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SQL is the most commonly used front-end language for data-intensive scalable computing (DISC) applications

due to its broad presence in new and legacy workflows and shallow learning curve. However, DISC-backed SQL

introduces several layers of abstraction that significantly reduce the visibility and transparency of workflows,

making it challenging for developers to find and fix errors in a query. When a query returns incorrect outputs,

it takes a non-trivial effort to comprehend every stage of the query execution and find the root cause among

the input data and complex SQL query. We aim to bring the benefits of step-through interactive debugging to

DISC-powered SQL with DeSQL.

Due to the declarative nature of SQL, there are no ordered atomic statements to place a breakpoint to monitor

the flow of data. DeSQL’s automated query decomposition breaks a SQL query into its constituent sub-queries,

offering natural locations for setting breakpoints and monitoring intermediate data. However, due to advanced

query optimization and translation in DISC systems, a user query rarely matches the physical execution,

making it challenging to associate subqueries with their intermediate data. DeSQL performs fine-grained taint

analysis to dynamically map the subqueries to their intermediate data, while also recognizing subqueries

removed by the optimizers. For such subqueries, DeSQL efficiently regenerates the intermediate data from a

nearby subquery’s data. On the popular TPC-DC benchmark, DeSQL provides a complete debugging view in

13% less time than the original job time while incurring an average overhead of 10% in addition to retaining

Apache Spark’s scalability. In a user study comprising 15 participants engaged in two debugging tasks, we

find that participants utilizing DeSQL identify the root cause behind a wrong query output in 74% less time

than the de-facto, manual debugging.
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1 INTRODUCTION

The prevalence of large-scale data has escalated the need for easy-to-use and efficient data-intensive
scalable computing (DISC) systems that are capable of handling and processing large amounts of
data. For instance, the SQL [2] front-end of Apache Spark [2] and Hive [37] provides a simple yet
powerful way to process large amounts of data in parallel, distributing its processing across multiple
nodes in a cluster. Such DISC-backed SQL systems support complex query development using both
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SELECT * FROM Serves INNER JOIN Likes ON Serves.beer = Likes.beer GROUP BY Serves.bar HAVING COUNT(Likes.patron) > 3

HAVING COUNT

(Likes.patron)>3

Group by

Serves.bar

Join on

Likes.beer = 
Serves.beer

Serves

Likes

SELECT * FROM Serves

SELECT * FROM Likes SELECT * FROM Serves GROUP 

BY Serves.bar

SELECT * FROM Serves INNER JOIN Likes ON 

Serves.beer = Likes.beer GROUP BY Serves.bar

SELECT * FROM Serves INNER JOIN Likes 

ON Serves.beer = Likes.beer GROUP BY 

Serves.bar HAVING COUNT(Likes.patron) > 

3

SELECT * FROM Serves INNER JOIN Likes ON 

Serves.beer = Likes.beer

𝝈𝛾⨝ π

SQL Query

Constituent Subqueries 

Reflecting Query 

Execution Stages
SELECT *

Original Query

Fig. 1. Constituent Subqueries of a sample SQL query

relational and dataflow operators. Legacy SQL queries can take advantage of DISC systems, where
new users can write declarative queries instead of complex MapReduce [11] programs.
Debugging SQL queries that return an unexpected output is challenging for developers on

DISC systems [4]. Despite SQL’s extensive usage, there is currently no technique available for
interactive debugging of SQL queries akin to using "gdb" for C programs. A typical debugging
practice in SQL is trial and error debugging that requires recurring query execution to manually
extrapolate the intermediate data of an SQL query [4, 13, 15]. Users often resort to manually breaking
down a query into constituent parts called subqueries, as shown in Figure 1, and running them in
isolation to diagnose the root cause of a problem—a prohibitively time-consuming and expensive
procedure [13]. On top of that, DISC-specific challenges further complicate SQL debugging. These
systems ingest datasets that reside and are processed on distributed remote nodes, posing additional
hurdles in understanding the intermediate results. DISC systems also introduce additional layers of
code transformers and query optimizers to an already complicated system stack. The numerous
processing and scheduling phases a SQL query goes through make it even more difficult to envision
its true physical execution, leading to a conceptual gap between a user’s understanding of the
query and physical query processing [2]. To facilitate such a debugging practice, we must provide
an efficient and intuitive way to interact with the fine-grained intermediate data of a query.

