer recommendations and learning. For example, Fleming and colleagues examined in-

formation foraging theory, the study of how humans search for information, and apply relevant concepts

to software engineering and how programmers seek information [Fle13]. Cao and et al. use Minimalist

Learning Theory to develop Idea Garden, an approach for integrating learning into programming envi-

ronments and tasks to increase learning [Cao12]. Furthermore, Singer explored integrating concepts

from diffusion of innovations, a sociology theory for explaining how knowledge and ideas spread, to

increase tool adoption among software developers [Sin16]. This work builds upon these studies to

explore using behavioral science concepts to influence the behavior and decision-making of developers

using nudge theory.

9https://docs.microsoft.com/en-us/azure/bot-service/bot-service-design-principles?view=azure-bot-service-4.0
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To our knowledge, this was the first work to incorporate nudge theory and digital nudges to influence

the behavior of software engineers. Prior research in this area has primarily focused on using digital

nudges to influence the behavior of software users. For example, Acquisti and colleagues explored using

digital nudges to improve user privacy and security decisions online [Acq17]. Likewise, Huang and

colleagues found that digitally nudging social media users impacted social sharing behavior [Hua18].

While these studies show that digital nudges are effective for influencing the behavior of software users,

I explore using nudges to improve the behavior of software engineers. However, after introducing nudge

theory as a solution to improve software engineer behavior and decision-making, recent work has

explored using nudges to accelerate code reviews and encourage developers to review stale pull re-

quests [Mad20]. In my work, I aim to use nudge theory to establish a framework for designing automated

recommendations to improve the behavior and decision-making of programmers.
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CHAPTER

4

DETERMINING WHAT MAKES AN

EFFECTIVE DEVELOPER

RECOMMENDATION

This chapter presents studies evaluating two different techniques for recommending developer be-

haviors, namely peer interactions and the naive telemarketer design. To explore what makes effective

recommendations to software engineers, we analyze in-person tool recommendations between users

completing tasks and introduce a baseline automated approach in a simple bot for making recommen-

dations to software engineers to gain insight into what makes a compelling developer recommendation

and motivate the need for a new technique. Additional details and study materials for these experiments

can be found in Appendix A.

4.1 Peer Interactions

Peer interactions are defined as the process of software engineers learning about development tools and

practices from colleagues in-person during normal work activities [MH11]. Murphy-Hill and colleagues

examined different modes of development tool discovery among software engineering, including peer

interactions and other technical approaches such as random tool encounters in development environ-

ments, tutorials, descriptions or mentions online or in publications, discussion threads, social media

sites such as Twitter and RSS Feeds, and comments and discussion in online forums, and found that

peer interactions are the most effective way developers discover new software engineering tools [MH11].
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Furthermore, software engineering literature shows peer interactions are useful for supporting addi-

tional developer behaviors such as increasing adoption of security tools to help developers build more

secure systems by detecting security vulnerabilities [Xia14], increasing collaborative development prac-

tices [Kal15], and improving how developers understand and share knowledge about their code [Maa14].

Little is known about the nature of peer interactions, and to explore what makes these user-to-user

recommendations effective I performed a user study to observe and analyze tool recommendations

between peers.

4.1.1 Study Rationale

To increase awareness of useful tools and features designed to help users in software, recommender

systems can automatically suggest beneficial tools to users. However, despite the large number of

automated recommender systems, prior work suggests user-to-user peer interactions are the most

effective method for tool discovery [MH11]. There is limited research exploring why face-to-face rec-

ommendations between peers are effective increasing tool adoption, and to better understand why

users prefer recommendations from colleagues this work administers a user study to analyze different

characteristics of the recommendations. The characteristics we analyzed are motivated by existing

literature in psychology and persuasion theory, as well as prior software engineering research examining

peer interactions. The results of this work provide insights into why in-person tool recommendations

between peers are effective and implications for improving automated recommender systems.

4.1.1.1 Research Question

To examine the influence of peer interactions on recommendations between software users, this work

sought to answer the following research question:

RQ1 What characteristics of peer interactions make recommendations effective?

To answer this question, we investigated the effectiveness of peer interactions by conducting a user

study to observe tool recommendations between 13 pairs of participants completing data analysis tasks.

We analyzed the peer interactions by recognizing tool recommendations between partners, observing

how tools were suggested based on different recommendation characteristics, and detecting how often

suggestions were adopted or ignored by participants. The main contribution of this work is a study to

characterize how software users make tool recommendations to peers.

4.1.2 Peer Interaction Characteristics

To analyze the effectiveness of peer interactions, we explored six characteristics of recommendations

between partners in our user study: politeness, persuasiveness, receptiveness, time pressure, tool

observability, and peer interaction type. These characteristics are motivated from research exploring the

delivery of messages to humans in psychology and software engineering. Here, I provide examples for
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each characteristic from prior work and present the criteria used to identify instances of each attribute

in tool recommendations between participants in this study:

Politeness. Prior work suggests politeness is a key factor for making effective suggestions to humans.

For example, Whitworth suggests many existing recommendation techniques, such as pop-up ads

and the Microsoft Clippy recommender system, are ineffective and unpopular among users because

it was impolite [Whi05]. In software engineering, researchers have explored incorporating politeness

into sentiment analysis tools to observe programmers [DNM13], and show this concept can encourage

developers to fix issues faster and increase work satisfaction in agile development teams [Ort15]. To

measure politeness in peer interactions, we used Leech’s six maxims for politeness: Tact, Generosity,

Approbation, Modesty, Agreement, and Sympathy [Lee83]. The definition of these criteria and examples

from the experiment can be found in Table 4.1.

Persuasiveness. Social psychology posits persuasion theory, or the study of the communication of

messages to affect the attitudes and behavior of humans [Gar15]. Research suggests persuasiveness is

crucial for making effective recommendations. For instance, O’Keefe argues “human decision-making is

shaped by persuasive communication” [O’k02, p. 31]. Fogg also suggests persuasiveness is also necessary

to convince users to adopt desired behaviors through software [Fog09]. For example, Faridi and col-

leagues propose integrating persuasion into the software development lifecycle to help reduce problems

developers face while building software products [Far12]. Shen et al. introduce a generic model for

developing persuasive messages including three features: Content, Structure, and Style [She12]. We

used these criteria defined in Table 4.2 to measure the persuasiveness of recommendations between

participants in this study.

Receptiveness. Psychology literature shows receptiveness plays an important role in the adoption of

recommendations. For example, Feng argues receptiveness is necessary for humans to receive advice

from others during problematic situations [Fen06]. Research also shows receptiveness is beneficial for

adopting multicultural experiences and accepting ideas from foreign cultures [Leu10]. Prior work in

software engineering has also explored using openness, one of the five personality domains [Dig90], to

observe the practices of developers [Smi16]. Fogg argues receptiveness is vital for creating persuasive

technology to persuade users to adopt beneficial behaviors online [Fog09]. To define receptiveness, he

posits two criteria which are used in this study to measure this characteristic within peer interactions

between participants: Demonstrate Desire and Familiarity. Definitions of these criteria and examples

derived from our user study are presented in Table 4.3.

Time Pressure. Research from various disciplines shows time pressure impacts recommendations to

humans. In behavioral economics, Kocher and colleagues suggest the allotted time to make decisions

impacts the quality of choices because “time is money” [Koc06]. In marketing, studies show time

constraints damage decision-making by stifling creativity and reducing exploratory thinking [And96].

Furthermore, software engineering research asserts time pressure from deadlines negatively impacts

development practices [Cos84] and prevents peer interactions [MH15]. To measure time pressure in

recommendations between participants in this study, we analyzed sessions to search for discussions

about time between partners. Time limits were not strictly enforced in the study, but sessions lasted
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one hour and we recommended spending 7–8 minutes on each question. If we determined a statement

regarding time was made during a peer interaction, then the recommendation was categorized as being

under time pressure. An example of the criteria used to measure time pressure is available in Table 4.4.

Tool Observability. Observability refers to whether or not systems consist of interfaces visible to

users, which studies suggest influences the adoption of tools and behaviors. For instance, research

shows visual attention, or the perceptual analysis of humans on various sensory features such as size,

shape, and color, impacts the brands of products consumers purchase [Pie99]. Furthermore, Nielsen

submits “Visibility of system status” as a usability heuristic for designing usable user interfaces [Nie93].

Murphy-Hill and colleagues suggest systems should have noticeable causes and effects to improve tool

discoverability for software engineers [MH15]. To analyze this, we examined the observability of tools

recommended between participants in the study. To evaluate the impact of the perception of tools on

the outcome of peer interactions, we analyzed tools suggested between participants in our study to

categorize them as Observable or Non-observable. Table 4.5 presents the definitions of these criteria

and examples from the study.

Peer Interaction Type. Murphy-Hill and colleagues found peer interactions are the most effective

mode of tool discovery among software engineers. They introduce two types of peer interactions, peer

observations and peer recommendations [MH11], that differ in how suggestions are instigated between

colleagues. Peer observation refers to when a developer views a colleague using an unfamiliar tool, while

peer recommendations occur when colleagues notice coworkers completing tasks inefficiently and

recommend a tool. Peer interactions were categorized as Peer Observations or Peer Recommendations

based on the analysis of recommendations between participants.

4.1.3 Methodology

To observe these characteristics in peer interactions and investigate their effectiveness as a recommend-

ation approach, I implemented a mixed methods approach to analyze using grounded theory and

statistical data analysis techniques to examine the impact of each characteristic on observed tool

recommendations between peers.

4.1.3.1 Data Collection

Participants

To evaluate peer interactions, we observed pairs of participants working together to complete data

analysis tasks. Participants were students from various disciplines at North Carolina State University

and professional analysts from the NC State Laboratory for Analytic Sciences1 (LAS). For the remainder

of this section, student participants are delineated with the S- prefix and LAS participants are presented

with the L- prefix. More details about the user study participants can be found in Appendix A.1.7. Overall,

13 pairs completed the study, seven pairs of students and six pairs of professional analysts.

1https://ncsu-las.org/
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Table 4.1 Definition and examples of the politeness peer interaction characteristic

Politeness Criteria

Tact
Definition Minimize cost and maximize benefit to peer
Polite “We can do all of it together, just sort by level.” (S9)
Impolite “We can do a histogram...which is always sort of a pain in the

butt to do in Excel.” (L14)

Generosity
Definition Minimize benefit and maximize cost to self
Polite “CONCATENATE you can do. I can do this for you, very easily.”

S10
Impolite “Maybe you should write a python script for this.” L6

Approbation
Definition Minimize dispraise and maximize praise of peer
Polite “I’m not as good at the Excel stuff as you are.” (L5)
Impolite “This[partner’s suggestion] is useless.” (S14)

Modesty
Definition Minimize praise and maximize dispraise of self
Polite “From whatever limited knowledge of data analysis I have, I

think you need to create a linear regression model...” (S14)
Impolite “I’m very good at Paint.” (S10)

Agreement
Definition Minimize disagreement and maximize agreement between

peers
Polite “Do you want to use Python?” (S8)
Impolite “No, no, no...Don’t you want it comma separated? That’s what

I’m doing.” (S14)

Sympathy
Definition Minimize antipathy and maximize sympathy between peers
Polite “We can try JMP...” [“I haven’t done anything in JMP.”] “Neither

have I!” (L14)
Impolite “It doesn’t matter how you do it.” (L16)
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Table 4.2 Definition and examples of the persuasiveness peer interaction characteristic

Persuasiveness Criteria

Content
Definition Recommender provides credible sources to verify use of the

tool
Persuasive “Go here, go to Data. Highlight that...Data, Sort, and it lets you

pick two.” (L8)
Unpersuasive “Let’s try to text filter, right?” (S5)

Structure
Definition Messages are organized by climax-anticlimax order of argu-

ments and conclusion explicitness
Persuasive “I know that SUMIF is a type of function that allows you to

combine the capabilities of SUM over a range with a condition
that needs to be met.” (S3)

Unpersuasive “There’s a thing on Excel where you can do that, where you can
say if it is this value, include, if it is not, exclude...Yeah, IF.” (S11)

Style
Definition Messages should avoid hedging, hesitating, questioning into-

nations, and powerless language
Persuasive “Control-Shift-End” (S1)
Unpersuasive “I guess we’re going to have to use some math calculations here,

or a pivot table.” (L9)

Table 4.3 Definition and examples of the receptiveness peer interaction characteristic

Receptiveness Criteria

Demonstrate Desire
Definition User showed interest in discovering, using, or learning

more information about the suggested tool
Receptive “That was cool, how [the column] just populated.” (S4)
Unreceptive [“So you want to use R for it?”] “No, no, no...” (S14)

Familiarity
Definition User explicitly expresses familiarity with the environ-

ment
Receptive “Control shift...how do I select it completely?” (S2)
Unreceptive “I’ve never done anything in JMP.” (L10)

Table 4.4 Definition and examples of the time pressure peer interaction characteristic

Time Pressure Criteria

Time Pressure
Definition Participant makes statement regarding time after a

recommendation
Yes “Yeah, that would work if we had time.” (L5)
No No comments about time
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Table 4.5 Definition and examples of the tool observability peer interaction characteristic

Tool Observability Criteria

Observability
Definition The ability to view the recommended tool through a

graphical user interface
Observable “Let’s deploy a histogram...[In Menu] Insert, Recom-

mended Charts...” (S7)
Non-Observable “Control-Shift-End” (S1)

Tasks

Participants were asked to complete data analysis tasks based on the Kaggle Titanic data science com-

petition.2 The specific study tasks given to participants are available in Appendix A.1.1. The dataset for

the tasks consisted of two comma-separated values files, TRAIN.CSV and TEST.CSV. The training tasks

required participants to analyze the TRAIN.CSV file containing information about Titanic passengers

to observe patterns and correlations in the data based on the survival of individuals. The testing task

required participants to analyze the TEST.CSV files, which contained a different set of passengers and

no details about their survival, and use their analysis from the preliminary tasks to predict whether

individuals survived the shipwreck. While we provided solutions to the final tasks, the intent of this

study was not to scrutinize the correctness or efficiency of solutions but to investigate how participants

recommended tools to each other to solve the problems.

Study Design

Pairs of subjects were provided with one machine to work together to complete the tasks. The experiment

machine was a Windows 10 laptop with several data analysis programs installed including Microsoft

Excel 2016,3 JMP Pro 12,4 MySQL Workbench 6.3,5 Python 2.7,6 PyCharm,7 R (command line and GUI),8

and RStudio.9 Participants were permitted to request and download additional free and publicly available

software applications to analyze the data, however they were prohibited from using the Internet to

complete the tasks to prevent looking up information about the problem and requiring participants

to only rely on their own knowledge of tools to complete the tasks. Screen and voice recordings of

participants completing the task were captured to further observe and analyze characteristics of tool

recommendations between pairs.

Additionally, participants weer asked to provide qualitative data after sessions to further analyze

peer interactions observed during studies. To debrief participants, we emailed a survey (students) and

2https://www.kaggle.com/c/titanic
3https://products.office.com/en-us/excel
4http://www.jmp.com/en_us/home.html
5http://www.mysql.com/products/workbench/
6https://www.python.org/
7https://www.jetbrains.com/pycharm/
8https://www.r-project.org/
9https://www.rstudio.com/
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conducted a semi-structured interview (LAS) to ask subjects about tool recommendations that occurred

during the study. The guiding questions for the semi-structured interview are available in Appendix A.1.3.

Additionally, participants were asked to complete a demographic survey (Appendix A.1.6) to collect

information about our study population.

4.1.3.2 Determining the effectiveness of peer interactions

Two independent researchers viewed the recordings from each study session to note instances of tool

recommendations, categorize the recommendation based on our peer interaction characteristics, and

determine the outcome of the recommendation. We iteratively define coding criteria for identifying

and characterizing instances of peer interactions. Each recording was analyzed to determine:

• when a tool recommendation took place

• if the recommendation was effective

• if the recommendation was polite, persuasive, receptive, under time pressure, or made about

observable tools

More details about the specific information collected for each peer interaction observed in this

evaluation are provided in Appendix A.1.4. Below, I describe our process for identifying peer interactions,

determining the existence of each characteristic, and evaluating the effectiveness of recommendations.

Identifying peer interactions

To identify peer interactions between participants, I developed a model to define tool recommendations

based on the GOMS (Goals, Operators, Methods, and Selection rules) model in Human-Computer

Interaction [Dia03]. This model, shown in Figure 4.1, outlines how we recognized peer interactions

between two participants. Each node indicates a step required to denote an instance of a peer interaction.

To describe this model, I use terms for developers in a pair programming environment where the user

actively operating the keyboard and mouse is the driver and the peer observing is the navigator [Coc01].

During task analysis, both users consider the problem and develop a strategy to complete the task.

Task execution refers to users discovering a mismatch between their task solution strategies. For peer

observations, the navigator observes the driver completing the task using an unfamiliar tool. Peer

recommendations occurs when the navigator notices deficiencies in the driver’s approach and desires

to suggest a better strategy. Finally, in the dialogue step a tool is recommended between the users. We

transcribed recommendations to analyze the dialogue and determine the type of recommendation.

For example, during peer observations the navigator may inquire about the driver’s unknown tool. For

peer recommendations, the navigator would suggest a tool to complete the task more efficiently or

the may driver seek help. Two researchers independently analyzed the recordings of participant pairs

completing the tasks and used this model to determine instances of peer interactions between partners.
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Task Analysis Task Execution Dialogue

Figure 4.1 Model to identify peer interactions between participants

Characterizing peer interactions

After identifying tool recommendations between participants, the two coders analyzed each peer inter-

action instance to determine if each of our peer interaction characteristics, politeness, persuasiveness,

receptiveness, time pressure, tool observability, and interaction type, play a role in the effectiveness of

recommendations. We used a valence scale to calculate scores for categorizing recommendations based

on politeness (polite, neutral, impolite), persuasiveness (persuasive, unpersuasive), and receptiveness

(receptive, neutral, unreceptive) according to our criteria defined for each trait (see Tables 4.1-4.3):

+1 Participant obeyed a specific characteristic criteria

0 Participant neither obeyed nor violated a specific characteristic criteria

-1 Participant violated a specific characteristic criteria

This scale was used by the coders to classify peer interactions individually, then we came together

to discuss and resolve disagreements. A positive result indicates the existence of a characteristic, while

a negative sum signifies the characteristic was not present. The definitions of the scoring criteria imple-

mented to identify these characteristics, which we arrived at iteratively, is available in Appendix A.1.5.

We used Cohen’s Kappa to calculate the inter-rater agreement for politeness (κ = 0.50), persuasiveness

(κ = 0.28), and receptiveness (κ = 0.51). A binary scale was implemented to measure time pressure (time

pressure, no time pressure) and tool observability (observable, non-observable) based on the criteria in

Tables 4.4 and 4.5 as well as the type of peer interaction.

Determining effectiveness

After identifying instances of software tool recommendations between participants, the two coders

analyzed each interaction to categorize them as effective, ineffective, and unknown. Effective recom-

mendations indicate the recommendee, or participant receiving the tool suggestion, used a tool after it

was suggested by their partner for a majority of the relevant tasks. For ineffective recommendations, the

recommendee mostly ignored the tool suggested by their partner when given the opportunity to apply

it. Finally, since the study consisted of two participants working together on the same computer, there

were cases of unknown recommendations where there was no opportunity for the recommendee to use

the suggested tool for the rest of the study session. To resolve disagreements between the two coders,

we watched the recording clip of the peer interaction instance in question together, each explained

our reasoning behind our individual coding, discussed the rationale for each code, and came to an

agreement.
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Figure 4.2 Peer Interaction Characteristic Results

4.1.4 Results

We identified a total of 142 peer interactions from our user study, categorizing 71 as effective, 35 as

ineffective, and 36 as unknown. Study pairs averaged approximately 11 tools recommended between

participants within each session. To quantitatively analyze the data collected from the experiment, the

Mann-Whitney-Wilcoxon (W) test was used to evaluate ordinal data (politeness, persuasiveness, and

receptiveness) and Pearson’s chi-squared (χ2) test was used to evaluate categorical data (time pressure

and tool observability). All statistical tests were calculated with an alpha level of α= .05 and odds ratios

(OR) were used to measure effect size.

4.1.4.1 Characteristics

Each of the peer interactions observed between participants were categorized based on the peer interac-

tion characteristics and their overall effectiveness. Figure 4.2 displays the number of recommendations

that meet each of the characteristics for peer interactions we observed, and Table 4.6 displays the

effectiveness of recommendations based on the peer interaction characteristics.

Politeness

Our analysis shows the majority of participants did not make polite recommendations according to our

politeness criteria, classifying 27 tool recommendations between peers as polite, 11 as impolite, and 104

as neutral. Overall, while polite recommendations were more likely to be adopted than impolite ones

(O R = 0.6786), politeness did not significantly impact the outcome of peer interactions (W, p = 0.4936).

Persuasiveness

Additionally, we discovered participants were rarely persuasive during peer interactions; there were

only 14 persuasive recommendations in total while 128 were unpersuasive according to our study

criteria. While prior work suggests persuasiveness is an important characteristic for convincing users
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Table 4.6 Peer Interaction Effectiveness Results

Effective Ineffective Unknown
n % n % n %

Politeness
Polite 14 52% 5 19% 8 30%
Neutral 52 50% 27 26% 25 24%
Impolite 5 45% 3 27% 3 27%
Persuasiveness
Persuasive 5 36% 4 29% 5 36%
Unpersuasive 66 52% 31 24% 31 24%
Receptiveness*
Receptive 39 61% 9 14% 16 25%
Neutral 27 48% 14 25% 15 27%
Unreceptive 5 23% 12 55% 5 23%
Time Pressure
Yes 7 37% 7 37% 5 26%
No 64 52% 28 23% 31 25%
Tool Observability
Observable 57 50% 30 26% 28 24%
Non-Observable 14 52% 5 19% 8 30%
Recommendation Type
Peer Observation 16 30% 5 9% 32 60%
Peer Recommendation 55 62% 30 34% 4 5%
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to adopt desired behaviors, this characteristic did not significantly influence the effectiveness of tool

recommendations between participants (W, p = 0.4556, O R = 1.4722).

Receptiveness

We found most of the peer interactions in our study incorporated receptiveness, categorizing 64 as

receptive, 56 as neutral, and 22 as unreceptive. Overall this characteristic had a high rate of effectiveness,

with 61% of receptive peer interactions leading to the adoption of the recommended tool. Furthermore,

we found receptiveness significantly impacts the outcome of tool recommendations between peers (W,

p = 0.0002, O R = 0.2840). We expand on this finding in the Summary.