We present DeSQL, an interactive step-through debugging technique for DISC-backed SQL queries.
This approach allows users to inspect constituent parts of a query and their corresponding inter-
mediate data interactively, similar to watchpoints in gdb-like debuggers. DeSQL advances SQL
query debugging in three steps. First, it automatically decomposes a given query into fine-grained
constituent subqueries, as shown in Figure 1, by using static query analysis–eliminating manual
human effort. During query execution, it identifies the intermediate data corresponding to the
extracted subqueries without requesting additional data processing jobs. Lastly, when inspecting
the constituent parts of a query, the corresponding identified data is lazily delivered to the user
from remote DISC nodes, providing a complete view of the query execution for an interactive
debugging experience. Collectively, the three contributions can significantly reduce the effort to
debug a faulty SQL query.

DeSQL is designed on the following key ideas. 1) Manually devising constituent subqueries of a
given user query can be error-prone, time-consuming, and may not reflect the complete progression
of data through atomic operations. During the SQL query parsing stage, DeSQL uses SQL grammar
production rules1 to identify the portion of the query that is optional ([where-clause]) or alternate
(cond | cond OR cond), to methodologically emit all possible subqueries against a given query;
2) DeSQL maps observed intermediate data in Spark’s Resilient Distributed Dataset (RDD) tasks
to individual subquery by applying taint analysis on query components during the scheduling
phase; 3) during query execution, DeSQL leverages existing RDD abstraction of Spark to intercept

1DeSQL uses SQL BNF grammar from ISO/IEC 9075-2:2003 - Database Language SQL (SQL-2003) SQL/Foundation [34]
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debugging data in a completely unobtrusive way to minimize runtime overhead; and 4) because
of the query optimizer, not all data required to debug a query is captured during the execution.
DeSQL analyzes the physical and logical plan of the query and identifies the closest subquery with
data to regenerate the data for the current subquery.

We first evaluate DeSQL on 10 TPC-DS [29] queries with large-scale data, comparing its perfor-
mance, overhead, and scalability against standard baselines. Second, we conduct an extensive user
study to find qualitative evidence of DeSQL’s usability and efficacy. DeSQL incurs 10% overhead
over vanilla Spark when enabled, and it offers a complete debugging view of all subqueries in
only 13.8% of the manual debugging time. Even though DeSQL requires modification in vanilla
Spark, DeSQL retains the scale-out and scale-up properties of Spark, posing minimal impact when
debugging is not required. Our user study with 15 participants tasked with resolving two debugging
scenarios demonstrates that when compared to participants engaged in manual SQL query debug-
ging, those leveraging DeSQL achieve an average time reduction of 74% in localizing bugs within
the queries. To the best of our knowledge, DeSQL is the first fully functional interactive debugger
for SQL running on the DISC system. DeSQL is currently designed for the Apache Spark ecosystem;
however, its underlying techniques can easily be ported to other DISC-based SQL engines. DeSQL
is publicly available at https://github.com/SEED-VT/DeSQL.git

2 BACKGROUND: APACHE SPARK SQL

Apache Spark is a large-scale data processing framework that runs on a cluster computing en-
vironment. A user can write MapReduce dataflow applications in Scala, Java, and Python using
Spark’s Resilient Distributed Dataset abstraction. Spark also offers a SQL [2] front-end, which
allows users to write SQL queries and execute them within the Apache Spark ecosystem, delivering
both scalability and ease of use to DISC users. Underneath, Spark uses a state-of-the-art query
optimization engine, Catalyst [2].

Name addr

Ben 101 W.M. St.

Coy 101 W.M. St.

Dan 300 N.D. St.

Han 300 N.D. St.