Time Pressure

Only 19 peer interactions observed between participants were categorized as being under time pressure.

Similar to prior work, we found tool recommendations between peers without time pressure were more

effective (52%) and more than twice as likely to be accepted by participants compared to those where

time pressure was present (O R = 2.2857). However, this characteristic did not play a significant role in

the outcome of peer interactions (χ2, p = 0.1470).

Tool Observability

Observable tools were far more recommended during peer interactions in our study, with 115 recom-

mendations compared to 27 non-observable tools. However, we found non-observable tool recommen-

dations were slightly more effective (52%). Examples of observable tools recommended in our study

include applications such as R and software features like Sort and pivot tables in Excel. Non-observable

tools were primarily keyboard shortcuts. We found that the observability of tools did not significantly

impact the effectiveness of recommendations (χ2, p = 0.4928, O R = 2.4060).

Peer Interaction Type

In our analysis, we found that peer recommendations (n = 89) occurred more often than peer observa-

tions (n = 53). This indicates software users are more likely to make suggestions for tools and features

as opposed to observing a tool and seeking information. Although tools recommended through peer

recommendations are more likely to be adopted by users than peer observations (62%), this difference

was not statistically significant (χ2, p = 0.3163, O R = 0.5729).

4.1.4.2 Summary

Our results were unable to show that politeness, persuasiveness, time pressure, observability, and inter-

action type influence tool recommendations between peers. However, we discovered that receptiveness

was the only characteristic to significantly impact the outcome of peer interactions. Thus, we conclude

no matter how polite, persuasive, time-constrained, or visible a recommendation for a system is, users
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will not adopt a tool unless they are receptive to using it. The receptiveness characteristic is also the most

difficult to implement, since it solely depends on how recommendees receive and respond to sugges-

tions, which recommenders cannot control. Our findings suggest peer interactions are effective because

of their ability to foster user receptivity. To define receptiveness, we used criteria from prior work [Fog09]

that suggests users must demonstrate desire and familiarity to be receptive to recommendations. We

further expound on these criteria in the Discussion.

4.2 Naive Telemarketer Design

The naive telemarketer design is a basic approach for making automated recommendations to soft-

ware engineers. This technique is referred to as a telemarketer design because behaves similar to a

telemarketer that “calls” users to deliver static messages, never deviates from the script, and lacks the

social context necessary to adjust messages, customize recommendations, or respond to questions and

feedback. I developed this technique to define a baseline approach for recommending useful developer

behaviors to programmers, such as static analysis tool adoption. With the naive telemarketer design, a

system sends developers a generic message with information about a tool, provides a random example

featuring a code snippet incorporating a common programming error irrelevant to the program, and

provides the sample output from the tool given this vague error. To evaluate this naive design, I devel-

oped a simple bot to identify a baseline for making automated recommendations to software engineers

and to better understand how developers respond to recommendations from automated systems.

4.2.1 Study Rationale

While peer interactions are the most effective method of tool discovery, Murphy-Hill and colleagues also

discovered they occur infrequently in the workplace [MH11]. Furthermore, Turkle argues technology

has become a substitute for face-to-face communications between humans [Tur17]. Thus, as peer

interactions are in decline, it is becoming increasingly important to develop automated systems to

recommend developer behaviors. Software engineering research shows bots are useful for automating a

variety of programming tasks to improve developer productivity [Sto16]. However, studies also show

bots can also be inconvenient and frustrating during interactions with humans [Hil15; Sta86]. To better

understand the impact of bots on recommendations to developers, we evaluated the naive telemarketer

design baseline approach in tool-recommender-bot, an automated system for making development

tool recommendations to software engineers on GitHub. In this study, we examined the effectiveness

of recommendations from tool-recommender-bot and gathered feedback from developers who

received suggestions from thus system to better understand the impact of automated recommender

bots and set the groundwork for designing better solutions in future approaches.

4.2.1.1 Research Questions

In this work, we explored the effectiveness of automated recommendations from bots by using the naive

telemarketer design to discover:
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RQ1 How well do bots encourage developers to adopt useful software engineering practices?

RQ2 How do developers respond to receiving recommendations from bots?

In this evaluation, the goal was to initiate and then identify reactions from developers to evaluate

the naive telemarketer design recommendations in tool-recommender-bot. The results suggest bots

with limited technical knowledge and generic recommendations are ineffective for influencing pro-

grammer behavior, and responses from developers provide insight into tool-recommender-bot was

inadequate and implications for improving future systems. This work contributes the naive telemar-

keter design, a simple method that provides a baseline for designing automated recommendations,

tool-recommender-bot, a bot that incorporates the naive telemarketer design to recommend static

analysis tools to developers, to motivate the need for new automated recommendation approaches.

4.2.2 tool-recommender-bot: Implementing the naive telemarketer design

To evaluate the naive telemarketer design, I developed tool-recommender-bot to generate automated

tool recommendations to developers. This bot integrates the naive telemarketer design by automatically

making generic recommendations and adding static analysis tools on repositories using automated

pull requests on GitHub. Pull requests are the preferred method to propose changes to GitHub repos-

itories [Gitb], and prior work suggests automated pull requests are useful for upgrading out-of-date

dependencies [Mir17a] and fixing static analysis tool violations [Car20]. The initial implementation of

tool-recommender-bot in this evaluation naively recommends ERROR PRONE, an open source Java

static analysis tool,10 to developers on GitHub (see Figure 4.3a). To automatically integrate ERROR PRONE

into projects, tool-recommender-bot adds the ERROR PRONE plugin to repositories that utilize the

Maven automation and dependency management tool for Java applications by updating the Project

Object Model (pom.xml) build configuration file to run the tool when the code compiles (Figure 4.3b).

Figure 4.4 provides a closer look at the automated pull request recommendation text from this

system to show how the naive telemarketer design is implemented in tool-recommender-bot. First,

the recommendation provides generic information about the ERROR PRONE Java static analysis tool

(Fig. 4.4.A). Then, the bot also presents a simple example of a Java coding error, using the “==” operator

to evaluate string equality instead of the String.equals() function (Fig. 4.4.B1), and provides the

corresponding output from ERROR PRONE based on the given StringEquality error11 (Fig. 4.4.B2).

Ineptly, this simple error may not be present in the program and is irrelevant to the code base of project.

An example pull request from our system using the naive telemarketer design on our repository can be

found here12 and is available in Appendix A.2.1.

4.2.3 Methodology

To observe the naive telemarketer design as a baseline for automated recommendations, I designed

a mixed methods study to analyze the effectiveness of tool-recommender-bot recommendations

10http://errorprone.info/
11http://errorprone.info/bugpattern/StringEquality
12https://github.com/CSC-326/JSPDemo/pull/2
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(a) Pull request recommendation text (b) Pull request diff updating a pom.xml file

Figure 4.3 Example automated pull request from tool-recommender-bot

and collect feedback from developers to further evaluate this simple approach and gain insight into

improving future automated recommender systems.

4.2.3.1 Data Collection

Projects

To evaluate the baseline naive telemarketer design approach, tool-recommender-bot sent automated

recommendations to developers working on real-world software applications. The projects used for

the evaluation were public open source software repositories on GitHub randomly sampled from the

evaluation for Repairnator [Url18], an automated program repair bot.13 To be eligible for this experiment,

projects selected for the study had to meet the following criteria:

• written in Java 8 or higher,

• successfully validate and compile with Maven,

• do not already include ERROR PRONE in the build configuration

Due to the fact that ERROR PRONE analyzes Java code, our evaluation was limited to projects written

in that programming language. To determine projects that build with Maven, we checked to ensure

repositories contained a pom.xml file in the highest-level directory and confirmed the project could be

validated and compiled before adding the tool plugin. We also verified that projects did not already utilize

ERROR PRONE by analyzing pom.xml files to make sure the ERROR PRONE plugin was not present to avoid

making recommendations to projects that already use the tool and target developers less likely to know

about it. Overall, we identified 52 projects that met these criteria to use for this study. The list of GitHub

repositories used in the evaluation of the naive telemarketer design in tool-recommender-bot is avail-

able in Appendix A.2.2. These selected projects that received automated pull request recommendations

from our bot varied in functionality, programming language, contributions, and size.

13https://github.com/Spirals-Team/repairnator/blob/master/resources/data/results-buildtool.
csv
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Figure 4.4 Naive Telemarketer Design recommendation

4.2.3.2 Determining the effectiveness of naive telemarketer design recommendations

To evaluate the naive telemarketer design, we categorized recommendations as effective and ineffective

based on the status of automated pull requests from tool-recommender-bot. On GitHub, developers

have the option to merge pull requests and incorporate them into the repository14 or close pull requests

without merging them.15. Additionally, developers can also ignore pull requests by leaving them open.

For our evaluation, merged automated pull requests indicated an effective recommendation because

developers showed a willingness to try ERROR PRONE and adopt the recommended tool into their

repository by merging the changes from tool-recommender-bot into their code base. For example, in

the pull-based software development model, merged pull requests indicate contributions from external

developers are approved to be integrated into the source code for a repository [Gou14b]. Alternatively,

closed or ignored pull requests implied the recommendation was ineffective. The naive telemarketer

design pull request recommendations were monitored for one week to categorize the recommendations.

To assess the baseline naive telemarketer design automated recommendation approach, we cal-

14https://docs.github.com/en/enterprise-server@2.22/github/collaborating-with-issues-and-
pull-requests/merging-a-pull-request

15https://docs.github.com/en/enterprise-server@2.22/github/collaborating-with-issues-and-
pull-requests/closing-a-pull-request
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culated the rate of effectiveness was calculated by measuring the percentage of merged pull requests

out of the 52 tool-recommender-bot recommendations sent. Additionally, we aggregated comments

from GitHub developers on pull requests to analyze how programmers reacted to receiving a naive

telemarketer design recommendation on their repository. In tool-recommender-bot automated pull

requests, our bot encouraged developers to provide feedback on recommendations by asking developers

to “Please feel free to add any comments below explaining why you did or did not find this recommend-

ation useful”. This qualitative data was compiled and analyzed to determine how developers reacted to

receiving naive telemarketer design recommendations from a bot and collect feedback on this simple

approach.

4.2.4 Results

The tool-recommender-bot system sent 52 automated pull requests recommending ERROR PRONE

to developers on GitHub using the naive telemarketer design. On these recommendations, we received

a total of 24 comments from developers or other automated systems. To analyze the data collected,

we calculated the merge rate of pull request recommendations from tool-recommender-bot and

examined feedback from programmers to determine effectiveness.

Table 4.7 tool-recommender-bot Effectiveness Results

n Merge Rate
Merged 2 4%
Closed 10 19%

No Response 40 77%

4.2.4.1 Recommendation Effectiveness

Our findings show that the naive telemarketer design is not effective for influencing developer behavior

(see Table 4.7). In this evaluation,tool-recommender-botwas only able to make two successful recom-

mendations out of 52 total notifications (4%). The remaining automated pull requests, 10 closed and 40

receiving no response from developers, resulted in an overwhelming 96% of tool-recommender-bot
recommendations categorized as ineffective. Furthermore, while two recommendations from our sys-

tem were merged, in one case a GitHub issue was created to report problems with the project build

based on the changes by tool-recommender-bot and the pull request was reverted in a later pull

request to remove ERROR PRONE from the project. Even though the tool was eventually removed, we

still categorize this instance as an effective recommendation because the developers accepted the pull

request and tried the tool before removing it.
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4.2.4.2 Feedback

Overall, we observed 24 total pull request comments on 17 unique projects that received recommen-

dations from tool-recommender-bot. Of the 24 comments, six were made by automated systems

on the pull requests to provide information for first-time contributors, request Contributing License

Agreement (CLA) signatures, or present code coverage updates. Thus, we received 18 responses from 15

individual developers on 14 recommendations, most of which was negative feedback. Additionally, of

the recommendations that received feedback from developers through pull request comments (n = 14),

86% were ineffective and immediately rejected and closed by users (n = 11) or left open and never

revisited by a developer (n = 1).

While we received some positive reactions from developers on tool-recommender-bot recom-

mendations, even on those that were not merged (i.e. “lgtm, Good Contribution” (P9), “Thanks for

sharing it”(P13)), the majority of feedback was poor (i.e. “Please stop using automated tools with a

lack of understanding against random repos on github.” (P6), “Automated advertising is spam!” (P8)).

Overall, the analysis of developer comments posits the main criticisms from developers were about

breaking builds (n = 8) and messing up the pom.xml formatting (n = 5). We further investigate this

feedback to provide themes describing why the naive telemarketer design in tool-recommender-bot
was ineffective.

4.2.5 Summary

Our results suggest simple bots are ineffective for influencing the behavior of developers. Most naive

telemarketer design recommendations were ineffective, ignored or rejected by developers. This motivates

the need for new design approaches and improvements to recommender bots to enhance recommen-

dations and encourage developers to adopt better behaviors. Based on feedback from developers who

received naive recommendations from tool-recommender-bot, we discovered the main drawbacks

of the naive telemarketer design are a lack of social context and interrupting developer workflow. These

concepts are explained and further outlined in the Discussion section.

4.3 Discussion: Developer Recommendation Preconditions

Based on the results from these preliminary studies, we uncovered four concepts useful for designing

automated behavioral recommendations to developers based on the efficacy of peer interactions and in-

adequacy of the naive telemarketer design: desire, familiarity, social context, and developer workflow.

At a minimum, automated recommender systems must incorporate these developer recommendation

preconditions in order to make convincing recommendations for software engineers. Below we explore

each concept, providing definitions, examples from the completed evaluations, and illustrations from

existing software engineering literature.
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4.3.1 Desire

Demonstrating desire, or users expressing eagerness to adopt recommended tools and practices, led to

effective recommendations between participants in the peer interactions user study. For example, in

peer interaction observed during the study participant L12 recommended using the multi-level sorting

functionality in Excel. Their partner, L11, demonstrated a desire to use this feature by responding “Oh!

Add level! Yes, awesome!”, and the multi-level sorting tool was adopted for completing the rest of the

study tasks. Meanwhile, in another session one participant recommended using R for analyzing data to

complete a task, but their partner responds “No, no, no...” (S14). This suggests recommending desirable

tools and behaviors can increase adoption among developers, while a lack of desire can negatively

impact the outcome of a recommendation.

Software engineering research also suggests desire impacts the adoption of activities and behavior

by developers. For instance, Senyard and colleagues suggest desire is important for motivating program-

mers to contribute to and maintain successful open source software projects [Sen04]. Furthermore,

Murphy-Hill and colleagues found that one barrier to the adoption of useful development tools and

practices is developer inertia, which refers to when programmers are unwilling to switch from their

current workflow and do not desire to share or learn about new software engineering tools because

they “feel that they do not need to discover a new tool because existing tools will do the job” [MH15].

Prior work proposes using history-based recommender systems to track user behavior and recommend

desirable tools based on their activity [MH12b, p. 16]. To effectively recommend developer behaviors

useful for completing programming tasks, recommendations must include desirable and advantageous

tools and practices to encourage adoption by developers.

4.3.2 Familiarity

Another takeaway from the peer interactions user study is that users are more likely to adopt recommen-

dations for well-known and recognizable tools and concepts. We observed comments from participants

explicitly expressing familiarity and knowledge about recommended tools or their functionality. For

instance, in one interaction when L8 recommended using the COUNTIF function in Excel, L7 was familiar

with the feature and navigated to the menu to adopt the tool replying “Yeah...here we go”. On the other

hand, we found unfamiliar tools negatively impacted recommendations. For example, when a S10

proposed using R to complete a task, their partner responded “I don’t know R” (S9), and the partner’s

unfamiliarity with R led to an ineffective recommendation. According to our results, recommending

familiar tools can increase the effectiveness of recommendations for developer behavior. This points to

a need to incorporate familiar concepts to developers when recommending beneficial development

tools and practices.

There are several ways familiarity can impact behavior adoption. For example, familiarity can also

lead to developer inertia, where programmers prefer familiar tools and processes over of adopting new

systems. Prior work also suggests increasing employee knowledge about their workplace and envi-

ronment, or work familiarity, improves their performance [Goo92]. In software engineering, research
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shows familiarity impacts the completion of tasks and coordination among distributed development

teams [Esp02], increasing code comprehension, or familiarity with code, improves development prac-

tices [Ko06], and unfamiliarity in the Eclipse16 development environment led to disorientation and

decreased productivity [DA06]. To incorporate familiarity, prior work propose using history-based

systems ranking commands based on similarity using collaborative filtering [MH12b]. Additionally,

existing recommender systems posit organization-wide learning [Lin00b] and collecting user history

from networked workstations [Mal95] to suggest tools used by colleagues in similar circumstances.

4.3.3 Social Context

The results from the naive telemarketer design study show this approach was ineffective because of

its lack of social context. This refers to the standard practices and community activities necessary

to participate in software engineering by interacting with developers and contributing to projects.

Examples of these activities include adhering to formatting and style guidelines, participating in code

review discussions, and agreeing to CLAs. The most common complaint we received from GitHub users

on tool-recommender-bot recommendations related to social context was that this system did not

follow project style guidelines and disconfigured the whitespace of pom.xml files when automatically

adding the ERROR PRONE plugin (see Figure 4.3b). For example, developers replied “The automated tool

you use messed up the pom.xml formatting to an extent that I could not see it” (P5) and “This change

removes quite a lot if important things from the POM file” (P7), even though tool-recommender-bot
only added the ERROR PRONE plugin and nothing was removed from configuration files. This suggests

our bot’s inability to conform to the social context surrounding software development discouraged

developers from adopting recommendations.

Social aspects of computing play a major role in making recommendations to developers. For

example, prior work argues software engineering is a social activity [Ahm08], peer interactions between

colleagues are the most effective mode of tool discovery [MH11], social media has changed the way

developers learn about and share new information [Beg10; Sin14], and social factors influence the

adoption of security development tools [Xia14]. Furthermore, research shows integrating into social

context impacts the effectiveness of automated recommendations. For example, Wessel and colleagues

evaluated the usage of bots in open source software and found that problems integrating into social

context, specifically limited decision-making abilities and poor communication and feedback, were

the biggest challenges developers face during interactions with bots [Wes18]. Prior work also found

that systems emulating humans receive better responses from developers and are more effective than

recognizable bot accounts [Mur16b]. Thus, effectively integrating recommendations into the social

context of software engineering can improve the adoption of development practices and tools.

16https://www.eclipse.org/ide/
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4.3.4 Developer Workflow

The second theme derived from user feedback on tool-recommender-bot was that the naive telemar-

keter design approach disrupted developer workflow, or the existing processes used by programmers to

complete development tasks and deliver software. The most notable example of this was the fact that au-

tomated pull requests recommendations for ERROR PRONE often broke continuous integration builds for

repositories (see Figure 4.5). However, adding a new static analysis tool to projects often introduced er-

rors and caused the existing infrastructure to fail. Out of the 52 pull requests made, at least 17 resulted in

a broken build. Many developers complained about this in their feedback on tool-recommender-bot,

saying the pull requests “has introduced erroneous behavior to the build.” (P10), “Thanks for the con-

tribution, but given the number of errors, I think it would cause more harm than good ;)” (P11), and

“Your change itself looks good, but it seems CI’s failing somehow” (P12). Furthermore, P5 and P7 were

both concerned about the impact on the overall build time. This inability to smoothly integrate into the

workflow of developers prevented users from adopting naive telemarketer design recommendations

from tool-recommender-bot.

Software engineering literature also notes the importance of integration into the workflow of develop-

ers. For example, research shows that developers at Google and Facebook primarily ignore static analysis

tool warnings that are not integrated into their development workflow [Sad18; Dis19]. Additionally,

Johnson and colleagues report the primary reasons software engineers avoid static analysis tools are due

to their lack of customizability and poor integration into their existing processes [Joh13]while Rahman

et al. show that considering the existing workflow of development teams influences software engineers’

adoption of continuous integration and build automation tools [Rah17]. Furthermore, Tonder suggest

successful integration of bots with human workflows is important for improving the effectiveness of

program repair bots [Ton19]. To improve recommendations for developer behaviors, systems should

suggest tools without breaking existing development mechanisms and easily integrate into the workflow

of developers.
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Figure 4.5 Example of tool-recommender-bot causing project builds to fail
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CHAPTER

5

DEVELOPING THE CONCEPTUAL

FRAMEWORK

The preliminary evaluations investigate what makes effective developer recommendations by exploring

the effectiveness of peer interactions and the failures of the naive telemarketer design. Altogether, these

studies posit four developer recommendation preconditions, or aspects necessary to make effective rec-

ommendations to programmers, desire, familiarity, social context, and developer workflow. However,

as opportunities for peer interactions decline and bots produce inadequate suggestions, how can these

prerequisites be incorporated into automated recommendations to encourage developer behaviors?

This chapter introduces developer recommendation choice architectures, a state-of-the-art approach

to design automated systems by presenting desirable and informative recommendations to developers

within their development environment and workflow.

5.1 Developer Recommendation Choice Architectures

Choice architecture refers to the organization of the context in which humans make decisions [Tha13].

To improve the decision-making of humans, Johnson and colleagues posit 11 practical tools for choice

architects, or “anyone who present(s) people with choices”, valuable for structuring decisions and

describing options to encourage the adoption of target behaviors [Joh12]. In this work, I view software

engineering researchers and toolsmiths are also choice architects, creating tools and practices requiring

developers to make decisions while developing and maintaining software applications. Thus, I argue

the presentation and organization of these decisions to developers impacts the choices they make in

their work.
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To further improve software engineering bots, I introduce developer recommendation choice ar-

chitectures, a conceptual framework to design automated recommendations from bots. This approach

is motivated by the findings from the preliminary studies (Chapter 4), software engineering literature,

and prior work in nudge theory. To devise this framework, I analyzed the tools for choice architecture

and apply these concepts in a development context. This mapping, presented in Table 6.1, derived three

principles for designing developer recommendations: actionability, feedback, and locality. By incor-

porating these concepts into automated notifications, we can improve the way decisions are presented

to developers and encourage adoption of useful tools and practices. For the remainder of this chapter,

we provide definitions, motivation, and example for each principle and present a formative evaluation

of this framework exploring actionable recommendations.
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Table 5.1 Developer Recommendation Choice Architectures

Choice Architecture Tool [Joh12] Definition

Actionability
Technology and decision aids Introducing technology to aid decision makers in choice tasks
Use defaults The way decision makers initially encounter choice tasks

Feedback

Reduce number of alternatives Limiting the number of choice options presented to decision makers
Focus on satisficing Helping users consider outcomes that lead to higher choice satisfaction
Attribute parsimony and labeling Limiting the number of characteristics presented with options
Translate and rescale for better evaluability Presenting attributes to increase impact and clarity
Customized information Personalization to account for individual differences between decision-makers
Focus on experience Considering the background and knowledge of decision-makers

Locality
Limited time windows Providing time restrictions for users to make decisions
Partitioning of options Groups or categories of options or attributes
Decision staging Dividing decisions into multiple stages
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5.1.1 Actionability

Actionability refers to the ease with which developers can adopt behaviors presented in recommenda-

tions. Nudge theory research suggests actionability is a key concept for encouraging humans to make

better decisions. For example, Thaler and Sunstein suggest a simple nudge is to make target behaviors

easy to apply because “many people will take whatever option requires the least effort, or the path of

least resistance” [Tha09, p. 85]. Similarly, Johnson suggests incorporating technology aids and using

defaults are actionable ways to influence human behavior. For example, Madrian and Shea implemented

the default rule to nudge employees to enroll in retirement plans. By having users automatically opt-in

to 401k plans instead of requiring manual signing up, they discovered increased enrollment, with 98%

of new employees selecting a plan within 36 months, and improved money-saving behaviors [Mad01].