Patrons

patron bar times

Ben The Edge 3

Ben ToT 1

Dan JJ Pub 1

Dan ToT 2

Frequents

patron beer

Ben Amstel

Ben Corona

Coy Amstel

Dan Dixie

Coy Dixie

Coy Corona

Ben Dixie

Dan Amstel

Dan Corona

Han Dixie

Likes

bar beer price

The Edge Amstel 2.00

The Edge Corona 3.00

JJ Pub Amstel 3.50

JJ Pub Dixie 3.50

ToT Dixie 2.50

Serves

Fig. 2. Four tables in the running example dataset .

When a user submits an SQL query, Spark
SQL first parses the query into an Abstract
Syntax Tree (AST). This process also resolves
any reference to tables already loaded in Spark.
Using AST, Spark builds a logical plan of
the query and applies a series of rule-based
optimizations to the plan. These optimiza-
tions include constant folding, predicate push-
down, projection pruning, null propagation,
and boolean expression simplification. The resulting optimized logical plan is then translated into
one or more physical plans using Spark’s RDD-based operations such as map and filter. Using
cost-based estimation, Spark selects a suitable plan to generate Java code that becomes part of an
RDD’s user-defined function (UDF). Finally, the generated code, a sequence of RDDs, is submitted to
the job scheduler to decompose into RDD-based tasks, which are then sent to the remote workers
for distributed data processing. Each task in the submitted job computes its local output and stores
it in the local memory-based storage. Outputs from tasks are either (1) consumed by the down-
stream tasks on any worker in the cluster or (2) gathered together to form the final output of the
user-submitted query.

3 RUNNING EXAMPLE

Inspired from prior work [24], the following running example demonstrates debugging challenges
in DISC-based SQL queries and the benefits of using DeSQL. Suppose a user has access to a database
with four tables: names and addresses of people, information on their visits to bars, their preferred
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bar beer price

The Edge Amstel 2.00

The Edge Corona 3.00

JJ Pub Amstel 3.50

JJ Pub Dixie 3.50

ToT Dixie 2.50

(a) SELECT * FROM Serves

patron Bar

Ben Amstel

Ben Corona

Coy Amstel

Dan Dixie

Coy Dixie

Coy Corona

Ben Dixie

Dan Amstel

Dan Corona

Han Dixie

(f) SELECT * FROM Likes

bar beer price

JJ Pub Amstel 3.50

The Edge Amstel 2.00

ToT Dixie 2.50

(b) SELECT * FROM Serves GROUP BY Serves.bar

bar beer price patron beer

JJ Pub Amstel 3.50 Ben Amstel

The Edge Amstel 2.00 Ben Amstel

ToT Dixie 2.50 Ben Dixie

(c) SELECT * FROM Serves INNER JOIN Likes ON 
Serves.beer = Likes.beer GROUP BY Serves.bar

bar beer price name beer

JJ Pub Amstel 3.50 Ben Amstel

The Edge Amstel 2.00 Ben Amstel

ToT Dixie 2.50 Ben Dixie

(d)  SELECT * FROM Serves INNER JOIN Likes 
ON Serves.beer = Likes.beer GROUP BY  

Serves.bar HAVING COUNT(Likes.patron) > 3

bar beer price namebeer

The Edge Amstel 2.00 Ben Amstel

The Edge Corona 2.00 Coy Amstel

… … … … …

JJ Pub Amstel 3.50 Ben Amstel

JJ Pub Dixie 3.50 Coy Amstel

… … … … …

ToT Dixie 2.50 Ben Dixie

ToT Dixie 2.50 Coy Dixie

(e) SELECT * FROM Serves INNER 
JOIN Likes ON Serves.beer = 

Likes.beer

Fig. 3. Debugging data of constituent subqueries of motivating example by DeSQL

drinks, and the prices of drinks in each bar. Figure 2 shows sample rows from each relation. The user
wants to find bars that serve beers liked by more than three patrons. To retrieve such information
from the database, they write a SQL query using Spark SQL, as shown below.

SELECT * FROM Serves INNER JOIN Likes ON Serves.beer = Likes.beer GROUP BY Serves.bar

HAVING COUNT(Likes.patron) > 3

The query first selects data from two tables, Serves and Likes, and joins them on the common
attribute beer. The result is grouped by the bar attribute in the Serves table. A HAVING clause is
applied that counts the number of times patrons like each beer and filters the bars that have less
than or equal to three likes for any beer. The user submits this query to the Spark SQL cluster and
receives the output in Table 1.

Upon inspection, the user finds the output to be incorrect since very few patrons like beers that
the bar The Edge offers. This error occurs because the query does not incorporate cases when
the same patron likes multiple beers at the same bar. For example, if a bar serves two beers and
the same customer likes those beers, the total count will be inflated, leading to incorrect results.
In such cases, the query may overestimate the number of distinct patrons. However, the user is
unaware of the source of the problem.

Table 1. Output of the motivating example

bar beer price name beer

JJ Pub Amstel 3.5 Ben Amstel

The Edge Amstel 2 Ben Amstel

ToT Dixie 2.5 Ben Dixie

Limitations of Existing Debugging Practices. A
common debugging practice is to start inspect-
ing the input datasets and then apply each sub-
query in isolation to understand the progres-
sion of data transformation through the origi-
nal query. This approach is inherently expensive since the user must run six subqueries, which
may take several hours on large-scale data. Additionally, not all subqueries (e.g., SELECT * FROM

Serves INNER JOIN Likes ON Serves.beer = Likes.beer GROUP BY Serves.bar) map to a
true physical execution step due to the PushDownPredicate query optimization phase. BigDebug [17]
offers simulated breakpoints and on-demand watchpoints in Apache Spark, but only in the physical
layer, giving no information on what physical operation map to which SQL operation. It also incurs
infeasible overheads—capturing a mere 8% of the data for only one subquery incurs a 30% overhead,
leading to prohibitively expensive and unscalable SQL debugging.

DeSQL’s Contributions. The user decides to use DeSQL by making the following code change.

+ val deSqlContext = new DeSqlContext()

+ val debuggerResults = deSqlContext.enable(query, sparkSession)

Once the job is finished and the user requests to debug the query, DeSQL lists all possible
constituent subqueries representing every logical stage in the query execution. A user can select a
subquery that triggers DeSQL to collect the corresponding remote debug data from data nodes.
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Subject SQL
Query

Logical Plan Spark Plan Generated Code RDDs

Query De-
composition

Data Cap-
ture Points

Missing Data
Regenerator

DeSQL Output

Fig. 4. Apache Spark SQL workflow with DeSQL. DeSQL modules are represented by Green boxes.

Table 2. Correct Output for motivating ex-

ample

bar beer price name beer

JJ Pub Amstel 3.5 Ben Amstel

ToT Dixie 2.5 Ben Dixie

Figure 3 shows the debug output for each subquery.
DeSQL allows the user to seamlessly move between dif-
ferent constituent subqueries and request the associated
debug data. This imitates interactive breakpoint debug-
ging, enables a close inspection of the intermediate query
data, and facilitates isolating the root cause of the prob-
lem. In the example, the debug data for subquery SELECT * FROM Serves INNER JOIN Likes ON

Serves.beer = Likes.beer shows that after applying JOIN, the output contains many duplicate
patrons’ names which are subsequently counted in the final aggregation, COUNT. This visibility into
the intermediate data improves the user’s understanding and helps pinpoint the error. The user
did not include DISTINCT before performing a count in the HAVING operation, which counts each
patron only once. After the query correction, the user gets the correct output as shown in Table 2.

4 APPROACH

DeSQL enables step-through, interactive debugging of SQL queries running on DISC systems in
a post-mortem fashion. Its underlying methodology centers around three phases: (1) automated
query decomposition, (2) identification and tagging of relevant intermediate data, and (3) data
regeneration. DeSQL delivers breakpoint debugging to DISC-backed SQL by decomposing a user-
submitted query into subqueries. During query optimization and physical plan generation, DeSQL
performs fine-grained tracing to map a physical plan node (Spark’s RDD-based task) to concise
locations in the logical plan of the user-submitted query, identifying where to insert data monitoring
agent against a subquery. After the query finishes, DeSQL offers functionality to select a subquery
in the list of all possible subqueries and, if selected, it triggers a data gathering phase to retrieve the
corresponding debug data collected at individual remote executors. Lastly, for subqueries without
matching intermediate data, DeSQL locates the closest subquery with debug data and regenerates
the debug data. Figure 4 indicates the stages of SQL query processing in Spark SQL and DeSQL’s
integration with it.