In the naive telemarketer design evaluation, we found developers disapproved of recommendations

from tool-recommender-bot because of their deficiencies integrating into development workflows

and making more work for developers. For example, P3 commented “This introduces a bunch of errors,

can you check whether they are worth fixing or configure the plugin so as to ignore the false positives?”.

Software engineering research also shows actionability is important to developers for adopting develop-

ment tools and practices. For instance, Heckman and colleagues examined the concept of actionability

through static analysis notifications in AAITs (actionable alert identification techniques) to help develop-

ers identify and resolve defects [Hec11]. Additionally, Evans and colleagues show that by automatically

turning on security analyses in the SPLIT static analysis tool1 increased the amount of security vulnera-

bilities fixed [Eva02]. We propose actionable development tool and behavior recommendations can

increase adoption from developers.

5.1.2 Feedback

The feedback principle refers to providing clear and relevant information to developers. Sunstein and

Thaler note “the best way to help Humans improve their performance is to provide feedback” and

“choices can be improved with better and simpler information” [Tha09, p. 92, 204]. Johnson suggests

practical techniques for improving feedback to decision-makers during choices such as limiting the

number of options, presenting desirable outcomes, adding labels, reducing the attributes of choices,

providing comprehensible content for choosers to evaluate, customizing information and messages, and

relating to knowledge and experiences [Joh12]. Behavioral science research shows enhanced feedback

on decisions improves human behavior. For instance, most people order familiar and repeated meals

at fast food restaurants, however nudges such as providing information on the amount of calories in

food and customized recommendations for daily caloric intake encouraged consumers to purchase

unfamiliar and healthier meals [Wis10].

The results from the peer interactions study suggest providing information about desirable outcomes

and targeting familiar concepts of tools and behaviors can incorporate receptiveness into recommen-

dations. Similarly, the naive telemarketer design study found generic and irrelevant recommendations

1https://splint.org/
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from tool-recommender-botwere unproductive, violating social context, and respondents longed for

details that “would actually help” and “attach[ing] a report with actual findings in our code instead of just

some generic example” (P7). Software engineering research also suggests feedback to developers factors

in influencing their behavior. For instance, Barik and colleagues examined the structure of compiler

error messages on how developers resolved problems [Bar18]. Furthermore, Cerezo and colleagues

suggest that user-driven communication can improve the perception of chatbots compared to bot-driven

techniques [Cer19]. To improve the effectiveness of automated recommendations to software engineers,

we believe providing useful information and feedback will improve the likelihood developers adopt

useful behaviors.

5.1.3 Locality

Locality refers to the setting of recommendations in the context of developers completing programming

tasks. Johnson presents several tools for incorporating choice architecture into the setting of choices,

including restricting the amount of time for users to make decisions, organizing options into groups,

and dividing decisions into multiple states [Joh12]. Prior work studying RSSEs also suggests when and

what to recommend are challenges for automated recommender systems [Hap08]. To describe locality

in recommendations for developers, we divide this concept into two subcategories: spatial and temporal

locality.

5.1.3.1 Spatial:

Spatial locality refers to the location where developer receive recommendations. Behavioral science

research suggests the location of options matters when encouraging humans to adopt beneficial be-

haviors. For example, Hanks found that by changing the location of vegetables and fruits in a high

school cafeteria, they found an increase in the amount of healthier foods purchased and consumed

by students [Han12]. The preliminary studies also suggest location matters in recommendations. For

example, in the peer interactions study a participant recommended the Find and Replace functionality

in Excel and their partner responds “Where’s the find and replace?” (S12), displaying their unfamiliarity

with the feature.

Software engineering research shows the placement of decisions impacts the behavior of program-

mers, as developers prefer notifications located in convenient locations. For example, in a collaboration

with Smith et al. we developed FLOWER, an Eclipse code navigation plugin created to help developers

avoid disorientation by incorporating in situ design principles to prevent users switching between

views during code search. We found the location of suggestions within the coding editor of the IDE

led to increased efficiency with branchless navigation for developers to find security vulnerabilities

and received positive feedback from participants [Smi17]. Thus, I propose automated recommendation

systems for encouraging developer behaviors should situate suggestions in convenient and detectable

locations to improve the decision-making of software engineers.
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5.1.3.2 Temporal:

Temporal locality refers to the timing of recommendations made to developers. Nudge theory suggests

timing of decisions influences human decision-making. For example, an effective nudge for farmers in

Kenya was to change the time of year for fertilizer discounts, and this time-limited window encouraged

them to make purchases earlier and improve the harvest of crops [Duf11]. In the naive telemarketer

design study, developers mentioned the potential impact of adopting tool-recommender-bot recom-

mendations on the timing of their project builds led to ineffective recommendations. For example, P7

desired information about “the over head in terms of build time”. These naive recommendations also

came at inconvenient times for developers who did not have the bandwidth to fix additional issues and

breaking builds, such as one respondent who commented, “Can you fix the errors reported by your tool

in the build so that I can see the proposed changes?” (P17).

Software engineering research also shows that the timing of recommendation within programmers’

workflow is important for increasing adoption of developer behaviors. For example, Distefano examined

configuring static analysis tools to run at diff time, or on code contributions submitted by developers dur-

ing code review before being merged into the code base, and found that this rescheduling increased the

fix rate of reported bugs up to 70% compared to nearly 0% for times outside the development workflow,

such as assigning bug lists to developers overnight [Dis19]. Alternatively, untimely recommendations led

to programmers ignoring code navigation strategies from Spyglass [Vir09]. To improve the effectiveness

of automated recommendations, systems should make timely suggestions to programmers within their

workflow to increase their desire to adopt useful software engineering behaviors and practices.

5.2 Preliminary Evaluation

To explore the impact of developer recommendation choice architectures on the behavior and decision-

making of software engineers, I conducted a preliminary evaluation to provide an overview of actionable

recommendations. While this work focuses solely on actionability, the subsequent studies and future

work aim to study all of the conceptual framework principles.

5.2.1 Methodology

To evaluate actionability in automated recommendations, this study incorporates multiple methods of

analyzing survey responses to quantitatively evaluate developer preferences and qualitatively collect

feedback on actionable recommendations.

5.2.1.1 Data Collection

Participants

Professional software engineers were recruited to participate in this study. Overall, we received responses

from 15 software developers and participants had an average of 7.3 years of industry programming

experience.
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9 if status is True:
10 - print 'passed'
11 + print('passed')

Listing 1 Example of a PEP 3105 static analysis violation and fix

Study Recommendation

For this evaluation, we presented participants with recommendations to fix a PEP 3105 Python 3 style

warnings. This warning indicates Python print statements are are now print() functions in the latest

version of the programming language.2 For instance, line 9 of Listing 1 contains an example PEP 3105
violation. This simple recommendation also has larger implications for improving the behavior of

developers because, as of January 1, 2020, Python 2 is officially no longer supported. The programming

language announced there will be “no new bug reports, fixes, or changes” to the older version and

encouraged developers to upgrade to Python 3.3 Our sample recommendations proposed fixing PEP
3105 warnings and upgrading the code base to Python 3.

Survey

To investigate the impact of actionability in automated suggestions, we presented participants with

sample automated recommendations to fix PEP 3105 warnings and upgrade to the latest version of

Python. The survey presented participants with screenshots of two suggestions, one actionable and one

static, and asked participants to select which recommendation they preferred and provide reasoning

behind their choice. Additionally, we asked participants to input their years of professional development

experience and to provide general feedback on designing automated recommendations from bots. The

survey distributed to developers is available to view in Appendix B.1.1.

5.2.1.2 Determining the effectiveness of actionable recommendations

In this formative evaluation, we surveyed developers to investigate actionability in automated rec-

ommendations. The survey included actionable and static recommendations to fix PEP 3105 errors

and a message encouraging users to upgrade from Python 2 to Python 3. The static recommendation

presented to participants is displayed in Figure 5.1, while Figure 5.2 presents the actionable recommend-

ation. Based on the developer recommendation choice architectures design principles, both of these

recommendations incorporate the same feedback (information to promote repairing the PEP 3105
error, proposing a fix, and encouraging users to upgrade to Python 3), spatial locality (placed on Line 10

of a sample code snippet containing a PEP 3105 error), and temporal locality (located on an open pull

request before the code is merged).

2https://www.python.org/dev/peps/pep-3105/
3https://www.python.org/doc/sunset-python-2/
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Figure 5.1 Static recommendation to fix a PEP 3105 error

Figure 5.2 Actionable recommendation to fix a PEP 3105 error
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However, these sample notifications differ on the actionability of recommendations. The static

recommendation would require developers to re-submit a pull request to make the proposed change

(print(’passed’)). On the other hand, the actionable recommendation incorporates a “Commit

suggestion” button which allows developers to automatically commit the suggested fix for the PEP 3105
violation to their code. This technology aid makes the decision of whether or not to fix the error simpler

for developers by providing a solution and incorporating the ability to easily integrate the suggested code

changes into their workflow and code. We aim to discover how this design decision impacts developers’

preferences for adopting behaviors from automated recommendations.

5.2.2 Results

Our survey responses, presented in Table 5.2, reveal 100% of developers (n = 15) preferred the actionable

recommendation over the static approach. This indicates developers are much more likely to adopt

recommendations that make it easier to adopt suggestions. Developers also provided feedback praising

the actionable recommendation, reporting it “lets you automatically merge it” (P8), “appl[ies] the change

automatically” (P3), “provide[s] an actionable short cut” (P2), and “can directly commit the change

instead of having to do a manual commit” (P10). Thus, we conclude that actionability is an effective

approach for encouraging developers to improve their behavior.

Table 5.2 Survey Results on the Actionability of Recommendations

n Percent
static 0 0%

actionable 15 100%

5.3 Discussion

To improve developer decision-making, I present developer recommendation choice architectures, a

conceptual framework which incorporates concepts from nudge theory to design actionable, informa-

tive, and convenient automated recommendations. This approach, motivated by the preliminary studies

exploring effective developer recommendations as well as prior work in behavioral science and software

engineering, posits actionability, feedback, and spatial and temporal locality as key factors influencing

the adoption of developer behaviors. As choice architects, software engineering researchers and bot

developers can enhance the way decisions are presented to programmers by integrating this framework

into automated recommendation systems. To evaluate this approach, I conducted a formative evalua-

tion investigating the impact of actionability on developers’ perception of automated recommendations,

and found participants significantly prefer actionable notifications in contrast to static ones. By incor-

porating this framework into automated recommendations, the thesis of this dissertation argues that

systems can encourage the adoption of behaviors useful for improving code quality and productivity of
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developers (Chapter 1). The next two chapters present further evaluations of developer recommendation

choice architectures by analyzing existing recommender systems (Chapter 6) and introducing new tools

incorporating this framework (Chapter 7) to analyze its impact on the decision-making and behavior of

developers.
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CHAPTER

6

ANALYZING EXISTING

RECOMMENDATION SYSTEMS

Developer recommendation choice architectures is a framework to create automated recommenda-

tions improving how developers perceive and respond to suggestions by incorporating actionability,

feedback, and locality. The preliminary evaluation of this framework shows developers prefer action-

able recommendations, however each principle factors into recommendations to developers and their

overall impact on developer behavior remains unknown. To evaluate this approach, I first analyze the

framework within existing recommender systems. This chapter explains how GitHub suggested changes

adheres to the developer recommendation choice architectures principles and presents two studies

analyzing suggested changes to explore their impact on the style and impact of recommendations.

Additional study materials for these evaluations are available in Appendix C.

6.1 GitHub Suggested Changes

GitHub, a popular online code hosting site with millions of developers and billions of code contributions

each year [Oct], introduced the suggested changes feature as a public beta release in October 2018.

Since the announcement, the GitHub blog reports users have been “quick to adopt suggested changes”

into their code review processes with over 100,000 uses within weeks of the initial public beta release,

accounting for 4% of pull request comments and 10% of code reviewers during that time [Git18b]. This

system, illustrated in Figure 6.1a-c, allows developers to make recommendations for code improvements

to peers on GitHub during pull request reviews. The work presented in this chapter is the first research,

to my knowledge, to study the GitHub suggested changes feature.
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To use the GitHub suggested changes feature, a reviewer observes a deficient line of code on a

pull request, they can click on the plus (+) sign on the line of code in question, in this case Line 9, to

generate a pull request review comment (Figure 6.1a). Then, a text box is displayed for reviewers to

enter a comment and they can click the GitHub suggested changes icon ( ) to propose changes to the

line of code. Figure 6.1b presents an example recommendation, where the reviewer encourages the

developer not to use a single character variable name, which is discouraged in the Java programming

language for non-temporary variables,1, and recommends changing the variable name from int c to a

more descriptive identifier int count. Once the reviewer finishes their suggestion, they can click on

the “Start a review” button to submit their recommendation. Finally, the developer who submitted the

pull request can see the suggested change on their code, shown in Figure 6.1c, and has the ability to

commit, edit, or ignore the proposed modification. Clicking on “Commit changes” provides the ability

to automatically incorporate the proposed change into the pull request as a new commit.

GitHub suggested changes can also be considered a nudge, encouraging developers to improve

their code without providing incentives to apply reviewer suggestions (i.e. money) and allowing alter-

native changes to improve the code (i.e. int compute). Additionally, this system incorporates all of

the developer recommendation choice architectures presented in Chapter 5: it is actionable by pro-

viding the ability for developers to automatically apply recommendations from peers by clicking on

a button to commit suggestions (Figure 6.1c); provides informative feedback to users by providing a

specific improvement to the code with an optional comment (Figure 6.1b); has convenient locality with

recommendations appearing to developers on the exact line of code within their pull request and during

code reviews before contributions are merged into the code (Figure 6.1a). By evaluating the design of

this novel feature, I aim to explore the impact of developer recommendation choice architectures on

recommendations to developers within this system and provide implications for designing of future

recommender bots.

6.2 Recommendation Styles

Recommendation styles refers to techniques utilized by automated approaches for conveying developer

behavior recommendations to programmers. Prior work suggests styles of suggestions can impact the

decision-making and behavior of users. For example, Fischer argues active help systems that automati-

cally provide help to users are more effective than passive approaches [Fis84]. Additionally, software

engineering researchers have proposed a wide variety of recommendation tools and techniques to

encourage developers to adopt useful practices with diverse manners of presenting information to users,

such as badges [Tro18], Twitter [Sin14], software documentation [For02], live-coding [Bla14], crowd-

sourcing [Gor15], gamification [Bar16], idea gardening [Cao12], and Testing on the Toilet [MH19a].

1https://www.oracle.com/java/technologies/javase/codeconventions-namingconventions.html
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(a) New suggested changes feature on GitHub pull requests

(b) Reviewer adds comment and suggested change to modified line of code

(c) Developer can apply suggested change and commit to PR

Figure 6.1 Example of the GitHub suggested changes feature
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6.2.1 Study Rationale

To overcome decreasing opportunities for human-to-human recommendations and the increase of

distributed development teams, researchers have explored creating recommender systems for software

engineering to support programmer decision-making and improve the behavior of developers [Rob10].

However, studies such as [Hil15], and [Vir09] show that developers often find automated recommenda-

tions from systems ineffective. Additionally, the results of the naive telemarketer design study found that

the simple recommendation approach in tool-recommender-bot failed because of its lack of social

context and intrusiveness into development workflows. This work seeks to evaluate several system-

to-human recommendation approaches, including the popular GitHub suggested changes feature,

to discover their impact on the presentation of suggestions to programmers and gain insights into

improving future automated recommendation approaches.

6.2.1.1 Research Question

To discover the impact of GitHub suggested changes as a recommendation system for automated

recommendations, we sought to answer the following research question:

RQ How well does the suggested changes feature generalize to different styles of recommendations?

To answer this research question, I devised a user study that consisted of professional software engi-

neers evaluating static analysis tool recommendations from four different systems: GitHub suggested

changes, emails, GitHub issues, and GitHub pull requests. We analyzed these systems to evaluate the

design of these features for making recommendations to software engineers. The results show that

programmers preferred tool recommendations using suggested changes due to its content and design.

The goal of this study is to discover the impact of this feature, and hence the developer recommendation

choice architectures framework, on sharing information to developers and to provide implications

for improving recommendations to software engineers. This study contributes a user study exploring

different recommendation styles and a mock-up design for a future automated recommender system

incorporating GitHub suggested changes.

6.2.2 Styles

To analyze the recommendation style of GitHub suggested changes, this work compares mock automated

static analysis tool recommendations from this system to similar notifications given via emails, issues,

and pull requests. Little is known about suggested changes and their impact on recommendations to

developers, however the comparative systems examined in this evaluation were selected based on prior

work exploring them as a mechanism for recommendations and their influence in software engineering.

Additionally, I provide a breakdown of how each recommendation system analyzed during this study

fit within developer recommendation choice architectures in Table 6.1 (to see how GitHub suggested

changes support the framework, see Section 6.1).
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Email. Email is one of the most popular forms of communication today, with approximately 4 billion

users sending and receiving over 293 billion emails daily [Rij20]. Additionally, Sterne and colleagues sug-

gest emails are the most powerful tool to reach audiences and spread information in marketing [Ste00].

Emails are also prevalent in software engineering, where prior work shows communication with emails

in distributed agile development teams differs from face-to-face and instant messaging communica-

tion [Nii11] and proposes using emails to deliver security tool recommendations to developers [Jor14].

Furthermore, many systems, such as the Coverity static analysis tool2 and GitHub security scans,3 alert

developers and provide reports via email.

However, emails generally do not fit into the developer recommendation choice architectures frame-

work for designing recommendations for software engineers. For example, email systems usually have

poor actionability and lack the ability for users to automatically apply suggestions made in recommen-

dations. Additionally, this system has very poor locality, with email recommendations often presented

in a separate location in an application outside of developers’ programming environments and they

can be received at any time during the software development process. These problems can lead to

a variety of problems for workers, including email overload [Dab06] and reduced productivity from

interruptions [Jac01]. Despite the shortcomings of email for actionability and locality, this system is

able to provide clear and comprehensible feedback in suggestions to users depending on the content of

the message text.

Issues. The GitHub issue tracker is a useful system for tracking a variety of information for repositories

on GitHub [Gita]. For example, more that 20 million issues were closed by developers in 2019 [Oct].

Additionally, issues are another method for developers to make and receive recommendations on

GitHub. Bissyandé and colleagues found that the majority of issues are labeled as “bugs”, but argue

those labeled as “feature” or “enhancement” that recommend improvements and new functionality to

projects are “equally important for issue reporters” [Bis13]. Prior work has also observed issues to find

correlations between issues and enhancements added to projects [Kri18] and analyzed issue labels to

visualize activity in open source software repositories [Izq15].

GitHub issues have several characteristics that comply with developer recommendation choice

architectures principles. For example, this system can provide understandable recommendations to

developers in the title, description, or comments of issues. It can also provide further feedback with

features such as labels to categorize the issue, milestones to group issues within the context of the

project, and assignees to specify developers to complete the task.4 For spatial locality, while issues do

not occur within the code itself but they are present on the same project repository in a separate section.

However, like emails, GitHub issues are not actionable, due to the fact developers cannot automatically

implement recommendations from this system, and have poor temporal locality in that issues can be

submitted to GitHub projects at any time during the development process. Research also shows GitHub

issues can frequently go unnoticed or ignored by developers [Sor19].

2https://scan.coverity.com/
3https://docs.github.com/en/github/administering-a-repository/managing-security-and-

analysis-settings-for-your-repository
4https://guides.github.com/features/issues/
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Pull Requests. Pull requests provide a mechanism for developers to propose changes to projects on

GitHub [Gitb]. We examined pull requests because they are the most popular method to recommend code

changes to repositories. For example, in 2019 there were over 200 million pull requests submitted and

87 million merged into code repositories across the platform [Oct]. Research suggests pull requests are

also useful for making suggestions to developers on GitHub. For example, Padhye and colleagues show

recommending enhancements to projects is the most common purpose for pull requests submitted

and merged into repositories [Pad14]. Additionally, prior work has explored generating automated

pull requests to encourage developers to update package dependencies [Mir17a], fix static analysis

errors [Car20], and recommend static analysis tools [Bro19].

GitHub pull requests closely adhere to the developer recommendation choice architectures frame-

work principles. Developers are able to automatically merge proposed changes from pull requests into

their source code, making it an actionable system. However, recommendations made to developers

through review comments are not actionable and require users to manually apply suggestions. Pull

requests can incorporate feedback by providing coherent suggestions to developers through the de-

scription of pull requests and the repository changes proposed to projects. Recommendations from this

system also have high spatial locality, being submitted on the same GitHub repository with the ability to

be integrated directly into the code base. Additionally, development teams usually have code review

processes that provide a workflow for developers to inspect changes proposed in pull requests.5 However,

similar to issues and emails the timing of pull requests cannot be controlled by project maintainers,

which means they can occur on repositories at any time during the development process. This may also

factor in to pull request evaluation latency, or the amount of time for developers to address pull requests

on repositories [Yu15], and contribute to reviewers’ difficulty prioritizing contributions [Gou15].

Table 6.1 Mapping recommendation styles to developer recommendation choice architectures

Actionability Feedback Spatial Locality Temporal Locality

Emails #  # #

Issues #  H# #

Pull Requests H#   H#

Suggested Changes     

 Incorporates principleH#Somewhat incorporates principle#Does not incorporate principle

6.2.3 Methodology

To compare recommendation styles, I developed a user study using a mixed methods approach to

collect quantitative and qualitative data from developers participating in an interactive think aloud

study examining static analysis tool recommendations.