4.1 �ery Decomposition

When a query returns unexpected results, a common debugging practice is to break down the
query into a set of incremental subqueries and execute them one by one while monitoring their
corresponding data. This process is intuitive, imitates breakpoint debugging (e.g., gdb), and helps
understand the logical progression of data during query execution. However, finding such con-
stituent subqueries is challenging as most subqueries are not evident, and the order in which
they are executed is also unclear. SQL is a declarative language with a non-sequential execution
pattern—it does not have statements that execute in sequential order. Instead, it has constituent
parts (i.e., subqueries) that are executed to construct intermediate output for the next operation.
Additionally, the user-written query does not control the sequence of execution of such subqueries,
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Algorithm 1: Query Decomposition Algorithm for DeSQL

Input: @D4A~ — the SQL query to decompose

Output: BD1@D4A84B — list of decomposed subqueries

2DC (CA44, BD1CA44) — removes the BD1CA44 from the CA44’s clone, and returns the reduced tree

0BC)>�>34 (0BC) — translate a SQL query’s AST back to its corresponding SQL code

?0AB4C>�() (0BC) — parseToAST generates the abstract syntax tree of a given query. The function also

identifies optional nodes in SQL grammar rules, treating them as pivot points to create constituent

subqueries.

1: ?0AB4_CA44 ← parseToAST(@D4A~);

2: BD1@D4A84B ← [];

3: astToCode (ast);

4: subQueryVisitor (parse_tree, subqueries);

5: Function subQueryVisitor(CA44, 2DAA4=C(D1@D4A~)

6: forall =>34 ∈ ?0AB4_CA44 do

7: if =>34.isPivot then

8: BD1@D4A~�() ← 2DC (?0AB4_CA44, =>34);

9: BD1@D4A84B.?DBℎ(astToCode(subqueryAST))

as a query optimizer decides the construction of the final execution plan. These two challenges
make it infeasible to correctly decompose queries manually.
DeSQL intercepts the query execution plan when the query is being parsed into an Abstract

Syntax Tree (AST) and applies its query decomposition technique to emit a series of constituent
subqueries, as formally defined in Algorithm 1. We formally define a constituent subquery as one
that adds, at most, one atomic relational, arithmetic, or dataflow operation to a previously found
subquery. Our insight is to identify these subqueries by leveraging SQL grammar’s production rules
with optional elements (e.g., [where-clause]), generating two distinct subqueries by considering
both the inclusion and exclusion of the optional elements. We also apply this method to production
rules with alternate sequences (e.g., cond | cond OR cond), where one alternate sequence is a
prefix of another alternate sequence. Multiple unique subqueries can be generated by selecting one
alternate at a time. This approach systematically finds the locations in the AST where constituent
subqueries can be formed and marks those locations as pivot. Line 1 of the Algorithm 1 performs
this step.

Table 3 describes a subset of operations and the transformations applied by Algorithm 1. Consider
row one, for instance, that lists the SQL production rule: <select> ::= SELECT <project>

<from-clause> [<where-clause>]. Here, the node [<where-clause>] is optional. DeSQL uses
such optional nodes as pivot points for decomposition. Thus, whenever such a node is identified,
two derived subqueries form: one that incorporates the optional node and another that excludes
it. Furthermore, the pipe symbol (‘|’) in the SQL grammar, especially when used in production
rules with a shared prefix, serves as another pivotal point of decomposition for DeSQL. Row
two lists an exemplary rule that showcases this behavior: <condition_clause>::= <condition>

|<condition> AND <condition_clause>.DeSQL harnesses this grammar rule to producemultiple
subqueries, effectively expanding the scope of the decomposition.