5https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-request-reviews
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Table 6.2 Recommendation Styles Study Participants

Participant Experience (years) GitHub Familiarity OSS Contribution Frequency Tool Usage Frequency
P1 30 Very Familiar Occasionally Very Frequently
P2 Less than 1 Moderately Familiar Never Never
P3 Less than 1 Very Familiar Rarely Moderately Frequent
P4 8 Very Familiar Very Frequently Very Frequently
P5 10 Familiar Rarely Moderately Frequent
P6 5 Moderately Familiar Occasionally Very Frequently
P7 6 Familiar Frequently Very Frequently
P8 6 Familiar Very Frequently Very Frequently
P9 Less than 1 Moderately Familiar Occasionally Very Frequently
P10 1 Moderately Familiar Occasionally Very Frequently
P11 3 Familiar Very Frequently Very Frequently
P12 3 Familiar Rarely Very Frequently
P13 1 Moderately Familiar Never Never
P14 1 Moderately Familiar Never Frequently

Figure 6.2 Example of the GitHub suggested changes recommendation style

6.2.3.1 Data Collection

Participants

We recruited 14 professional software developers, presented in Table 6.2, to participate in this study.

Participants averaged 5 years of industry experience and consisted of workers from various companies

spanning many different positions such as Software Engineer, Quality Engineer, Consultant, Data

Migration Consultant, Support Specialist, User Researcher, and Technical Test Lead. All of participants

were at least moderately familiar with GitHub and most had experience contributing to open source

projects and incorporating development tools into their work.
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Study Design

To collect data to answer the research question, we conducted a user study examining GitHub suggested

changes, issues, pull requests, and emails as systems for static analysis tool recommendations. The study

tasks involved these types of recommendations because static analysis tool adoption is a developer

behavior that is beneficial for software development teams, however prior work shows developers often

avoid these systems in practice [Joh13]. During the study, each participant evaluated recommendations

from all four systems simulated in an experimental GitHub repository they were not familiar with.

Participants were asked to interact with each recommendation system, as if they received it as an

automated notification for their own project, and to use think-aloud methods [Jas04] to verbalize their

thoughts as they explored each system. Then, to conclude the study we conducted semi-structured

interviews to gather feedback from participants on each recommendation style and general opinions

about tool recommendations.

6.2.3.2 Determining the impact of recommendation styles

To explore the impact of recommendation styles on developer behavior, participants interacted with tool

recommendations from emails, issues, pull requests, and suggested changes. A sample GitHub suggested

changes recommendation used for this study is available in Figure 6.2, while examples from the other

systems are available in Appendix C.1.1. Recommendations from each system contained similar text

recommending a static analysis tool that finds and prevents programming errors to participants, however

suggestions differed in the presentation of recommendations according to each system. For example,

GitHub suggested changes incorporates all of the developer recommendation choice architectures

principles (Section 6.1) while emails have poor actionability to adopt recommendations and unfavorable

locality outside of the development environment and workflow. To avoid bias, tools were recommended

with made-up names (ABC, DEF, GHI, and JKL) and varying programming languages (JavaScript, Java,

and Python) to prevent participants from relying on their previous experience with existing tools and

programming languages. The order participants interacted with each system was also randomized to

prevent order bias in our results.

Each study session was screen and audio recorded, and the semi-structured interview responses were

transcribed to analyze developers’ interactions with the systems. During the interview, the moderator

asked participants to provide a five point Likert-scale rating on how likely they would adopt the tool

recommended from each system. A score of four or five indicated participants were likely to accept

the suggestion while a one or two indicated they were unlikely to adopt the tool and would reject

the recommendation. Additionally, we asked subjects to discuss what they liked and disliked about

each approach and to provide general observations on automated recommendations. Two researchers

performed an open card sort [Beg14] to extract themes from open-ended responses and provide insight

for improving recommendation systems to developers. The raters individually grouped statements

based on responses concerning effective and ineffective recommendations, then came together to

analyze and discuss the derived themes and sort the data accordingly.
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6.2.4 Results

To analyze the data collected from our user study, we averaged Likert scale ratings and used the Kruskal-

Wallis statistical test to calculate the likelihood of adoption and measure developer preferences. We also

present the themes derived from the open card sort providing feedback on each system and general

comments on developer recommendations.

6.2.4.1 Likelihood of Adoption

The findings from the user study show that GitHub suggested changes were the preferred tool recommend-

ation system by participants. Table 6.3 presents the average and median Likert scores representing

participants’ reported likelihood they would adopt the tool recommendation from each method. The

suggested changes feature had the highest score averaging a 4 in the 5-point Likert scale ranking for

all participants. Additionally, this system had the highest rate of participants likely to adopt the tool

presented in the recommendation (85%), and it was the only method that did not receive a 1 score. We

also found that participants’ preference for tool recommendations with GitHub suggested changes was

statistically significant (H = 16.7527, p = .00079, α = .05) compared to the other systems. This indicates

the style of suggested changes is preferred by software engineers for receiving recommendations, and

this tool has the style of an effective system for improving developer behaviors, such as increasing static

analysis tool adoption.

Table 6.3 Survey Results on the Likelihood of Recommendation Style Adoption

Average Score Median

Suggestions 4 4

Pull Requests 3.71 4

Issues 2.86 3

Email 2.36 2

6.2.4.2 Qualitative Feedback

During the user study, we collected qualitative data through think aloud and a semi-structured inter-

view to learn what developers liked and disliked about each system and gain insight into designing

automated recommendation systems. Here, we present comments from participants on each of the

different suggestion mechanisms and provide the themes derived from the open card sort on general

recommendations.
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Emails

The majority of participants were unlikely to adopt static analysis tool recommendations via email,

ranking this system as a 1 or 2 (n = 11). Most developers also provided unfavorable feedback on receiving

email recommendations, such as “I hate emails” (P3), “if this came across unsolicited I would feel sort of

intruded upon” (P4), “would honestly be pretty suspicious when I get any email asking to install software

on my computer” (P12), “if I see an email about something it actually gives me less of a view of it” (P6),

and “I’d immediately delete it...I wouldn’t even give it a look. I’d actually probably not like that tool

even more just because their sending out spam emails”. However, while most participants disliked tool

recommendations sent by email, three participants, P2, P6, and P11, responded they were likely to adopt

tools recommended through this system noting “it feels personal” (P2) and “I like email more” (P11).

Issues

Participants were noncommittal on their likelihood to adopt static analysis tool recommended through

GitHub issues, with most participants (n = 9) scoring them as a 3. The primary feedback provided from

developers on this system was the amount of effort required to learn more information and integrate

the tool. For example, P1 noted “I’d be much less likely to integrate it [the tool]...that’s a lot of work”, P4

stated “I see this as a big time sync to go through and evaluate how many of those actually are issues and

how many are false positive things”, and P14 desired more specific information adding “it reads a little

more spammy without a code example...It seems like you could just post this message on any project. Why

is this useful for my project specifically? I have no idea”. Additionally, P13 complained about the amount

of text within the issue recommendation commenting “this one is a ton of words”.

Pull Requests

Developers reported being likely to adopt static analysis recommendations from pull requests on GitHub

(n = 9). Participants appreciated the timing and location of recommendations from this system on

repositories. For example, P7 stated “I’d be significantly more likely to try it if I already have a pull

request that has all the changes I need to get the tool or something going in the project” and P4 added

“getting pretty quickly an explanation, the actual issue in the code, and you know a basically free way to

incorporate that into the process as well as you know the tool itself ”. Alternatively, participants criticized

the lack of information provided about tools provided in pull request suggestions, saying “it doesn’t really

outline the steps” (P13). P8 and P14 also criticized using pull requests on GitHub as a recommendation

system, outside the intended purpose of this feature, stating pull requests should “solve a problem rather

than tell people they should try to use this thing” and “it’s not that they really want to do a pull request.

It’s not that their going to be adding to the project...I don’t know why it’s a pull request specifically”.

Suggested Changes

Our results show participants were significantly more likely to adopt static analysis tool recommenda-

tions from suggested changes than from emails, issues, or pull requests. Overall 12 developers responded
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they were likely to accept the recommendation, providing a variety of reasons why they favored sug-

gested changes recommendations. Participants praised the location of the recommendation (“having it

comment right here, ‘This fixes your bug!’ That’s nice” (P8)), the visual aids of the feature (“this one is

definitely better because it’s more visual” (P13)), and the content of the information provided (“it has a

little more detail” (P9) and “this has very good detail, very detailed change of the code and so it’s clear”

(P10)). Only one participant (P6) was unlikely to adopt the tool recommended with this feature, stating

“putting a tool recommendation in a comment of a pull request, it’s kind of to me out of place”.

General Feedback

In addition to collecting feedback from developers on each recommendation system, we asked partici-

pants to provide general insight into designing effective recommendation systems. The open card sort

derived five themes for what developers seek in recommendations. Below we present the categories

uncovered in our qualitative analysis and provide representative quotes from participants:

Examples: Developers in our study noted examples are important to include in recommendations

to support decisions on the adoption of tools. For example, participants specifically mentioned wanting

to observe tool usage and output, view demos, and test systems in a local environment. Additionally,

respondents desired the ability to easily find and access examples of tools in the documentation and/or

on it’s website.

“In general I think showing an example of the type of error that it would find, cause that

immediately shows some value, I think that helps a lot” (P4)

Integration: Participants indicated information about how well tools integrate into their existing

processes should be incorporated into recommendations. Workflow details such as how easy it is to

install the system, how well it works with other tools (i.e. continuous integration build systems), the

impact on resources (i.e. memory, GPU, lagging, etc.), how relevant it is to their project and development

needs, and if it adheres to company policies are important details for developers to consider when

deciding to adopt tools from automated recommendations.

“I want something that I can install it and use it as quickly as possible with as minimal fussing

with it and setup as possible.” (P5)

Marketing: Several participants remarked recommendations with text similar to advertising or

marketing notifications would deter them from adopting tools from automated suggestions. For instance,

developers in our study were suspicious and distrustful of static analysis tool suggestions from emails

and unsolicited messages, but were more open to recommendations with human-like communication.

“I’m not sure how the bot would generate the text to do the recommendation but try to make

it seem a little more human? Rather than it was written by someone in an advertising agency

or something.” (P7)
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Popularity: Participants reported providing information about the popularity of recommended

systems into suggestions is valuable for helping programmers to decide whether or not to adopt devel-

opment tools. Specifically, developers mentioned seeking information about the usage and reputation

of tools from online reviews, meetup groups, colleagues, conference talks, social media, and other

resources before incorporating systems into their workflow.

“Try to highlight the popularity, popularity is so crucial...I care about the adoption. The

current adoption, that’s a testimony of the strength” (P13)

Reliability: Developers noted information about the reliability of tools and their sources is useful

for determining whether or not to adopt them. For instance, study participants mentioned reliable

tool output, little to no false positives, predictable behavior, up-to-date documentation, and ongoing

development on the tool itself impact their decision-making.

“[It] definitely needs to work reliably. Any time a tool starts doing things like it occasionally

has problems that’s something that makes me want to stop using it...I want the tool to be

more reliable than that.” (P8)

6.2.5 Summary

Our results show that GitHub suggested changes are an effective system improving the developer

behavior. We found 14 professional software engineers were significantly more likely to adopt automated

static analysis tool recommendations from this feature over suggestions from emails, GitHub issues, and

pull requests. Further analysis of responses from developers derived themes for improving automated

recommendations to improve the behavior software engineers. To provide implications for improving

future recommender systems, we combine these themes into two overarching categories for designing

effective automated suggestions: recommendation content (Integration, Popularity, and Reliability)

and design (Examples and Marketing). In the discussion, I present how these categories align with

developer recommendation choice architectures and contribute to the preference for the GitHub

suggested changes recommendations.

6.3 Developer Impact

While the recommendation styles study shows users prefer to receive recommendations from systems

incorporating developer recommendation choice architectures, their developer impact, or influence on

programming practices, is still unexplored. For example, prior work suggests bots are useful for automat-

ing programming tasks and supporting software development activities such as completing continuous

integration tasks, running tests, and decreasing code review time and effort in open source software

projects [Wes18]. However, our prior work shows that naive telemarketer design recommendations

from tool-recommender-bot negatively impacted development practices by breaking continuous

integration project builds, aimlessly introducing static analysis errors to projects, and violating project
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style guidelines [Bro19]. To evaluate the impact of the conceptual framework on development prac-

tices, I conducted an empirical evaluation of the suggested changes feature to analyze its influence on

programming activities and its usefulness for developers on GitHub.

6.3.1 Study Rationale

The GitHub platform has a variety of methods for developers to make recommendations to each

other, such as issues which are useful for recommending new functionality and enhancements to

projects [Bis13]. GitHub recently introduced the suggested changes feature, a novel recommendation

system on the platform that allows developers to provide specific and actionable feedback to peers

during reviews (see Figures 6.1a-c) [Git18a]. While this feature is increasing in popularity and usage on

GitHub [Git18b], little is known about how developers use suggested changes to make recommendations

to each other and its impact on development practices. Researchers have performed in-depth analyses

on a variety of GitHub features to explore their impact on developer behavior and software engineering

practices, including pull requests [Gou15], issues [Bis13], issue tracker labels [Cab15], links between

issues and pull requests [Li18], repository forks [Jia17], commit comments [Guz14], README files [Pra19],

stars [Bor18], and badges [Tro18]. This study adds to this work by offering an empirical analysis of GitHub

suggested changes to examine their impact on development processes and provide implications for

improving future recommender systems.

6.3.1.1 Research Questions

To explore the impact of suggested changes on development practices, we investigated the following

research questions:

RQ1 What types of recommendations do developers make with suggested changes?

RQ2 How effective are recommendation systems on pull requests?

RQ3 What impact do suggested changes have on pull requests?

RQ4 How useful are suggested changes for recommendations between developers?

To answer these questions, I contrived a multi-methodological study divided into two phases.

The first phase seeks to answer the first three research questions by mining GitHub repositories and

empirically analyzing the suggested changes feature to categorize types of suggestions, measure the

effectiveness of this system, and observe its impact on the pull-based software development model.

The second phase explores the final research question by collecting qualitative data from developers to

provide feedback on their experiences with the GitHub suggested changes system. The results show

suggested changes are effective for recommending a variety of changes to programmers and supports

developers in the code review process by helping them make suggestions and decisions on proposed

changes quicker. Users also find this feature useful because it allows clear communication and easy

integration. The main contribution of this work is the first study to empirically analyze the GitHub

suggested changes feature.
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6.3.2 Phase 1: An Empirical Study on GitHub Suggested Changes

The first phase of this evaluation mines public GitHub repositories to explore the usage, effectiveness,

and impact of suggested changes.

6.3.2.1 Data Collection

Identifying suggested changes

To automatically detect GitHub suggested changes on pull requests, I developed a script to programmat-

ically parsed pull request review comments to find instances of the ``` suggestion tag in a review (see

Figure 6.1b) since this feature is currently not supported by the GitHub API.6. This markdown snippet

indicates a recommendation was made from a review to a developer on a pull request using this system.

The script utilized the PyGithub API7 to collect repositories for identifying suggested changes in on

updated pull requests and parsed comments to collect instances of the GitHub suggested changes

feature. To limit our data collected, we only observed activity on pull requests after October 2018 when

the suggested changes feature was first introduced on GitHub. For categorizing suggested changes,

we randomly sampled the most recently updated repositories to compile a list of current pull request

comments incorporating this feature. To determine the effectiveness of suggested changes and their

impact on development practices, we analyzed the top-forked repositories on GitHub with pull requests

using this feature. For the first research question, we randomly sampled 100 suggested changes on

the most recently updated pull requests. To answer RQ2 and RQ3, we analyzed a total of 51,250 pull

requests, 17,712 suggested changes, and over 152,030 pull request review comments on the most forked

repositories.

6.3.2.2 Categorizing suggested changes

To categorize GitHub suggested changes, two researchers performed an open coding qualitative analysis

on a sample of suggestions. We analyzed instances of this feature on the most recently updated repos-

itories to characterize types of changes developers recommend. The raters independently analyzed

suggested changes to inspect the code change recommended, the review comment text, and the entire

discussion on pull requests to identify categories of changes proposed to peers by developers with this

feature. Then, we came together to discuss our derived categories and come to an agreement. Finally,

we used our defined categories to classify 100 randomly sampled instances of pull request comments

containing the ``` suggestion tag (inter-rater agreement = 71%, Cohen’s κ = 0.5942). The list of

sampled suggested changes, derived from projects varying in size, programming language, number

of contributions, and other repository metrics, are available in Appendix C.2.1. Our main source of

discrepancies arose from determining the functionality of suggested changes and deciding if suggestions

were correcting or improving lines of code.

6https://github.community/t5/GitHub-API-Development-and/Accessing-the-new-quot-GitHub-
Suggestions-quot-via-API-public/td-p/13922

7https://pygithub.readthedocs.io/en/latest/
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6.3.2.3 Determining the effectiveness of suggested changes

To investigate the effectiveness of suggestions, we analyzed GitHub suggested changes and pull request

review comments, two mechanisms for providing recommendations to developers on code contribu-

tions. Pull request review comments differ from general pull request and issue discussion comments

because they are situated on exact lines of code during the review process. Furthermore, reviewers can

suggest specific changes to developers in pull request review comments by using code fences (```)

to start and end the proposed block of code. For example, Figure 6.3 presents an instance of a review

comment providing the same recommendation to change int c to int count as the suggested change

in Figure 6.1c.

GitHub suggested changes are a special instance of pull request review comment, allowing reviewers

to provide feedback on contributions from developers. The primary difference between suggested

changes and review comments is the user interface, which involves the “Commit suggestion” button to

automatically apply recommended changes to pull requests and the highlighted diff format to display

suggested code modifications in the newer system. To evaluate the effectiveness of code recommen-

dations on pull requests, we compare and contrast both of these features to analyze how they impact

recommendations between developers during reviews. To measure effectiveness, the evaluation ob-

served the acceptance and timing of recommendations from these systems. We further divide these

criteria into subcategories: contribution acceptance and recommendation acceptance, and contribution

time, recommendation time, and recommendation acceptance time.

Acceptance

Acceptance refers to users incorporating proposed changes from another developer. Contribution ac-

ceptance involves how frequently proposed changes from developers are incorporated into projects.

Prior work suggests accepted contributions from developers are a valuable metric for measuring the

success and performance of software on GitHub [McD13] and is necessary for the development, main-

tenance, and evolution of open source software [Mid18]. We use this metric to evaluate the adequacy

of recommendation systems on pull requests. To study the impact of the recommendations on contri-

bution acceptance, we calculated the merge rate of pull requests containing a code suggestion, either

suggested changes or pull request review comments with fenced code, and compared it to pull requests

without code recommendations.

Figure 6.3 Example pull request review comment with code
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Recommendation acceptance refers to how often suggestions from each system are approved by

developers. The percentage of suggested changes and fenced code review comments incorporated

into pull requests from our dataset was used to investigate recommendation acceptance. To identify

instances of each system, we developed a script to analyze pull request review comments and search for

occurrences of ``` suggestion to identify suggested changes and ``` to identify review comments

with code. The recommended code within the tags was automatically extracted from the comment.

Then, we programmatically checked whether the recommendation was accepted by determining if the

extracted code existed in subsequent changes to the pull request by analyzing additional commits to the

file after the recommendation was made. If so, we consider the suggestion accepted by the developer.

This process was implemented to compare the recommendation acceptance for pull request review

comments with fenced code and suggested changes.

Time

This metric examines the impact of pull request recommendation systems on the overall development

process. Contribution time refers to the lifespan of pull requests submitted by developers. Prior work

outlines factors that influence pull request evaluation latency, or the amount of time to review pull

requests on GitHub [Yu15] and analyzes factors that influence merge time of pull requests [Gou14b].

Furthermore, research shows the longer it takes to repair issues in code the more expensive and difficult

they are to fix [Lay07]. Here, we aim to determine if the presence of code suggestions from review

comments or suggested changes impacts amount of time to make decisions about contributions from

developers. The difference between time of a pull request being opened until when it is merged into the

repository by a project maintainer was used to measure contribution time.

Recommendation time evaluates the amount of time for developers to make recommendations to

peers with a given pull request recommendation system. To analyze the impact of suggested changes

and pull request review comments with fenced code on development time, we compared how quickly

developers compose comments making recommendations with with code on pull requests. This was

measured by calculating the amount of time from the creation of a pull request until a reviewer adds

a code suggestion with the ``` suggestion or ``` tags and comparing this recommendation time

between each system.

Similarly, recommendation acceptance time refers how long it takes developers to accept recommen-

dations with suggested changes and review comments with fenced code from reviewers on pull requests.

To assess this, we measured the amount of time between a reviewer commenting on a pull request using

the ``` suggestion or ``` tags until the time of a subsequent commit containing the extracted code

between the fences. This data was used to compare the effectiveness of GitHub suggested changes and

pull request review comments with code as mechanisms for receiving recommendations from peers on

pull requests.
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6.3.2.4 Evaluating the impact of suggested changes

To analyze suggested changes on development practices, we explored the impact of this system on

the pull-based software development model, a popular programming methodology for distributed

development teams on code hosting websites like GitHub [Gou14b]. Each year millions of pull requests

are contributed by developers and merged into repositories on GitHub [Oct], excluding other online

development collaboration platforms such as GitLab8 and BitBucket.9 Pull requests are the primary

method for developers to contribute to projects [Gou15], and thus a mechanism through which devel-

opers provide recommendations to each other virtually. For instance, pull request review comments

and suggested changes allow users to provide feedback and make recommendations on code contribu-

tions to developers. To further evaluate GitHub suggested changes, we analyzed metrics from existing

literature to explore the effect of this feature on pull request timing, coding activity, and collaboration.

Pull Request Characteristics

Prior work posits a variety of metrics derived from the pullReqs dataset to explore the pull-based software

development model [Gou14a]. This dataset, consisting of roughly 350,000 pull requests on 900 GitHub

repositories, provides a variety of characteristics to describe GitHub pull requests and quantify their

impact on the pull-based development model. To explore the impact of GitHub suggested changes on

development practices on GitHub, we calculated the following metrics to analyze pull requests with and

without this feature:

• lifetime_minutes: Number of minutes between pull request opening and closing (if closed)

• mergetime_minutes: Number of minutes between pull request opening and merging (if merged)

• num_commits: Total number of commits for a pull request

• src_churn: Total number of lines changed

• files_changed: Total number of files touched by pull request

• num_commit_comments: Number of review comments

• num_issue_comments: Number of discussion comments

• num_participants: Number of discussion participants

These characteristics were selected to describe the impact of suggested changes on development

processes and better understand how this feature influences contributor and reviewer behavior on pull

requests. To determine the impact of GitHub suggested changes, we analyzed lifetime_minutes and

mergetime_minutes to determine their impact on development time, num_commits, src_churn, and

files_changed to analyze their affect on developer productivity, and num_commit_comments, num_-

issue_comments, and num_participants to observe their impact on collaboration between developers.

We amassed these metrics and compare these characteristics for pull requests with GitHub suggested

changes and those without this feature.

8https://about.gitlab.com/
9https://bitbucket.org/
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Table 6.4 Developer Impact Study Data

Project (Primary Language) SCs RCs (w/ code) PRs
qmk/qmk_firmware (C) 8525 9127 (675) 3600
nodejs/node (JavaScript) 2252 14364 (818) 5889
rust-lang/rust (Rust) 2615 24139 (1068) 8475
go-gitea/gitea (Go) 1317 6604 (338) 2822
rapid7/metasploit-framework (Ruby) 754 4057 (517) 1252
Qiskit/qiskit-terra (Python) 626 3505 (204) 1735
kubernetes/kuberbetes (Go) 556 52297 (2645) 12106
qgis/QGIS (C++) 481 2893 (37) 2548
neovim/neovim (Vim script) 208 3087 (163) 1746
python-pillow/Pillow (Python) 156 354 (19) 650
mono/mono (C#) 134 6043 (182) 5821
lydiahallie/javascript-questions (Markdown) 49 43 (2) 231
jpmorganchase/quorum (Go) 10 192 (13) 193
firebase/quickstart-android (Java) 5 89 (6) 155
mavlink/qgroundcontrol (C++) 5 261 (14) 863
qbittorrent/qBittorrent (C++) 5 3966 (205) 486
ironhack-labs/lab-advance-querying-mongo (Markdown) 4 159 (12) 753
kenwoodjw/python_interview_question (Markdown) 3 2 (0) 38
lballabio/QuantLib (C++) 3 57 (4) 146
Azure/azure-quickstart-templates (PowerShell) 2 2718 (2) 1630
h5bp/Front-end-Developer-Interview-Questions (HTML) 1 81 (2) 56
qunitjs/qunit (JavaScript) 1 77 (11) 55
Total: 17,712 134,318 (6,937) 51,250

SCs: GitHub Suggested Changes RCs: Pull Request Review Comments PRs: Pull Requests
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6.3.3 Phase 2: Developer Feedback on Suggested Changes

The second phase of this study explores the usefulness of GitHub suggested changes by collecting

feedback from developers.

6.3.3.1 Data Collection

Participants

To collect feedback from developers, we recruited users who interacted with GitHub suggested changes.

Surveys were emailed to users with publicly available email addresses who either received suggested

changes on their pull request or made a suggestion on a developer’s pull request within six months

of the time of this study. Surveys were sent to a total of 580 GitHub users who interacted with the

GitHub suggested changes feature, and we received responses from 43 developers (7.4% response rate).

Throughout the remainder of this chapter, the C- prefix is used describe suggestees, or contributors who

received a suggested change on their pull request, and the R- prefix indicates a suggester, or a reviewer

who made a comment with suggested changes on a pull request.

6.3.3.2 Determining the usefulness of suggested changes

To explore the usability of GitHub suggested changes, we surveyed developers to gain insight on their

experiences and usages of this feature. The survey first asked participants to provide a 5-point Likert

scale ranking on how useful they found the suggested changes feature. We also incorporated free

response questions for participants to provide additional open-ended feedback and specific details

about what they find useful or unuseful about this system as well as how they integrate this feature

into their development workflow. To evaluate the usefulness of suggested changes, we aggregated the

Likert scores and present the collective responses from developers. To further analyze feedback from

participants, two independent researchers performed an open coding on the open-ended responses

from users on various aspects of GitHub suggested changes. The researchers reviewed text responses,

came up with themes based on participant responses, met to discuss their derived categories, and

came to an agreement on major themes provided in feedback from developer comments (inter-rater

agreement = 72%, Cohen’s κ = 0.6828).

6.3.4 Results

This study presents an empirical analysis of the GitHub suggested changes feature exploring types of

suggestions, the effectiveness of code recommendation systems, its impact on pull-based software

development, and feedback from developers.

6.3.4.1 RQ1: Types

To answer RQ1, we used an open coding technique to categorize types of recommendations with GitHub

suggested changes. Our qualitative analysis derived four categories to describe types of suggestions
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made by developers. The identified categories are presented with examples below and we provide

further analysis exploring 100 randomly sampled suggestions on the frequency of each finding:

6.3.4.1.1 Categories

Corrective: The corrective category refers to developers fixing problems found in code. Prior work

suggests fixing defects is the primary motivation for code reviews at Microsoft [Bac13] and algorithm

errors, or problems that arise in the correctness or implementation of a program, are the most common

type of issue discovered during code inspections [Alo00]. Figure 6.4a presents an instance of a corrective

suggestion made by a user on a pull request. The developer referenced a variable as a global variable in

Python instead of as a class variable, leading the reviewer to propose a fix by adding the self keyword.10

Formatting: The formatting category represents code changes that impact presentation and style

without changing the functionality of code. For example, research shows refactoring, or the process

of restructuring code without changing its behavior, is beneficial for improving code quality [Str07].

Studies also show code reviews are useful for ensuring source code is formatted correctly and style

guidelines are consistent for development teams [Bac13] and repairing the visual representation of

code [Män08]. A sample formatting suggestion is presented in Figure 6.4b,11 where the reviewer recom-

mends modifying the whitespace within the code to adhere to spacing requirements delineated by the

Python Enhancement Proposal (PEP 8) coding style guide.12

Improvement: This category describes when reviewers recommend changes to refactor or optimize

a user’s code. Developers at Microsoft reported improvements to code quality are the most important

benefit of code reviews.13 Furthermore, prior work asserts correct algorithms may need additional

improvements during code reviews, such as to the efficiency of the implementation [Alo00] and problems

in the structure and organization of the code that can be optimized [Män08]. Figure 6.4c presents an

example of an improvement suggestion, where the reviewer recommends enhancing the readability of

the code by renaming a variable from x to a more descriptive name manifest.14

Non-Functional: The non-functional suggestions occur when reviewers recommend changes that

don’t impact code. For instance, suggestions to fix spelling and grammatical errors in documentation

and code comments. Research shows that documentation issues are prevalent in software, and are the

most frequent type of fix applied for code reviews in open source software [Bel14]. Similarly, problems

with the understandability and maintenance of software, including documentation errors, are the

most common type of defects found during code reviews [Män08]. An example of a non-functional

recommendation is depicted in Figure 6.4d. In this instance the reviewer discovers a typo within a code

comment misspelling deserialize as “deseriale”, and uses suggested changes to fix it.15

10https://github.com/zeit/next.js/pull/7696#discussion_r302333269
11https://github.com/numba/numba/pull/4204#discussion_r310598073
12https://www.python.org/dev/peps/pep-0008/#whitespace-in-expressions-and-statements
13https://www.michaelagreiler.com/code-reviews-at-microsoft
14https://github.com/gatsbyjs/gatsby/pull/13471#discussion_r277948539
15https://github.com/microsoft/terminal/pull/1258#discussion_r293932790
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6.3.4.1.2 Usage

To analyze these categories, two independent researchers classified 100 randomly sampled instances

of the GitHub suggested changes feature. Table 6.5 presents the findings for each category, and we

found that non-functional recommendations are the most popular type of change submitted with

this system. While non-functional changes were the most frequent type of suggestion, we also found

suggested changes are useful for proposing code improvements to enhance and optimize developers’

code. Overall, we determine GitHub suggested changes have the ability to accommodate a variety of

recommendations between developers to improve the quality of code during pull requests reviews.

(a) Corrective:

(b) Formatting:

(c) Improvement:

(d) Non-Functional:

Figure 6.4 Categories of suggested changes Results
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Table 6.5 GitHub Suggested Changes Categories Results

n Percentage

Non-Functional 36 36%

Improvement 34 34%

Corrective 16 16%

Formatting 14 14%

6.3.4.2 RQ2: Effectiveness

To evaluate the RQ2, we investigated the effectiveness of code recommendation systems on pull requests,

specifically GitHub suggested changes and pull request review comments with fenced code, on the

acceptance and timing of pull requests and recommendations. We found that suggested changes

and review comments with code snippets made up approximately 12% and 5% of all pull request

review comments in our dataset, respectively. The Pearson’s chi-squared (χ2) test was used to analyze

acceptance while the Mann-Whitney-Wilcoxon test was used to evaluate time.

Acceptance

Contribution Acceptance. Overall, 69% of pull requests in our dataset were merged into reposito-

ries (n = 35,521). Table 6.6 presents the merge rate for pull requests with and without code suggestions

from either system. Our results show both groups have approximately the same merge rate, and we

found no significant difference in the outcome of contributions based on the existence code recom-

mendations with suggested changes or review comments (χ2 = 0.0182, p = 0.8928, α = .05). Thus, while

suggestions are useful for helping developers resolve problems in code reviews, they do not have a major

influence on whether pull requests are accepted and merged into repositories.

Recommendation Acceptance. We were also interested in the acceptance rate of recommen-

dations from each system. Overall we found GitHub suggested changes were much more effective

(Table 6.7). 60% (n = 10, 556) of suggested changes were incorporated into pull requests by developers

compared to only 1% (n = 65) of review comments with markdown code. Additionally, we found this

difference was statistically significant (χ2 = 6961.3765, p< 0.00001,α= .05). This indicates the suggested

changes feature is more effective for encouraging developers to adopt recommendations from peers

moreso than markdown code presented in pull request review comments.

While general code suggestions do not impact the acceptance of contributions on GitHub, we conclude

suggested changes are effective for proposing improvements to contributors on their pull requests

compared to other systems, such as review comments with code.
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Timing

Contribution Time. To further evaluate the impact of code suggestions, we measured the amount

of time to accept code contributions with suggested changes or review comments with fenced code

compared to those with neither system. The results, presented in Table 6.8, show that on average pull

requests with code suggestions take over twice as long to merge into repositories. Additionally, we

found that pull requests without code suggestions from these systems are merged into repositories

significantly faster than contributions with recommendations (W = 87857043, p < 0.00001, α = .05). We

deduce contributions with recommendations to developers via suggested changes or review comments

with code may take longer to be accepted due to increased comments from reviewers, discussions about

changes, and time needed to make modifications compared to non-suggestion pull requests.

Recommendation Time. To compare GitHub suggested changes and review comments with

fenced code as mechanisms for recommendations, we analyzed the amount of time for reviewers

to comment with suggestions using each system. Our results, displayed in Table 6.9, show suggested

changes recommendations are made about four days faster than review comments. Furthermore, this

difference in recommendation time is statistically significant between the code suggestion systems

(W = 49186174, p < 0.00001, α = .05). This indicates reviewers are able to make recommendations

much faster using the suggested changes feature compared to code within review comments, allowing

developers to provide feedback more efficiently and accelerate the review process.

Recommendation Acceptance Time. Additionally, we analyzed the amount of time for developers

to accept recommendations from reviewers using each system. Table 6.10 presents the average accep-

tance time for developers for GitHub suggested changes and review comments with fenced code, and we

found suggested changes are accepted on average three days faster. Our results also show a significant

difference in the amount of time taken by developers to incorporate recommendations from each

system into their pull requests (W = 256013, p = 0.0001, α = .05). This shows GitHub suggested changes

allow developers to evaluate suggestions and make decisions on recommendations quicker than with

markdown code in pull request review comments, for example including the “Commit suggestion”

button to automatically apply changes.

Overall, our timing results show that, while contributions take longer overall to get merged when

code is recommended, suggested changes facilitate development processes by decreasing the amount

of time needed to make suggestions and approve recommendations during code reviews.

Table 6.6 Contribution Acceptance Results

Pull Requests n Rate

with suggestions 6982 69.4%

without suggestions 44268 69.3%
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Table 6.7 Recommendation Acceptance Results

Type n Rate

suggested changes 17712 59.6%

review comments with code 6937 0.9%

Table 6.8 Contribution Time (in days) Results

Type n Average Median

with suggestions 6982 16.4 5.0

without suggestions 44268 6.4 1.1

Table 6.9 Recommendation Time (in days) Results

Type n Average Median

suggested changes 17712 10.5 0.7

review comments with code 6937 14.6 1.9

Table 6.10 Recommendation Acceptance Time (in days) Results

Type n Average Median

suggested changes 17712 5.4 0.3

review comments with code 6937 8.0 0.7

6.3.4.3 RQ3: Impact

To evaluate RQ3, we analyzed the impact of the suggested changes feature on pull-based software

development by examining its effect on GitHub pull requests. Overall, we analyzed the timing, coding

activity, and collaboration between developers. The Mann-Whitney-Wilcoxon test (α = .05) was used

to compare characteristics on 4,319 pull requests containing GitHub suggested changes and 46,931

without recommendations between developers through this system.
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Pull Request Characteristics

To understand the impact of suggested changes on development practices, we analyzed metrics used

in prior work to examine pull requests on GitHub [Gou14a]. These results are presented in Table 6.11.

Here, we explain specific results based on the pull request characteristics we observed.

Timing. Similar to our analysis evaluating the impact of code suggestions on contribution time, we

found that pull requests with GitHub suggested changes take almost twice as long and significantly longer

to be accepted (mergetime_minutes, p < 0.00001) and closed, with or without merging (lifetime_-

minutes, p < 0.00001). This may be due to the fact that pull requests with suggested changes extend

reviews and add more time to the code inspection process, have more complex development activity,

and more conversations between developers on contributions.

Coding Activity. One reason pull requests utilizing suggested changes take longer is because

developers are significantly more active on these contributions. We found pull requests with this feature

have more commits (num_commits, p < 0.00001) and modified lines of code (src_churn, p < 0.00001)

from contributing developers. However, we found on that average pull requests with this feature impact

fewer files. For RQ2, we found suggested changes are well-accepted by developers. With this system,

developers can automatically apply recommendations from reviewers as additional commits to their

pull requests on a line of code within a file, leading to increased commits and code changes to improve

the quality of the program.

Collaboration. Additionally, our results show that GitHub suggested changes impact feedback

and discussions during code review processes. We found that pull requests with developers using the

suggested changes feature have significantly more review comments on lines within the submitted

code (num_commit_comments, p < 0.00001), general discussion between programmers about contri-

butions (num_issue_comments, p < 0.00001), and developers engaging in conversations about pull

requests (num_participants, p < 0.00001). This indicates suggested changes are a valuable system for

providing feedback, facilitating communication between developers, and discussing improvements to

pull requests.

6.3.4.4 RQ4: Usefulness

To study RQ4, we surveyed developers to collect feedback on the GitHub suggested changes feature. Of

the 43 survey responses we received, 24 responses from were from developers who received suggestions

and 19 responses were from users who made a recommendation. Here we present the results from

analyzing 5-point Likert scale responses and open-ended replies from developers.

Likert Scale. Figure 6.5 displays the results of the Likert scale asking developers how useful they

found the suggested changes feature. Overall, we found 92% of suggestees (n = 22) and 79% of suggesters

(n = 15) reported GitHub suggested changes are Useful or Very Useful. Furthermore, no developer who
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Table 6.11 Pull Request Impact Results

Characteristic Dataset Mean Median p-value

lifetime_minutes***
with suggested changes 34799.26 8190.43 -
without suggested changes 18993.48 2489.12 p < 0.00001

mergetime_minutes***
with suggested changes 23645.15 5900.27 -
without suggested changes 10378.82 1776.32 p < 0.00001

num_commits***
with suggested changes 8.62 4 -
without suggested changes 6.72 1 p < 0.00001

src_churn***
with suggested changes 866.86 133 -
without suggested changes 3212.64 26 p < 0.00001

files_changed
with suggested changes 7.71 2 -
without suggested changes 11.54 2 p = 0.5051

num_commit_comments***
with suggested changes 13.56 7 -
without suggested changes 2.00 0 p < 0.00001

num_issue_comments***
with suggested changes 8.63 5 -
without suggested changes 5.03 3 p < 0.00001

num_participants***
with suggested changes 3.18 3 -
without suggested changes 2.30 2 p < 0.00001

*** denotes statistically significant results (p-value < 0.05)

interacted with this system reported that it was Not at All Useful. One participant (R12) ranked the

system as Somewhat Useful due to the fact that suggested changes incorporate accepted suggestions as

individual pull request commits and desired a “force push” option to squash all of the commits and

better adhere to their team’s development workflow. Overall, our results show GitHub users find this

feature effective for both receiving recommendations as well as making suggestions to developers on

GitHub.

Qualitative Feedback. To further examine GitHub suggested changes, we asked surveyed devel-

opers to provide open-ended responses describing what they find useful or unuseful about suggested

changes. Two researchers conducted an open coding on free response feedback to derive themes de-

scribing how developers perceive this feature. The main negative feedback received about suggested

changes focused on the limitations of the system (i.e. “no multiline support” (R1)), its conflicts with other

development tools (i.e. “approval process handlers like PullApprove and Zappr now will not recognize

my approval of the PR” (R16)), and the functionality of applying suggestions as separate commits (i.e.

“Some changes could be grouped in a single commit...[individual commits] is less convenient” (C9)).16 We

extracted eight themes from our analysis to describe what developers found useful about GitHub sug-

gested changes. Below, we define each category derived from the qualitative coding and provide example

responses to summarize developer feedback on the advantages and disadvantages of suggested changes:

16At the time of this experiment, GitHub suggested changes only supported single line changes. However, after the study
date GitHub has since updated the feature and introduced suggested changes for multiple lines (https://github.blog/
changelog/2020-02-26-multi-line-code-suggestions-beta/).
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Actionability: Developers reported finding suggested changes useful because of the actionability

of recommendations from this system. This refers to ability for users to automatically act on recom-

mendations from reviewers and commit proposed code changes into their on pull requests. Survey

respondents frequently lauded the fact that suggested changes are are actionable and easy to integrate

into code review processes.

“the fact that small changes can be applied immediately, and the fact that they can be described

by the reviewer in a way that a button fixes it instead of going to your code” (C3)

Communication: Participants also reported that GitHub suggested changes are effective for commu-

nication between developers. This refers to the capability of developers to understand recommendations

and the transfer knowledge between peers through this system. Our survey feedback suggests suggested

changes provide a mechanism for clear communication between developers and reviewers during the

code review process.

“We can understand reviewer’s intention more. If not using this feature, there are only pull

request comment text, so we may misunderstand reviewer’s intention” (C16)

Code: Users also found the GitHub suggested changes feature useful is because it allows reviewers

to make recommendations as code. Several participants mentioned they preferred the ability to give

and receive suggestions using code rather than writing out recommendations as text in pull request

review comments.

“It is very convenient that the reviewer can write what they suggest to change in code instead

of formulating it in words (which will often be longer)” (R6)

Conciseness: Similarly, participants also appreciated the brevity of recommendations with suggested

changes. Many developers found the concise code recommendations to be useful for easily making and

reacting to suggestions when using this system. Examples of this can found in responses such as the

one below where a suggester found suggested changes useful because they can:

“Suggest small one line changes directly and concisely” (R9)

Ease of Use: Respondents also noted that recommendations with suggested changes are effective

because the system is easy for suggesters and suggestees to use. Feedback from participants commended

this feature for its intuitive interface design and ability to effortlessly integrate into the pull request

review process.

“It’s really easy to use, it’s really easy to accept the suggestion so some works are really easy”

(C15)

Location: Participants also found the location, or where suggested changes recommendations are

made, useful for making and receiving suggestions. We found developers liked the ability to make

recommendations directly on the line of code to be improved. For example, one respondent mentioned

this feature is useful because there is:

76



“No need to leave the pull request page to make a suggested change, [and it’s] easy to see what

is being suggested” (R12)

Scalability: Another reported benefit of suggested changes is the ability of this feature to make and

receive numerous recommendations on the same pull request. Users found the scalability of this system

useful, especially for reviewing code and making several recommendations to developers on the same

pull request during reviews.

“It...gives me the ability to suggest multiple options during review” (R11)

Timing: Developers also found the timing of suggested changes makes them useful. For example,

many participants mentioned this feature improves the speed with which users can make and address

recommendations on pull requests and also noted its overall impact on accelerating the code review

process.

“Being allowed to add specific changes speeds up the review process. Sometimes it is easier to

make the changes yourself rather than make a suggestion and wait for a change” (C17)

No Response: Several participants who completed the survey did not respond to the free response

question to provide feedback on the usefulness of GitHub suggested changes. This question was optional

in the survey, and we cannot conclude the reason developers chose not to respond is due to not finding

anything useful about the feature.

0 5 10 15 20 25

Not at All Useful

Somewhat Useful

Moderately Useful

Useful

Very Useful

Number of Participants

Suggester
Suggestee

Figure 6.5 Survey Results on the Usefulness of GitHub suggested changes

6.3.5 Summary

Our findings show that GitHub suggested changes have a major influence on development practices and

behavior. We discovered this feature is useful for suggesting different types of code changes, effective for
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facilitating recommendations during reviews, and beneficial for improving coding activity and collabo-

ration between developers. Additionally, we found developers find suggested changes useful for making

and receiving recommendations on GitHub pull requests. Based on qualitative analysis examining user

feedback on the advantages of suggested changes, we submit two main implications for improving the

future recommender systems and their developer impact. These implications include incorporating

user-driven communication (Communication, Code, and Conciseness) and workflow integration (Ac-

tionability, Ease of Use, Location, Scalability, and Timing) into automated recommendations to improve

developer behavior.

6.4 Discussion

To evaluate developer recommendation choice architectures, this work analyzes GitHub suggested

changes as a recommendation system incorporating all the principles from this conceptual framework.

The findings from the evaluations of suggested changes presented in this chapter show that developers

prefer to receive recommendations from this system and it has a major impact on development prac-

tices on GitHub. Overall, we provide four implications for designing effective recommender systems

based on the results of these studies: recommendation content, recommendation design, user-driven

communication, and workflow integration. Here, we explain these conclusions from the context of

each study and through the lens of the developer recommendation choice architectures framework.

6.4.1 Actionability

Our analysis of the GitHub suggested changes feature suggests that actionability influences the per-

ception and adoption of recommendations by developers. For example, the recommendation styles

and developer impact study offer recommendation design and workflow integration as implications to

improve automated suggestions from future recommender bots. To describe the impact of actionability

in suggested changes, I describe themes derived from qualitative feedback from developers in the

studies presented in this chapter.

Workflow Details

The recommendation styles results show that integration details within the content of automated

suggestions can influence adoption. These workflow details, describing how to install and integrate

tools into development processes, also contribute to the actionability of recommendations by providing

information on how easy it is to adopt tools and practices. For example, participants mentioned they

were interested in learning if suggested tools would easily work with “whatever CI or test runner system

I’ve got” (P8) and wanted to know if they had “simple integration” (P1). Similarly, developers desired

information on the reliability of systems to learn about their stability and how well tools do the things

they claim to do.

Furthermore, participants mentioned designing automated recommendations to include relevant

examples of usage. For instance, P14 stated “specific examples...would be a lot more compelling” and

78



P10 noted “It would be better if they can show me some examples with some very clear results like this

is something you can get with our tool”. Additionally, developers were interested in testing out the

actionability of recommendations saying “I would like to try it by myself first” (P11) and “I would test it

out locally” (P8). By incorporating details on the actionability of recommendations this concept into

developer recommendations such as how to install tools, integrate them into CI build systems, and the

existence of plugins within popular IDEs, automated recommendations can increase the likelihood of

adoption for developer behaviors.

6.4.1.1 Workflow Integration

Both GitHub suggested changes studies show the importance of integrating recommendations effectively

into developer workflows. For instance, developers were likely to adopt tool recommendations from

suggested changes over other recommender systems because of its ability to automatically apply rec-

ommendations and its “neat integration” (P7). Our preliminary work also shows that integration is a key

factor in developer adoption, with the disruptiveness of notifications from tool-recommender-bot
discouraging users from adopting recommendations. However, we found developers were more likely

to adopt automated static analysis tool recommendations from actionable systems such as GitHub

suggested changes.

The developer impact study also found actionability increased adoption of code change suggestions.

We found suggested changes were more popular and more effective than static pull request review

comments with fenced code. Our qualitative results also showed this was one of the most useful aspects

of this recommendation system. For example, participants mentioned they found “the ability for people

to be able to suggest changes and to be able to incorporate those changes immediately” (C8) and the fact

suggestions can be “accepted right away, without requiring copy pasting and committing on my side”

(C9) useful for receiving recommendations. Additionally, developers reported ease of use and scalability

contributed to the ability to easily adopt suggested changes into code review processes and make

suggestions to developers. Hence, we show actionability can enhance automated recommendations

and improve the effectiveness of recommender systems.

6.4.2 Feedback

The suggested changes studies also show that the information provided to users in automated rec-

ommendations impacts adoption. For example, we found recommendation content influences the

style of automated recommendations and user-driven communication is a favorable aspect of GitHub

suggested changes. To illustrate the importance of feedback in recommendations with this system, I

outline themes provided by developers from the results of the recommendation styles and developer

impact studies.
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6.4.2.1 Relevance

Developers in the recommendation styles study reported details concerning the relevance of tools

impacts their decisions on adoption. For instance, P2 mentioned the content of recommendations helps

them decide whether “it’s something I really need or want”, P9 stated “the recommendation itself matters

less than how much I need the thing...If I don’t need it then I’m not going to try it”, and P12 declared they

“don’t really care” about tools that are irrelevant to their work. Participants were specifically interested

in receiving information about integration details, the reputation of tools, and the trustworthiness

of systems. Alternatively, irrelevant recommendations that “show some other useless stuff which may

confuse the potential user” (P10) can lead to ineffective recommendations. For example, we found naive

telemarketer design suggestions were not useful because they provided irrelevant and generic feedback

in recommendations to users.

Similarly, developers expressed disdain for recommendation content that appears to be marketing

or advertisements. For example, developers described the email recommendation stating it sounds

“pretty suspicious”, “email...there’s so much stuff that comes through email” (P1), “email is definitely a

no” (P7), and “I’d immediately delete it” (P6). Additionally, P5 mentioned “I’m not somebody who likes

to get unsolicited marketing stuff ”. The negative perception of marketing in software engineering can

also be found from the backlash received by maintainers of the StandardJS JavaScript style guide, linter,

and formatting tool,17 who attempted to raise funds for development by incorporating advertisements

inside the terminal.18 In this instance, we found poor feedback in suggestions discouraged users from

adopting recommendations and contend automated systems should avoid marketing language in

recommendations.

However, we found details about the popularity of systems plays a key role in adoption according to

participants in the recommendation styles study. Most developers desired information the reputation

of tools when making decisions, stating “one of the things I want to see is what other people think about

it” (P3), “how many people use it...the popularity of the tool being used would influence me to try that”

(P6), “when there’s a buzz around a tool, that’s when you know it’s good and you know it’s worth checking

out” (P12), and recommendations should “try to highlight the popularity, popularity is so crucial” (P13).

Participants also mentioned using various sources for learning about the reputation of tools, such

as from peers (i.e. “word of mouth and people that I actually trust who use it” (P6)) and online searches

(i.e. “Google the tool’s name...[and get] a link on the first page” (P5)) in addition to social media and

other online programming communities. Prior work also shows displaying details about popularity

impact adoption of developer behaviors, such as increasing updates to repositories and contributions

from collaborators [Agg14]. This indicates automated recommendations should consider incorporat-

ing popularity statistics such as number of users, downloads, social media followers, and reviews to

encourage adoption. Thus, we argue including relevant feedback about tools and practices is necessary

to encourage the adoption of developer behaviors

17https://standardjs.com/
18https://github.com/standard/standard/issues/1381

80

https://standardjs.com/
https://github.com/standard/standard/issues/1381


6.4.2.2 Conciseness

The recommendation styles and developer impact study found users appreciated the brief and compact

nature of recommendations with GitHub suggested changes. For example, when describing the email

and issue static analysis tool recommendations mentioned they contained “a ton of words” and were

“way too lengthy” (P13). Additionally, P10 noted effective recommendations “just get[sic] to the point”.

However, P8 liked suggested changes because they provide a “nice, concrete error” (P8). Even though all

of the recommendation styles contained similar text in the suggestion, systems such as email appeared

to contain more text for developers to read. Likewise, research suggests software engineers prefer instant

messaging systems because they are more concise and quicker than emails [Bla13].

Concise recommendations with GitHub suggested changes also played a role in impacting developer

behavior. For example, R11 noted “it uses less words”. Developers also reporting preferring recommenda-

tions as code stating this system “can quickly and precisely show what change they expect. Describing the

change with words is pretty annoying” (C12), “removes guesswork from interpreting a prose explanation”

(R4), and “removes all ambiguity about what I’m asking for if I can just directly put the code there” (R12).

Prior work also found conciseness is important designing interactive software systems [Was81] and in

quick fix designs to increase adoption of code-checking systems [Joh13].

6.4.2.3 Communication

The developer impact study results show one of the most useful aspects of suggested changes is their

ability to effectively communicate to developers. Participants found this system effective for facilitating

clear communication between developers on pull requests. For instance, users replied this system is

useful because it “lets someone else directly make changes instead of writing out instructions on how

to make changes” (C10), “gives the suggestion in a very clear way” (R5), and provides “easy informa-

tion on what to change in your pull request” (C5). This user-driven communication led to effective

recommendations from developers on pull requests. Prior work also suggests poor communication

from automated systems prevents static analysis tool adoption [Joh13] and frustrates developers during

interactions with bots [Wes18], while user-driven conversations improves the effectiveness of recom-

mender chatbots [Cer19]while specific and clear language can overcome barriers to security adoption

adoption [Xia14]. We propose implementing clear communication focused on users to improve auto-

mated developer behavior recommendations. Overall, we conclude developers are more likely to adopt

recommendations with relevant, concise, and clear feedback.

6.4.3 Locality

GitHub suggested changes provide support recommendation locality because of their ability to situ-

ate suggestions on lines of code and present recommendations during code reviews. We found this

recommendation design for the placement and timing of notifications increased the likelihood of devel-

opers adopting behaviors. These related findings from our studies are presented below.
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6.4.3.1 Timing

For the recommendation styles user study, we found the systems with more convenient temporal locality

(GitHub suggested changes) were more likely to convince developers to adopt static analysis tools than

those with low temporal locality (pull requests, issues, and emails). We refer to these systems as having

low temporal locality because, unlike suggested changes, they can appear to developers in their email

or repository any time during the development process. However, suggested changes are limited to

open pull requests currently under review. Similarly, previous research in software engineering shows

untimely recommendations prevented programmers from adopting code navigation recommendations

from Spyglass [Vir09]while timely notifications increased the amount of Infer19 and Zoncolan20 static

analysis warnings by developers at Facebook [Dis19].

In the developer impact study, many survey respondents commented on how GitHub suggested

changes impacted the timing of reviews. For example, developers mentioned this feature “lets me do

reviews much faster” (R3), “accelerates getting pull requests accepted” (C4), “it’s great to be able to quickly

apply changes” (C23), and “it’s often quicker both to suggest a minor change” (R8). Our quantitative

analysis also found that, while suggested changes lengthen the overall pull request review process, they

are significantly faster for making recommendations and responding to suggestions during the code

review process. Therefore, to design effective automated recommendations, systems should focus on

making suggestions to developers at convenient times within the development workflow.

6.4.3.2 Location

Our recommendation style study results also suggest that the placement of notifications is important

for developer recommendations. For example, we found participants were least likely to adopt rec-

ommendations from emails, the system with the worst spatial locality in a separate window outside

of the repository. As the spatial locality of recommendations improved, we found developers were

more likely to adopt static analysis tool recommendations with GitHub suggested changes, the most

conveniently located notification on the line of code, being the most effective. P5 also mentioned the

location of recommendations influences their decision on whether or not to adopt, noting they did not

want to “go to [the tool’s]website and have to click through a million different links”. Prior work shows

tool recommendations within the coding panels of IDEs can increase efficiency and are preferred by

developers [Smi17] in addition to minimizing visual momentum and helping programmers feel less

disoriented in their development environment [DA06].

Participants in the developer impact study also praised the location of suggested changes. For exam-

ple, C24 stated this feature is useful because there is “no need to leave the pull request page to make a

suggested change”. GitHub developers also added this feature is useful because it “shows suggested code

changes integrated with the actual source” (C22) and “I can just directly put the code there” (R13). Thus,

we argue automated recommendations should appear at convenient locations within the programming

19https://fbinfer.com/
20https://engineering.fb.com/2019/08/15/security/zoncolan/
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environment in order to increase the likelihood of adoption and improve the behavior of developers.

Overall, the results of the GitHub suggested changes studies show that this system is preferred by

developers for receiving recommendations and effective for improving development practices. This

system, which incorporates the developer recommendation choice architectures framework, uses

this framework to make actionable, relevant, clear, and convenient recommendations to developers.

The feedback provided from developers through semi-structured interviews and surveys confirm the

presence of these framework principles contribute to the effectiveness of suggested changes on GitHub.

Ultimately, we conclude developer recommendation choice architectures is a useful mechanism for

creating automated recommendations because of its focus on recommendation content and design as

well as fostering user-driven communication and facilitating workflow integration.
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CHAPTER

7

DESIGNING NEW RECOMMENDER BOTS

Based on findings from the previous chapter, automated recommendations containing developer

recommendation choice architectures are preferred by software engineers and influence their devel-

opment practices. The studies presented analyzed developer recommendation choice architectures

through the GitHub suggested changes feature, and show that developers are more likely to adopt

tool recommendations from systems incorporating this framework [Bro20] in addition to showing

the suggestions made through this feature are effective for making and receiving code improvement

recommendations and improving the coding activity and collaboration of peers on pull requests [Bro20].

However, the thesis of this dissertation argues that developer recommendation choice architectures

is able to improve code quality and developer productivity. To investigate this claim, I developed a

new system, class-bot, that incorporates each of the design principles from this conceptual frame-

work and present an evaluation of this system exploring its impact on the quality and productivity of

programmers’ work. Study materials for this work are available in Appendix D.

7.1 Study Rationale

Undergraduate Computer Science courses are constantly evolving to handle the significant increase of

students [Kay98]. For example, educators have turned to many different automated tools to complete

instructional tasks such as grading assignments and generating feedback on student code [Wil15].

However, studies show that despite increasing enrollment and the advantages of automated systems

in the classroom, the dropout out rate in Computer Science, especially among first and second year

students, is also growing. Beaubouef and colleagues suggest a primary reason for high attrition in

these courses is poor behavior, such as ignoring software development processes, on programming
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assignments [Bea05]. To further explore the impact of developer recommendation choice architectures

on improving developer behavior, this work seeks to apply this framework to make recommendations to

students on programming projects. Decision-making is vital in software engineering [Woo19], however

students frequently make poor choices and adopt bad programming behaviors when writing code for

projects [Edw09]. Furthermore, these behaviors persist among professional software engineers who also

often underestimate the time and effort required to complete development tasks [Boe84], leading to

further problems such as inadequately tested software [Whi00] and insufficient documentation [Bri03].

7.1.1 Research Questions

To examine the impact of digital nudges for improving the behavior of students on programming

assignments, we seek to answer the following research questions:

RQ1 How do nudges impact the quality of student projects?

RQ2 How do nudges influence student productivity?

To answer these questions, I performed a study implementing class-bot, a system that utilizes

developer recommendation choice architectures to recommend beneficial software engineering behav-

iors to students, on projects for an introductory undergraduate programming course. The effectiveness

of this system was evaluated by examining the code quality of projects and the productivity of students.

Our results suggest automated nudges from developer recommendation choice architectures improved

performance, increased coding activity, and prevented procrastination on assignments. The contribu-

tions of this research include class-bot, a novel bot for recommend software engineering practices to

students on coding projects, and an evaluation of developer recommendation choice architectures this

system on improving the software engineering behaviors of student programmers.

7.2 class-bot: Implementing Developer Recommendation Choice Archi-

tectures

To analyze automated approaches for improving programmer behavior, this work posits class-bot.

The class-bot system nudges students to improve their behavior on programming assignments by

automatically generating and updating issues on project GitHub repositories. This bot, presented in

Figure 7.1, utilizes GitHub issues because they allow developers to manage bugs, suggest enhancements,

and provide feedback on repositories [Gita]. Furthermore, prior work suggests the GitHub issue tracker

is useful for making recommendations to developers [Bis13].

To improve student programming behaviors, class-bot encouraged them to follow the software

development process, or set of activities necessary to develop and maintain software applications. This

procedure includes activities related to the Requirements, Design, Implementation, Testing, and De-

ployment of software. Prior work suggests students failing to follow the software development process

leads to high attrition in undergraduate Computer Science courses [Bea05]. The generated issues from

class-bot on student repositories contained sections for each software development process phase.
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For example, the icon in Figure 7.1 represents the Requirements phase and activities related to under-

standing project guidelines, such as adding a description in the README. In each section, this system

outlined rubric items for the assignment relevant to each phase.

Automated issues from class-bot fit the definition of a nudge because they do not provide in-

centives to students for completing tasks nor prevent students from avoiding items. This system was

evaluated against a baseline approach of using an online rubric to illustrate project requirements and

the software phases.1 To improve the programming behaviors of undergraduate Computer Science

students, class-bot was designed using developer recommendation choice architectures: Actionabil-

ity, Feedback, and Locality [Bro20]. Below, we explain how class-bot incorporates each principle to

improve student adherence to software engineering process phases.

Actionability

Actionability involves automating tasks to encourage the adoption of developer behaviors and reducing

user effort. class-bot incorporated this principle by programmatically analyzing project repositories

to determine if students complete certain development process tasks according to the rubric. If the

tool observes an item was accomplished based on recent commits to the project, then class-bot
automatically updated the issue to indicate the task was completed. For example, the system would

automatically run the unit tests for the code to determine if a project’s unit tests were passing the

system or validate a .gitignore file was pushed to the repository to verify the configuration file was

added. Alternatively, the baseline approach was not actionable as the online rubric required students to

manually seek information and compare their development progress to the assignment requirements

outlined on the website.

Feedback

Feedback consists of providing clear and coherent information to users in automated notifications.

class-bot implements a simple feedback mechanism to present information to students on their

adherence to software engineering processes. The system displayed a red x ( ) if the assignment

requirements for a project task were not completed. When the bot detected a task was completed, it

automatically updated the feedback icon next to the rubric item listed in the GitHub issue to be a green

check mark ( ). For instance, in the Deployment phase of the class-bot example in Figure 7.1, the

project repository does contain a .gitignore file but the source code does not compile. However, with

the baseline approach students were not provided with any feedback on their project and were forced

to determine if project expectations are met on their own.

1An example of the online rubric is available here: https://pages.github.ncsu.edu/engr-csc116-staff/2020-
summer/projects/project6/rubric
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Locality

Locality refers to the setting of automated recommendations, specifically when and where interventions

are displayed to users during the development processes. To promote spatial locality, class-bot
recommendations were implemented as GitHub issues located on the project repository within the

issue tracker. To support temporal locality, the system automatically analyzed repositories daily to

provide regular updates to the class-bot software development processes issues based on students’

recent commits and code contributions to their project. However, the baseline approach does not

incorporate temporal or spatial locality in that it forced students to search for information at a separate

location from their repository on the course website and in ad hoc manner without any specified timing.

7.3 Methodology

To explore the impact of digital nudges on code quality and developer productivity, we implemented a

mixed methods study to analyze developer recommendation choice architectures on student behavior

for projects in a university-level introductory Java programming course.

7.3.1 Data Collection

7.3.1.1 Participants

Participants were undergraduate students enrolled in an introductory Java programming class. The

students were from different majors, demographics, and levels of programming experience. For consis-

tency in our data, students who enrolled and then eventually dropped the class were eliminated from

this evaluation. Overall, we observed the behavior of 35 out of the initial 42 registered students. The par-

ticipants were aware of the five phases used to define the software development process: Requirements,

Design, Implementation, Test, and Deployment, as presented to students in the course curriculum.

7.3.1.2 Projects

To analyze developer recommendation choice architectures in class-bot, we observed and nudged

developer behaviors to students on introductory Java programming projects. For the semester the course

consisted of seven programming assignments, six projects and a final comprehensive exercise. Projects

3-5 made up the control group for this experiment to avoid the beginning assignments (Projects 1 and

2). class-bot was introduced to students on the final two assignments of the course, Project 6 and the

Comprehensive Exercise, to examine its impact on the quality of projects and productivity of students.

All coding projects for the were hosted and submitted on GitHub repositories. In total, we analyzed a

total of 151 projects from students.
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Figure 7.1 Example class-bot recommendation
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7.3.1.3 Developer Behavior

To improve the decision-making of programmers, the developer behavior class-bot focused on

encouraged students to follow the software engineering process. Prior work by Beaubouef and colleagues

suggests students’ failure to adhere to development processes factors into the high attrition rate and

failure rate in early programming courses. For example, they note the following about typical student

programming methods:

“This [students’ estimated time to complete projects]minimally includes the processes of anal-

ysis, design, coding, testing, and documentation. Software projects developed by professionals

are notoriously behind schedule in the real world. It should come as no surprise that software

developed (programs written) by students will tend to be even more behind schedule.

Unsuccessful students often want to skip analysis and design and begin typing in code im-

mediately. Documentation is an afterthought at best, and little or no testing is performed.

Because the student planned to attack the assignment in this manner from the beginning, he

will often wait until the last minute to begin and work until its done or time runs out. These

students set themselves up for frustration, unnecessary rework, and failure.” [Bea05, p. 105]

We define the software development process as Requirements, Design, Implementation, Test, and

Deployment. These phases were derived from the course materials and introduced to students during

a lecture before class-bot was introduced on projects for this study. Our goal is to use developer

recommendation choice architectures to encourage students to complete all of the software process

phases for their projects. Each project contained a class-bot issue with sections for each phase listing

the relevant tasks. Specific items listed differed based on the project requirements, however in general:

Requirements (Rq) focused on activities to understand assignment specifications; Design (Ds) referred

to the organization of code and project structure; Implementation (Im) centered on the development of

the code; Testing concentrated on actions to develop unit tests (Ut) and functional test cases (St); and

Deployment (Dp) concentrated on actions to verify the project and repository were ready for submission.

When students completed a specific task, class-bot would automatically update the issue to indicate

the item was completed.

7.3.2 Determining the effectiveness of class-bot

To examine the impact of class-bot on student behavior, we mined GitHub repositories to observe

metrics measuring its impact on the quality of students’ work and the productivity of their project

development.

7.3.2.1 Quality

To answer RQ1, we evaluated the quality of student projects by examining their overall grade on the

assignment in addition to the number of points deducted from the project due to students not adhering

to requirements for the assignment.
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Grade

For coding projects, the assignment grade indicates the overall quality of the project. Research suggests

poor project management skills [Bea05] and ineffective behaviors [Edw09] result in low grades for

students on programming assignments. Similarly, research shows the behavior and software process

maturity impacts the quality of programs for professional software engineering teams [Cla97]. Within

the course analyzed for this study, project grades were determined by real-world software engineering

quality metrics, such as passing unit tests and functional test cases, Checkstyle2 static analysis tool

warnings, and correct project structure. To determine how wellclass-bot supports students in software

process decisions, we analyzed projects with and without nudges from this system to determine how

this approach impacted the overall grade of coding assignments as a method to determine the project

quality.

Deductions

Another determinant of project quality is the number of points deducted on student programs. In

education, grading penalties are commonly used to encourage students to perform better on assign-

ments [Ree17]. Students who failed to meet certain requirements designated for the project had ad-

ditional points subtracted from their overall grade. For example, submitting an assignment within 24

hours after the deadline resulted in a -10% late penalty. In this study, we analyzed projects with and

without notifications from class-bot to determine if developer recommendation choice architectures

improves student behavior and project quality by minimizing the number of points deducted from

programs.

7.3.2.2 Productivity

To answer RQ2, this study examines if nudges impact the productivity of students working on pro-

gramming assignments. We measured productivity by observing several different metrics mined from

GitHub repositories, including the total number of commits, code churn, the amount of time until the

first commit, and the timing between the last commit and the assignment deadline.

Commits

GitHub commits are used to record specific changes made to the project files.3 Prior work in Computer

Science education explores analyzing repository commits on version control systems to encourage stu-

dents to make more frequent contributions to projects [Sin12] and predict student performance [Spr19].

In industry, commits have been used to measure contributions from programmers as well as the pro-

lificacy of developers on GitHub [Vas16]. To discover if nudging students enhances productivity, we

2https://checkstyle.sourceforge.io/
3https://docs.github.com/en/desktop/contributing-and-collaborating-using-github-desktop/

committing-and-reviewing-changes-to-your-project#about-commits
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compared the total number of commits submitted by students to their project repositories with and

without class-bot notifications.

Code Churn

To determine the impact of automated nudges from our system on the activity of students, we also

analyzed the code churn of commits made to repositories on assignments with and without updates

from class-bot. Prior work in software engineering suggests code churn is a useful metric measuring

effort and the impact of code changes [Mun98], predicting the defect density in software [Nag05],

and analyzing GitHub contributions in the pull-based software development model [Gou14a]. In this

evaluation, code churn was measured by summing the number of lines added, deleted, or modified for

each commit made by students to their project repository.

First Commit

To further investigate the impact of class-bot on the productivity of students, we analyzed the timing

of commits. We examined the timing of the first commit on repositories to indicate when students began

development on their project. Prior work by Edwards et al. shows that students who start working on

assignments earlier receive significantly higher grades on projects, while students who start later often

perform worse [Edw09]. To calculate the first commit time, we measured the amount of time between

the creation and designation of project repositories to students after the assignment was announced in

class until the first commit was made on the repository. We compare the timing of the first commit to

projects with and without issues from class-bot to determine if the automated feedback provided

from this system encourages students to start earlier and prevents procrastination on programming

assignments.

Last Commit

We also analyzed the timing of the last commit on repositories to signify students completing work on

their project. Edwards also found the time of last submission on a student programming project also

significantly impacts their performance [Edw09]. To help students be more productive and discourage

late submissions, we aim to user class-bot to nudge students to complete software development tasks.

To further explore the impact of developer recommendation choice architectures on productivity, we

calculated the amount of time between the last commit on a project repository and the project deadline

to measure the last commit time.

Overall, we use these quality and productivity metrics to investigate the impact of bots incorporating

developer recommendation choice architectures on the software engineering behaviors of students

working on programming projects.
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7.3.2.3 Survey

Additionally, at the end of the semester we sent students a survey to collect qualitative data on their

experience with class-bot on their repositories. The survey contained a 5-point Likert scale question

asking students about the usefulness of updates from this system and sought open-ended feedback to

describe what they find useful about the automated updates against manually checking the website and

to provide any additional comments about the system. We disseminated the survey to students after

the last day of class and the completion of the projects and course assignments. Out of the 35 eligible

students, we received 9 responses from participants (25.7% response rate). To analyze the survey data,

Likert scale responses were aggregated to determine the usefulness of class-bot and we analyzed

open-ended responses to derive feedback from students on improving automated bots for enhancing

programmer behavior.

7.4 Results

To examine the impact of developer recommendation choice architectures, this work analyzed the

impact of notifications from class-bot on the behavior of students working on programming projects.

The Mann-Whitney-Wilcoxon test (α = .05) was used to analyze the project quality and student produc-

tivity metrics for assignments with and without nudges from class-bot.

7.4.1 RQ1: Quality

To observe the impact of automated nudges incorporating developer recommendation choice architec-

tures on code quality, we analyzed the grade and number of points deducted on student assignments

with and without class-bot recommendations. The code quality results are presented in Table 7.1.

For grading, students received an average of 2.6 points higher on assignments with automated nudges.

Additionally, we found students received significantly higher scores on projects with automated nudges

(p = 0.0097). This demonstrates notifications from the class-bot system improved the overall quality

of programming assignments. Additionally, while there was not a significant difference, we noticed

projects without automated nudges had an average of 11 more points deducted compared to those with

class-bot interventions.

7.4.2 RQ2: Productivity

To discover the impact of class-bot on development productivity, we analyzed the total commits, code

churn, first commit time, and last commit time on student project repositories. Our results, presented

in Table 7.2, show that projects with nudges increased development activity approximately three more

commits and 897 more lines of code changed for each commit. Additionally, we found this approach

improved the timing of student work by encouraging participants to begin work around six days earlier

and to submit assignments 12 hours sooner.4. Furthermore, we found that class-bot significantly

4A negative result here indicates assignments submitted late after the deadline
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increased the number of lines of code modified in commits (code churn, p = 0.0348) and significantly

prevented procrastination (first commit, p < 0.0001). Overall, this signifies that nudges fromclass-bot
improved the productivity of students working on programming assignments.

Table 7.1 class-bot Quality Results

Nudge? Mean Median p-value

Grade***
No 74.29 87.66 -
Yes 76.89 95 0.0097***

Deductions
No -20.71 -5 -
Yes -9.43 0 0.0672

*** denotes statistically significant results (p-value <
0.05)

Table 7.2 class-bot Productivity Results

Nudge? Mean Median p-value

Commits
No 9.84 7 -
Yes 12.64 9 0.1646

Code Churn***
No 205.03 4 -
Yes 1101.57 11 0.0348***

First Commit*** No 8.32 7.41 -
(days) Yes 1.99 5.94 < 0.0001***
Last Commit No -21.72 -1.60 -
(hours) Yes -9.67 -2.47 0.7909

*** denotes statistically significant results (p-value < 0.05)

7.4.3 Survey

To further evaluate the class-bot system, we surveyed students to collect feedback on their experience

with this bot on their repositories. Figure 7.2 shows Likert scale questions results on students’ perceptions

of the usefulness of the automated nudges. Overall, most respondents (88.9%) found the notifications

from class-bot at least moderately useful. Participants commented on the class-bot interventions

on their projects noting they “liked the class-bot updates” (P1) and used it to “make sure everything was

running smoothly” (P6). We analyzed open-ended responses and derived two themes to provide insight

into improving automated tools for recommending developer behaviors to programmers.
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Figure 7.2 Survey Results on the Usefulness of class-bot

7.4.3.1 Validation Frequency

One area of improvement for the class-bot system is to improve how students verify their project.

Even though we found students started programming assignments significantly earlier when automated

issues were present, we also found that students reported waiting until the end of the development

process to validate their work met the project expectations. For example, several students noted that,

while they they found class-bot notifications useful, they “didn’t really check them until the final day”

(P1) and “checked it once at the end to make sure everything was correct but thats it” (P7). Furthermore,

P7, who ranked the system the lowest as Somewhat Useful, added “I kept track of my own progress so I did

not feel the need for this”. This problem also exists in software engineering where, while research shows

validating and verifying software through out the development process improves code quality [Wal89],

professional developers often face challenges and delay validating their program meets project re-

quirements [Gar08]. This motivates the need for automated recommendations to better integrate into

development workflows by encouraging programmers to validate their code more frequently.

7.4.3.2 Update Frequency

Similarly, participants desired more frequent updates from class-bot. For example, students men-

tioned “I liked it but would like it more if it could be updated more often, or maybe later in the day“ (P1)

and “the class bot didn’t update frequently enough” (P2). Additionally, P4 thought the bot was broken

due to infrequent updates and then “did not trust it when it started to work”. Prior work in software

engineering, including the results of the naive telemarketer design study, shows that untimely notifica-

tions discourage developers from adopting recommendations [Vir09; Bro19]. Furthermore, researchers

found presenting static analysis tool output more frequently encouraged programmers to fix more

bugs [Dis19]. While this system incorporated temporal locality into its design by consistently updating

GitHub issues, students desired even more frequent feedback and updates from the system to support

them in their work. Providing frequent updates to projects can improve the integration of automated

recommendations into programmers’ workflows and increase the effectiveness of digital nudges for
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improving the adoption of developer behaviors.

7.4.4 Summary

The results from this study show that that nudges are useful for improving student programming

behaviors. Specifically, we found that class-bot significantly improved student grades, increased the

number of changes to repositories, and encouraged students to start programming earlier. Participants

also reported this system was useful and provided insight for improving automated nudges to encourage

better software engineering behaviors by better incorporating student workflows. We analyzed this

feedback and present two themes based on how frequently students checked the automated notifications

from class-bot and how often the issues were updated.

7.5 Discussion

Ultimately, this work shows incorporating developer recommendation choice architectures into auto-

mated recommendations can improve the behavior and decision-making of developers. To support

this, I implemented class-bot as a recommender system incorporating the conceptual framework.

This system was designed to include each of the choice architecture principles by generating actionable

GitHub issues with automated updates to recommend development tasks, providing straightforward

and visual feedback to track progress on projects, and presenting updates with persistent and convenient

locality on issues in the repository during development. To analyze the impact of this approach on the

behavior of programmers, I developed class-bot to encourage student programmers to adhere to

software engineering processes in their work.

Research shows adopting software processes is a beneficial developer behavior for improving the

quality of applications [Cla97]. However, Computer Science education research shows failing to adhere to

software engineering processes leads to high failure and attrition in early programming courses [Bea05].

Moreover, the adoption problem for this developer behavior translates into industry, where professional

software engineers also frequently fail to follow advised development practices and inappropriately

allocate the time and effort for completing tasks [Boe84]. By encouraging students to follow software

engineering processes, we found class-bot improved the code quality and developer productivity of

students by boosting grades, increasing code contributions, and preventing procrastination. I believe

these automated nudges incorporating developer recommendation choice architectures are a step

towards encouraging Computer Science students to adopt useful developer behaviors while working on

programming projects, and thus improving the behavior of software engineers.
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CHAPTER

8

CONCLUSION

8.1 Thesis Statement Revisited

This dissertation presents research to evaluate and support my thesis statement (Chapter 1). The thesis

of this dissertation is:

By incorporating developer recommendation choice architectures into recommendations for

software engineers, we can nudge developers to adopt behaviors useful for improving code

quality and developer productivity.

To support this claim, my research makes the several contributions to advance knowledge on design-

ing automated recommendations to increase adoption of developer behaviors. First, I conducted a set

of experiments examining peer interactions and the naive telemarketer design as developer recommend-

ation approaches to determine what makes an effective recommendation to software engineers (Chap-

ter 4). The results from these studies show that user-to-user recommendations are effective because of

their ability to foster receptiveness, specifically desire and familiarity, while naive bots are ineffective

because of their inability to conform to social context and development workflows.

The preliminary studies motivated the need for new techniques to recommend developer be-

haviors to programmers as opportunities for peer interactions decline and simple systems such as

tool-recommender-bot generate intrusive and unsuccessful notifications. To improve the effective-

ness of automated recommendations, I introduce developer recommendation choice architectures, a

conceptual framework for designing effective automated recommendations to developers by applying
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concepts from nudge theory (Chapter 5). This framework utilizes practical tools for choice architec-

ture [Joh12] to obtain principles for creating automated recommendations to improve the environment

surrounding developers’ decisions, and the formative evaluation shows software engineers preferred

actionable suggestions compared to static ones.

To evaluate developer recommendation choice architectures, I devised a set of experiments analyzing

an existing recommender system, GitHub suggested changes, through the lens of this framework to

discover its impact on developer preferences and development activity (Chapter 6). These evaluations

show that developers significantly prefer to receive tool recommendations from systems incorporating

developer recommendation choice architectures than those that don’t, and that this framework is

useful for recommending a variety of changes and effective for improving development activity and

collaboration between developers during reviews.

Finally, to further assess this framework, I developed a novel automated recommender system,

class-bot, that incorporates developer recommendation choice architectures principles to generate

digital nudges recommending useful developer behaviors to Computer Science students (Chapter 7).

The findings show that this bot was able to improve code quality and the productivity of students on their

programming assignments by encouraging them to follow software engineering processes, a behavior

that is also often ignored by professional developers in industry.

In this work, I use concepts from nudge theory to encourage software engineers to adopt better

behaviors. I analyze existing and novel recommendation techniques, define developer recommend-

ation choice architectures as a method to enhance automated recommendations, investigate how this

framework impacts existing recommender systems, and develop a bot to show this approach influences

programmer behavior by improving code quality and developer productivity.

8.2 Future Work

This dissertation motivates, presents, and evaluates developer recommendation choice architectures,

a novel framework that incorporates nudge theory to design effective automated recommendations

to encourage developer behaviors. Future directions of this research can further enhance automated

developer recommendations by analyzing the behavior of software engineers and developing new tools

and techniques to improve the decision-making, behavior, and productivity of programmers in their

work.

8.2.1 Behavior

Examples of future studies related to this work involve using developer recommendation choice archi-

tectures to suggest additional developer behaviors, predicting the actions of programmers to proactively

make recommendations to prevent bad behaviors, and exploring other disciplines to improve the

behavior and decision-making of software engineers.

• Recommending developer behaviors. The research presented in this dissertation explores recom-

mendations for several developer behaviors, namely tool adoption (Chapter 4, Chapter 6.1), code
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improvements (Chapter 6.2), and following software engineering processes (Chapter 7). Future

directions of this work can examine the following question: how can developer recommendation

choice architectures impact the adoption of other developer behaviors? For example, research

shows software engineers often ignore beneficial development practices such as pair program-

ming [Lui10], software dependency updates [Mir17a], software migration [Sma21], and more.

Future work can explore using the framework presented in this dissertation to design developer

recommendations for additional tools and practices.

• Predicting developer behavior. For the most part, my research is largely reactive in that it makes

recommendations to suggest developer behaviors after programmers have completed a program-

ming task inefficiently. To improve the effectiveness of automated recommendations to developers,

future work can explore developing proactive nudges to predict the actions of developer and

present suggestions before bad behaviors occur. For example, machine learning techniques such

as collaborative filtering [MH12b] or Bayesian user modeling [Hor98] can be applied to analyze

previous development activities of software engineers and anticipate poor decisions in advance.

Then, recommender bots can proactively suggest better practices to help developers avoid poor

practices and increase adoption of beneficial behaviors.

• Interdisciplinary behavioral concepts. Nudge theory is a behavioral science concept for improv-

ing human decision-making and behavior. To advance this research, future work can explore

techniques for modifying human behavior from other disciplines. For example, behavioral science

also posits shoves as an alternative to nudges that force humans to adopt target behaviors [Arn15].

Likewise, user experience and human factors research submits dark patterns, or deceptive user

interface designs, as another form of indirect influence to alter user behavior online.1 Prospective

studies can explore multidisciplinary techniques to influence human behavior and apply these

concepts to influence the behavior of software engineers.

8.2.2 Tools

Potential advancements of this research also include subsequent studies examining using developer

recommendation choice architectures to improve the adoption of systems produced by research in

industry, enhance the output of development tools, and creating new bots to encourage the adoption of

developer behaviors.

• Improving research products. As mentioned in Section 3.1.1, there are a variety of factors that

contribute to the developer behavior adoption problem. While the research presented in this

dissertation primarily focuses on improving the decision-making of software engineers, future

work can investigate ways to improve other barriers to the adoption of development tools and

practices. For example, studies show the development products and tools developed by researchers

are often ineffective for industry practitioners [Nor10; Woh13]. Future research can explore ways to

1https://darkpatterns.org/index.html

98

https://darkpatterns.org/index.html


bridge the research-practice gap and improve the adoption of developer behaviors by convincing

researchers and toolsmiths to develop and evaluate products relevant to software engineers

that accommodate developer needs. By doing this, we can increase the awareness of software

engineering research, techniques, and findings and adoption of useful tools and practices in

industry.

• Tool output. This dissertation introduces developer recommendation choice architectures as

a framework to design recommendations encouraging developers to adopt code fixes (GitHub

suggested changes) and software engineering processes (class-bot) to apply to their work.

Another application of this research is to enhance how problems are presented to programmers.

Research shows developers often ignore warnings for code smells, or potential problems within

code [Yam13], and avoid static analysis tools due to incomprehensible output [Joh13]. Prior work

has also explored ways to improve code smell notifications, including techniques to provide

actionable static analysis alerts that mitigate false positives [Hec09], lightweight visualizations to

inspect smells during code reviews [Par08], ambient interactive designs to support identifying

and refactoring code smells [MH10], and developer-driven code smell prioritization to rank bugs

based on criticality [Pec20]. To reduce code smells and increase the quality of code, future work

can build on this research by using developer recommendation choice architectures to design

code smell notifications and nudge developers to fix reported issues and further encourage the

adoption of useful tools and practices.

• Nudge bots. To further improve the behavior of developers, future work can develop automated

tools incorporating developer recommendation choice architectures principles and concepts

from nudge theory to make recommendations using different interventions. For example, this

work examines recommendations on GitHub through automated pull requests (Chapter 4.2),

suggested changes (Chapter 6), and automated issues (Chapter 7). Future directions of this work

can explore delivering recommendations to software engineers through similar techniques on

other code hosting websites like GitLab2 or BitBucket.3 Additionally, future work can recommend

developer behaviors to software engineers through mechanisms evaluated in prior work such

as StackOverflow posts [Cai19],4 instant messages through Slack [Lin16],5 posts to social me-

dia [Beg10] or blog sites [Bar15],6 and other online programming communities. Furthermore,

research can also explore other interventions such as chatbots [Cer19] or automated program

repair techniques [Mon19] to recommend developer behavior. These examples can provide further

methods to incorporate developer recommendation choice architectures recommendations to

encourage the adoption of beneficial behaviors by developers.
2https://about.gitlab.com/
3https://bitbucket.org/
4https://stackoverflow.com/
5https://slack.com/
6https://news.ycombinator.com/
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8.3 Epilogue

“I think the most interesting topic for software engineering research in the next ten years is,

‘How do we get working programmers to actually adopt better practices?’”7

7https://twitter.com/gvwilson/status/1142245508464795649?s=20
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APPENDIX

A

STUDY MATERIALS FOR CHAPTER 4

A.1 “How Software Users Recommend Tools to Each Other”

A.1.1 Study Script

Pre Task:

The dataset is picked from kaggle.com’s Titanic competition:

https://www.kaggle.com/c/titanic

The Variable descriptions are given here:

https://www.kaggle.com/c/titanic/data

Answer any questions about the dataset.

Please do not use the internet to answer the questions.

Please work on the tasks together in pairs.

The time to spend on the task is 60 mins, which comes to 7 to 8 mins on each task. However, this is just

a recommendation. (the participants were asked to do their best when answering the questions and not

to bother about the time etc. )
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Please use any tool you are comfortable with to answer these questions. This computer has Excel, Rstudio,

Python, SAS JMP Pro 12, and MySQL Workbench. If you need anything else, we can download that as well.

The total time for the task is 60 mins. Please do not spend more than 45 mins in the training tasks

which comes to around 7 to 8 mins on each question.

Tasks:

Student Task

Task: For a to e, please to describe the relationship. For f the factors should be ranked from the most

significant to least significant. You can use mean, mode, etc. to explain the ranking.

Using training data: (45 mins)

a. What is the relationship between the (gender, age) and number of sibling/spouse (SibSp) traveling?

b. What is the relationship between the Title(you can find this in the name) and the number of

children/parents (Parch) traveling?

c. What is the relationship between the Title(you can find this in the name) and the age and gender?

d. What is the relationship between (class, fair) and age?

e. What is the relationship between (the fare and class) and the city embarked?

f. Please rank all the factors (a-e) for their contribution to survival. The factors should be ranked

from the most significant to least significant. You can use mean, mode, etc. to explain the ranking.

On the testing data: (10 mins)

Please find whether these people survived.

a. Chaffee, Mrs. Herbert Fuller (Carrie Constance Toogood)

b. Robins, Mr. Alexander A

c. Peltomaki, Mr. Nikolai Johannes

d. Abelseth, Mr. Olaus Jorgensen

e. Mulvihill, Miss. Bertha E

f. Thomas, Mr. John

g. Daniels, Miss. Sarah

h. Delalic, Mr. Redjo
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LAS Analyst Task

Task: For a to c, please describe the relationship between the categories. For d the factors should be

ranked from the most significant to least significant. You can use mean, mode, etc. to explain the ranking.

Using train.csv: (35 mins)

a. What is the relationship between the gender (Sex), age, and the number of siblings/spouse traveling

(SibSp)?

b. What is the relationship between the Title (you can find this in the name- Mr., Mrs., Ms., Miss.,

Master., Dr., etc. There may be more than this) and the number of children/parents (Parch)

traveling?

c. What is the relationship between the fare, class (Pclass), and age?

d. Rank the factors for their contribution to survival. The factors should be ranked from the most

significant to least significant. You can use any methods to explain the ranking. (1 = survived, 0 =

died)

When you are comfortable with your answers to the tasks above or time is running out, please move

on to the final task. Again, you must work together in pairs and you may not use the internet to answer

the questions.

Using test.csv and your results from the previous task: (10 min.)

Predict whether the following passengers survived:

a. Chaffee, Mrs. Herbert Fuller (Carrie Constance Toogood)

b. Robins, Mr. Alexander A

c. Peltomaki, Mr. Nikolai Johannes

d. Abelseth, Mr. Olaus Jorgensen

e. Mulvihill, Miss. Bertha E

f. Thomas, Mr. John

g. Daniels, Miss. Sarah

h. Delalic, Mr. Redjo
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Post Task:

For the tasks you just completed, I’m interested in when you recommended a tool or program feature to

complete the tasks. I noticed the following recommendations you made; let’s look back at them briefly.

Open recommendation sheets.

Do you recall making any other recommendations that I didn’t write down, especially ones where

help was not specifically asked for? Write them down.

Now, let’s go through each one. May I turn on my audio recorder? Turn it on. Fill in interview portion.

A.1.2 Recommendation Sheet

The following text was used by the researchers to track instances of peer interactions during the study

sessions and to guide the discussion in the semi-structured interviews at the end of the tasks:

Recommendation Sheet

Observation Data

Person making the recommendation: _______________________

Approximate time recommendation made: _________________

Tool recommended ____________________

A.1.3 Interview Data

Semi-structured

Õne effective and one ineffective tool recommendation

Previous experience with tool of choice?

For person making the recommendation:

• Why did you decide to make this recommendation?

• Why did you make it this way?

• Why did you phrase it this way?

• Why did you make it at this time?

• Did the recomendee react in the way you expected?

• Anything else we should know about this?

For person who received the recommendation:

• What did you think when you got the recommendation?
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• How helpful was the recommendation for the task you were doing? For future tasks?

• How helpful was the timing of the recommendation?

• How disruptive was the timing of the recommendation?

• Anything else we should know about this?

A.1.4 Interaction Data List

For each recommendation observed in our study, we collected:

• the type of peer interaction (Peer Observation or Peer Recommendation),

• the approximate time in the video the recommendation took place,

• which participants are the driver and navigator,

• the study task,

• the method of the driver and navigator (if possible),

• the name and type of the recommended feature,

• a transcript of the dialogue concerning the new tool,

• the reaction of the recommendee,

• instances in the study where the tool was re-used,

• instances where the tool was ignored for a less efficient method,

• the effectiveness, politeness, persuasiveness, and receptiveness scores,

• whether the recommendations was under time pressure, and

• if the recommendation was discussed during the interview and time of discussion in the video.

A.1.5 Peer Interaction Characteristic Scoring

This section of the appendix presents the final set of criteria that the two independent researchers agreed

upon for Politeness, Persuasiveness, and Receptiveness. We specifically searched for the following when

analyzing the study videos and scoring these characteristics for peer interactions.

Politeness

Tact

+1 Recommender provides beneficial reason for using tool

0 No statement on advantages or disadvantages of tool

-1 Recommender notes weakness of using suggested tool

Generosity

+1 Recommender offers to do the work for the recommendee

0 No statement on either peer doing work

-1 Recommender makes partner complete all the work
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Approbation

+1 Recommender praises or compliments partner

0 No statements of praise or insults

-1 Recommender insults or offends partner

Modesty

+1 Recommender expresses humility in knowledge or abilities

0 No statements of humility or arrogance

-1 Recommender praises their own knowledge or abilities

Agreement

+1 Recommender agrees with statements made by partner or uses inclusive language

0 No statements of agreement or disagreement

-1 Recommender disagrees or argues with partner

Sympathy

+1 Recommender expresses congratulations, commiseration, or expresses condolences

0 No statements regarding sympathy or apathy

-1 Recommender incites conflict, expresses dismissiveness, or enjoys pain of partner

Persuasiveness

Content

+1 Recommender explicitly explains why the tool suits the purpose by citing a source, relating to previous

experience, explaining how it works, or presenting why it’s useful

-1 Recommender does not provide any information explaining why to use the suggested tool

Structure

+1 Recommender presents the tool before explaining why it should be used

-1 Recommender explains why a tool should be used before saying the tool or does not provide content

Style +1 Recommender avoids hedging, hesitating, recommending multiple features simultaneously,

asking if a tool should be used, tag questions, and passive and powerless language (i.e. “I think”, “I guess”,

“sort of”, excessive number of “Uh...”, etc.)

-1 Recommender uses the statements above in their recommendation

Receptiveness

Demonstrate Desire

+1 Recommendee explicitly expresses interest or asks questions to learn more information about tool

0 No statements demonstrating desire
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-1 Recommendee explicitly expresses disinterest in using tool

Familiarity

+1 Recommendee explicitly expresses familiarity with tool and environment or compares to a familiar

tool

0 No statements on familiarity

-1 Recommendee explicitly states they are unfamiliar with the tool or environment

A.1.6 Demographics Questionnaire

1. Gender: ____________

2. Occupation: _________

3. What is your major (or speciality of highest degree earned)? _________

4. How many years have you known your group member? ______ How would you describe your

relationship with your partner? (Check all that apply)

a. Professional ___

b. Personal ___

c. Academic ___

d. None ___

5. What software do you know your partner uses regularly?

_____________________________________________

6. Have you and your partner worked together in some capacity in the past? __________________

a. If Yes, please describe any computer-based work you have done together:

_____________________________________________

7. How many years of experience do you have with the software(s) your group used to complete the

tasks? _____________________________________________
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A.1.7 Participants

Table A.1 Peer Interaction Study Participants

Participant Gender Major

S1 Male Industrial Engineering �
S2 Male Computer Science �
S3 Male Computer Science �
S4 Male Computer Science �
S5 Male Computer Science �
S6 Male Computer Science �
S7 Male Computer Science �
S8 Male Computer Science �
S9 Male Industrial Engineering �
S10 Female Computer Science �
S11 Female Biochemistry �
S12 Female Biochemistry ◊
S13 Female Computer Science �
S14 Male Computer Science �

Participant Gender Position

L1 Female Researcher

L2 Female Researcher

L3 Male Program Manager

L4 Female Director of Operations

L5 Male Researcher, Analyst

L6 Male Computer Engineer

L7 Female Researcher

L8 Male Language Analyst

L9 Female Engineer

L10 Female Engineer

L11 Female Intel Analyst, Researcher

L12 Male Systems Researcher
� Graduate Student ◊Undergraduate Student

Previous relationship with partner

Previously completed computer-based work with partner

126



A.2 “Sorry to Bother You: Designing Bots for Effective Recommendations”

A.2.1 Naive Telemarketer Design

Figure A.1 Naive Telemarketer Design recommendation from tool-recommender-bot

A.2.2 Study Projects

This section outlines the projects that received recommendations for the naive telemarketer design

study and provides the automated pull requests submitted to projects by tool-recommender-bot:

1. https://github.com/jponge/lzma-java/pull/15
2. https://github.com/fizzed/rocker/pull/102
3. https://github.com/GideonLeGrange/mikrotik-java/pull/61
4. https://github.com/Asquera/elasticsearch-http-basic/pull/70
5. https://github.com/debezium/debezium/pull/760
6. https://github.com/dropwizard/dropwizard-elasticsearch/pull/34
7. https://github.com/Nodeclipse/nodeclipse-1/pull/229
8. https://github.com/forge/roaster/pull/101
9. https://github.com/recommenders/rival/pull/131recommenders/rival#131

10. https://github.com/tbroyer/gwt-maven-archetypes/pull/58
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11. https://github.com/Hygieia/Hygieia/pull/2696†

12. https://github.com/wro4j/wro4j/pull/1069††

13. https://github.com/jplag/jplag/pull/61
14. https://github.com/gitbucket/markedj/pull/21
15. https://github.com/jhalterman/expiringmap/pull/60
16. https://github.com/arquillian/arquillian-core/pull/190
17. https://github.com/graphstream/gs-core/pull/305
18. https://github.com/jirutka/validator-collection/pull/27
19. https://github.com/jreijn/spring-comparing-template-engines/pull/37
20. https://github.com/elkan1788/mpsdk4j/pull/8
21. https://github.com/arturmkrtchyan/iban4j/pull/59
22. https://github.com/games647/LagMonitor/pull/51
23. https://github.com/jmxtrans/jmxtrans-agent/pull/137
24. https://github.com/fakereplace/fakereplace/pull/34
25. https://github.com/google/binnavi/pull/113
26. https://github.com/devnied/AndroidBitmapTransform/pull/1
27. https://github.com/ebnew/ki4so/pull/7
28. https://github.com/bujiio/buji-pac4j/pull/83
29. https://github.com/cathive/fx-guice/pull/26
30. https://github.com/vvakame/JsonPullParser/pull/43
31. https://github.com/cderoove/damp.ekeko/pull/2
32. https://github.com/write2munish/Akka-Essentials/pull/8
33. https://github.com/Slim3/slim3/pull/30
34. https://github.com/jirutka/spring-rest-exception-handler/pull/30
35. https://github.com/yyuu/jetty-nosql-memcached/pull/35
36. https://github.com/casidiablo/persistence/pull/17
37. https://github.com/dsyer/sparklr-boot/pull/6
38. https://github.com/dgageot/simplelenium/pull/26
39. https://github.com/jhalterman/concurrentunit/pull/22
40. https://github.com/jplag/jplag/pull/62
41. https://github.com/kwart/jd-cmd/pull/19
42. https://github.com/leveluplunch/levelup-java-examples/pull/5
43. https://github.com/ngageoint/elasticgeo/pull/97
44. https://github.com/perfectsense/dari/pull/317
45. https://github.com/rchodava/datamill/pull/119
46. https://github.com/RichardWarburton/lambda-behave/pull/98
47. https://github.com/roundrop/facebook4j/pull/122

†Merged
††Merged, then reverted

128

https://github.com/Hygieia/Hygieia/pull/2696
https://github.com/wro4j/wro4j/pull/1069
https://github.com/jplag/jplag/pull/61
https://github.com/gitbucket/markedj/pull/21
https://github.com/jhalterman/expiringmap/pull/60
https://github.com/arquillian/arquillian-core/pull/190
https://github.com/graphstream/gs-core/pull/305
https://github.com/jirutka/validator-collection/pull/27
https://github.com/jreijn/spring-comparing-template-engines/pull/37
https://github.com/elkan1788/mpsdk4j/pull/8
https://github.com/arturmkrtchyan/iban4j/pull/59
https://github.com/games647/LagMonitor/pull/51
https://github.com/jmxtrans/jmxtrans-agent/pull/137
https://github.com/fakereplace/fakereplace/pull/34
https://github.com/google/binnavi/pull/113
https://github.com/devnied/AndroidBitmapTransform/pull/1
https://github.com/ebnew/ki4so/pull/7
https://github.com/bujiio/buji-pac4j/pull/83
https://github.com/cathive/fx-guice/pull/26
https://github.com/vvakame/JsonPullParser/pull/43
https://github.com/cderoove/damp.ekeko/pull/2
https://github.com/write2munish/Akka-Essentials/pull/8
https://github.com/Slim3/slim3/pull/30
https://github.com/jirutka/spring-rest-exception-handler/pull/30
https://github.com/yyuu/jetty-nosql-memcached/pull/35
https://github.com/casidiablo/persistence/pull/17
https://github.com/dsyer/sparklr-boot/pull/6
https://github.com/dgageot/simplelenium/pull/26
https://github.com/jhalterman/concurrentunit/pull/22
https://github.com/jplag/jplag/pull/62
https://github.com/kwart/jd-cmd/pull/19
https://github.com/leveluplunch/levelup-java-examples/pull/5
https://github.com/ngageoint/elasticgeo/pull/97
https://github.com/perfectsense/dari/pull/317
https://github.com/rchodava/datamill/pull/119
https://github.com/RichardWarburton/lambda-behave/pull/98
https://github.com/roundrop/facebook4j/pull/122


48. https://github.com/spring-guides/tut-spring-boot-oauth2/pull/97
49. https://github.com/twitter/hbc/pull/195
50. https://github.com/viritin/viritin/pull/362
51. https://github.com/SINTEF-9012/JArduino/pull/82
52. https://github.com/apache/bigtop/pull/461
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APPENDIX

B

STUDY MATERIALS FOR CHAPTER 5

B.1 “Sorry to Bother You Again: Developer Recommendation Choice Ar-

chitectures for Designing Effective Bots”

130



1. Email address *

Recommendation A

Recommendation Survey
We are researchers at NC State University seeking to better understand how to improve 
awareness of software engineering tools. Regarding the tool recommendation you just 
received, please answer the following questions honestly. By submitting this form, you consent 
to allow the data you submit to be used in a publicly-accessible research paper, in an 
aggregated and anonymized form.

* Required

B.1.1 Actionable Recommendations Survey

,
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Recommendation B

2.

Mark only one oval.

Recommendation A

Recommendation B

3.

Which of the above recommendations do you prefer? *

Why? *
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4.

5.

This content is neither created nor endorsed by Google.

Years of Professional Programming Experience *

Please provide any other feedback or general comments on effective automated bot
recommendations to software developers:

133



APPENDIX

C

STUDY MATERIALS FOR CHAPTER 6

C.1 “Comparing Different Developer Behavior Recommendation Styles”

C.1.1 Recommendation Styles

C.1.1.1 Email Recommendation

Figure C.1 Example email recommendation style
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C.1.1.2 GitHub Issue Recommendation

Figure C.2 Example GitHub issue recommendation style

C.1.1.3 GitHub Pull Request Recommendation

Figure C.3 Example GitHub pull request recommendation style
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C.1.1.4 GitHub Suggested Change Recommendation

Figure C.4 Example GitHub suggested changes recommendation style
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C.2 “Understanding the Impact of GitHub Suggested Changes on Recom-

mendations Between Developers”

C.2.1 Suggested Changes Random Sample

The following instances of GitHub suggested changes were randomly sampled from the most recently up-

dated pull requests on repositories and analyzed by researchers to categorize types of recommendations

developers make using this feature:

1. https://github.com/4ian/GDevelop/pull/1112#discussion_r304598490
2. https://github.com/alphagov/govuk-design-system/pull/994#discussion_r307695226
3. https://github.com/angular/angular/pull/31609#discussion_r308959135
4. https://github.com/ansible/ansible/pull/60271#discussion_r312957415
5. https://github.com/apache/cordova-android/pull/764#discussion_r304199473
6. https://github.com/apache/couchdb-documentation/pull/385#discussion_r251147343
7. https://github.com/aragon/aragon-apps/pull/929#discussion_r308151240
8. https://github.com/arXiv/arxiv-search/pull/249#discussion_r310682583
9. https://github.com/aspnet/AspNetCore/pull/10406#discussion_r286161965

10. https://github.com/bbc/simorgh/pull/3048#discussion_r312518076
11. https://github.com/bitcoin/bitcoin/pull/16578#discussion_r312712522
12. https://github.com/BlueBrain/spack/pull/465#discussion_r309184444
13. https://github.com/CasperLabs/CasperLabs/pull/925#discussion_r313281322
14. https://github.com/ceph/ceph/pull/29378#discussion_r309036721
15. https://github.com/chainer/chainerrl/pull/436#discussion_r299015299
16. https://github.com/cosmos/cosmos-sdk/pull/4514#discussion_r311556341
17. https://github.com/cri-o/ocicni/pull/51#discussion_r311892555
18. https://github.com/DataDog/integrations-extras/pull/466#discussion_r305978895
19. https://github.com/dealii/dealii/pull/8384#discussion_r303584690
20. https://github.com/django/django/pull/8119#discussion_r312538500
21. https://github.com/dlang/druntime/pull/2662#discussion_r300630178
22. https://github.com/dotnet/corefx/pull/39917#discussion_r311788312
23. https://github.com/dotnet/dotnet-api-docs/pull/2968#discussion_r312193646
24. https://github.com/elastic/apm-agent-nodejs/pull/1144#discussion_r309565403
25. https://github.com/elastic/kibana/pull/41588#discussion_r311091394
26. https://github.com/ethereum/eth2.0-specs/pull/1361#discussion_r314107368
27. https://github.com/freeCodeCamp/freeCodeCamp/pull/35560#discussion_r287490144
28. https://github.com/galaxyproject/galaxy/pull/8452#discussion_r313373019
29. https://github.com/galaxyproject/tools-iuc/pull/2444#discussion_r304336637
30. https://github.com/gardener/gardener/pull/1128#discussion_r300451126
31. https://github.com/gatsbyjs/gatsby/pull/13471#discussion_r277948539
32. https://github.com/golang/protobuf/pull/785#discussion_r249270350
33. https://github.com/graphql-python/graphene/pull/992#discussion_r290376085
34. https://github.com/greenelab/text_mined_hetnet_manuscript/pull/24#discussion_r310587566
35. https://github.com/HumanCellAtlas/dcp-community/pull/92#discussion_r310355937
36. https://github.com/hyphacoop/handbook/pull/10#discussion_r303095279
37. https://github.com/hyrise/hyrise/pull/1493#discussion_r258051465
38. https://github.com/iterative/dvc/pull/2256#discussion_r302868825
39. https://github.com/jenkinsci/github-branch-source-plugin/pull/235#discussion_r303663151
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40. https://github.com/jpmorganchase/quorum/pull/715#discussion_r286201830
41. https://github.com/keybase/client/pull/18045#discussion_r305071747
42. https://github.com/knative/serving/pull/5042#discussion_r310395773
43. https://github.com/Kotlin/KEEP/pull/87#discussion_r276477734
44. https://github.com/kubernetes-sigs/cluster-api/pull/1228#discussion_r311095643
45. https://github.com/kubernetes/kubernetes/pull/79641#discussion_r313118736
46. https://github.com/kubernetes/test-infra/pull/13677#discussion_r309433430
47. https://github.com/LMMS/lmms/pull/4973#discussion_r287565903
48. https://github.com/magento/magento2/pull/22156/#discussion_r272134087
49. https://github.com/mdn/browser-compat-data/pull/4558#discussion_r309696300
50. https://github.com/microsoft/qsharp-compiler/pull/52#discussion_r311190580
51. https://github.com/microsoft/QuantumKatas/pull/111#discussion_r280869695
52. https://github.com/microsoft/terminal/pull/1258#discussion_r293932790
53. https://github.com/mne-tools/mne-python/pull/6233#discussion_r284656692
54. https://github.com/moby/moby/pull/38777#discussion_r259334795
55. https://github.com/neovim/neovim/pull/10071#discussion_r309415338
56. https://github.com/nhsconnect/integration-adaptors/pull/44#discussion_r310155461
57. https://github.com/nistats/nistats/pull/352#discussion_r313598729
58. https://github.com/NixOS/nixpkgs/pull/65724#discussion_r309807069
59. https://github.com/numba/numba/pull/4204#discussion_r310598073
60. https://github.com/numpy/numpy/pull/14197#discussion_r315005011
61. https://github.com/ombulabs/blog/pull/194#discussion_r310756845
62. https://github.com/onnx/onnx/pull/2106#discussion_r313733168
63. https://github.com/open-telemetry/opentelemetry-python/pull/78#discussion_r314418832
64. https://github.com/openhab/openhab2-addons/pull/4664#discussion_r268409815
65. https://github.com/OpenRA/OpenRA/pull/15813#discussion_r298209839
66. https://github.com/operator-framework/operator-sdk/pull/1533#discussion_r293002730
67. https://github.com/ppy/osu-wiki/pull/2419#discussion_r312936003
68. https://github.com/PrismJS/prism/pull/2012#discussion_r310671629
69. https://github.com/publiclab/mapknitter/pull/306#discussion_r251212108
70. https://github.com/pypa/pip/pull/6377#discussion_r274394104
71. https://github.com/Qiskit/qiskit-terra/pull/2650#discussion_r295429688
72. https://github.com/RocketChat/Rocket.Chat/pull/12174#discussion_r302773285
73. https://github.com/rust-lang-nursery/reference/pull/635#discussion_r302287965
74. https://github.com/rust-lang/rust/pull/61708#discussion_r306056531
75. https://github.com/FluidityProject/fluidity/pull/190#discussion_r309586309
76. https://github.com/scikit-learn-contrib/scikit-learn-extra/pull/13#discussion_r307204657
77. https://github.com/scrapy/scrapy/pull/3862#discussion_r302711618
78. https://github.com/security-force-monitor/sfm-cms/pull/585#discussion_r312087662
79. https://github.com/Semmle/ql/pull/1725#discussion_r314333239
80. https://github.com/shopsys/shopsys/pull/1228#discussion_r310062868
81. https://github.com/sipa/bips/pull/52#discussion_r310589709
82. https://github.com/Skyscanner/full-stack-recruitment-test/pull/28#discussion_r312427118
83. https://github.com/sourcegraph/sourcegraph/pull/5062#discussion_r310050346
84. https://github.com/spacetelescope/synphot_refactor/pull/204#discussion_r307013162
85. https://github.com/swcarpentry/git-novice/pull/678#discussion_r311232763
86. https://github.com/syl20bnr/spacemacs/pull/12463#discussion_r305982291
87. https://github.com/sympy/sympy/pull/17266#discussion_r307727949
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88. https://github.com/teamleadercrm/api/pull/361#discussion_r281559715
89. https://github.com/tensorflow/community/pull/113#discussion_r314548430
90. https://github.com/terraform-providers/terraform-provider-aws/pull/8916#discussion_r295438718
91. https://github.com/theforeman/smart-proxy/pull/657#discussion_r292927976
92. https://github.com/tombuildsstuff/golang-iis/pull/7#discussion_r314976753
93. https://github.com/vuejs/rfcs/pull/42#discussion_r296097849
94. https://github.com/weaveworks/eksctl/pull/1132#discussion_r313804187
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1. Email *

2.

Mark only one oval.

Not at All Useful

1 2 3 4 5

Very Useful

3.

GitHub Suggested Changes
We are researchers at North Carolina State University seeking to understand and evaluate the 
effectiveness of the new GitHub suggested changes feature [1]. This survey is in no way affiliated 
with GitHub. Please answer the questions below honestly, your responses will be used for research 
purposes. By submitting this form, you consent to allow the data you submit to be used in a publicly-
accessible research paper, in an aggregated and anonymized form. For completing this survey, you 
will be entered in a drawing for a chance to win a $100 Amazon gift card.

[1] https://github.blog/changelog/2018-10-16-suggested-changes/
* Required

How useful is the GitHub suggested changes feature? *

What do you find useful about it?

C.2.2 Suggestee Survey

,
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4.

5.

6.

Mark only one oval.

Yes

No

7.

This content is neither created nor endorsed by Google.

What do you find not useful about it?

How do your teams or projects integrate this feature into the development process?

Have you ever learned anything new from peers through this feature? *

If so, what have you learned (please be specific)?
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1. Email address *

2.

Mark only one oval.

Not at all Useful

1 2 3 4 5

Very Useful

3.

GitHub Suggested Changes
We are researchers at North Carolina State University seeking to understand and evaluate the 
effectiveness of the new GitHub suggested changes feature [1]. This survey is in no way 
affiliated with GitHub. Please answer the questions below honestly, your responses will be 
used for research purposes. By submitting this form, you consent to allow the data you submit 
to be used in a publicly-accessible research paper, in an aggregated and anonymized form. For 
completing this survey, you will be entered in a drawing for a chance to win a $100 Amazon gift 
card.

[1] https://github.blog/changelog/2018-10-16-suggested-changes/
* Required

How useful is the GitHub suggested changes feature? *

What do you find useful about it?

C.2.3 Suggester Survey

,
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4.

5.

This content is neither created nor endorsed by Google.

What do you find not useful about it?

How does your team or project integrate this feature into the development process?
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APPENDIX

D

STUDY MATERIALS FOR CHAPTER 7

D.1 “Nudging Students Toward Better Software Engineering Behaviors”
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1. Email address *

2.

Mark only one oval.

Not at All Useful

1 2 3 4 5

Very Useful

3.

class-bot Survey
We are seeking to understand the use of automated feedback in the Introduction to 
Computing: Java course (CSC 116). This survey is intended to collect information on how you 
feel about your ability to engage with the course and the final assignments. Please answer the 
questions below honestly for Project 6 and the Comprehensive Exercise, your responses will 
remain anonymous and will be used to improve the course and for research purposes. 
Furthermore, your participation is voluntary and will not impact your performance in the class.

* Required

How useful were the class-bot automated updates? *

Please explain:

D.1.1 Survey

,
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4.

Mark only one oval.

Rarely

1 2 3 4 5

Very Frequently

5.

6.

Mark only one oval.

Rarely

1 2 3 4 5

Very Frequently

How often did you check the automated software process updates from class-bot
on your GitHub repository? *

Please explain:

For Projects 1-5, how often did you check the software process requirements on the
website for the assignment? *
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7.

8.

This content is neither created nor endorsed by Google.

Please explain:

Please provide any additional comments on the course, improving class-bot, or how
feedback to students on GitHub can be generally be improved for CSC116 in the
future.
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