4.2 Taint Analysis

Once all the subqueries are generated, the next goal for DeSQL is to identify which physical-layer
executor maps to each operation in the original query. However, there are two challenges that
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Table 3. �ery decomposition rewrites by DeSQL’s Algorithm 1.
SQL Grammar Example

Query

Sub-query Rewrites Example sub-queries

<select

clause> <from

clause><where

clause><groupby

clause><having

clause>

SELECT bar

FROM Pa-

trons WHERE

name = "Dan"

GROUP BY ad-

dress HAVING

COUNT(address)

> 1

• c*(table)

• {c*(f(c)(table) | c ∈ Conditions }

• {W6 (c*(f(c)(table)) | c ∈ Conditions ∧

g ∈ GroupingAttributes }

• {f(h)(W6 (c*(f(c)(table)) | c ∈ Condi-

tions ∧ g ∈ GroupingAttributes ∧ h

∈ HavingConditions)}

• SELECT * FROM Patrons

• SELECT * FROM Patrons WHERE

name = "Dan"

• SELECT * FROM Patrons WHERE

name = "Dan" GROUP BY address

• SELECT * FROM Patrons WHERE

name = "Dan" GROUPBY address HAV-

ING COUNT(address) > 1

<select

clause><from

clause><where

clause> IN

<subquery>

SELECT *

FROM serves

WHERE bar

= "The Edge"

AND beer IN

(SELECT beer

FROM likes)

• c*(table1)

• c*(table2)

• {c*(f(c)(table1) | c ∈ Conditions }

• c ∗ (table1 ⊲⊳2 f2 (table2) )

• SELECT * FROM serves

• SELECT beer FROM likes

• SELECT * FROM serves WHERE bar =

"The Edge"

• SELECT * FROM serves WHERE bar

= "The Edge" AND beer IN (SELECT

beer FROM likes)

<table pri-

mary>RIGHT|

LEFT| INNER

JOIN<table

reference> ON

<condition>

SELECT*FROM

from Patrons

inner join fre-

quents on name

= patron

• c*(table1)

• c*(table2)

• c ∗ (table1 ⊲⊳c table2)

• SELECT * FROM Patrons

• SELECT * FROM frequents

• SELECT * FROM * fromPatrons INNER

JOIN frequents on name = patron

<select

clause><from

clause><where

clause><boolean

valueexpres-

sion>

SELECT *

FROM serves

WHERE bar

= "The Edge"

AND price <

3.00 OR beer =

"Amstel"

• c ∗ () )

• c ∗ (f21 () ) )

• c ∗ (f21∧22 () ) )

• c ∗ (f21∧22∨23 () ) )

• SELECT * FROM serves

• SELECT * FROM serves WHERE bar =

"The Edge"

• SELECT * FROM serves WHERE bar =

"The Edge" AND price < 3.00

• SELECT * FROM serves WHERE bar =

"The Edge" AND price < 3.00 OR beer

= "Amstel"

DeSQL must address. First, in Spark SQL, the physical-layer executors are RDD-based tasks that
are scheduled to execute on individual worker nodes on a single partition of data. Second, as
mentioned in Section 2, a user query transforms across different query optimizations like Predicate
Pushdown, Column Pruning, and Join Reordering. Figure 5 shows the difference in the optimized
plan after applying the PushDownPredicate optimization rule to filter entries with birth_year

> 1980 before join operation. Hidden from users, these query transformations make it highly
challenging to understand, or even guess, how the query progresses on the cloud and how the data
looks at each stage. Currently, there is no way for a user to map a specific point in the logical plan
of a user-submitted query to a specific task on a node such that they can monitor the intermediate
results of the query. Finding such a mapping requires a deep understanding of each step of the
query processor in the DISC system, every optimization strategy in its query optimization, and the
final code generation phase that synthesizes the equivalent UDFs of the query.

Since the physical plan of a SQL query originates from operation(s) in the logical plan, our key
idea is to perform fine-grained dynamic taint analysis of the query processor to trace data (i.e.,
nodes in the plan) flow through different optimization steps and processors. Using this approach, a
final RDD-based task will contain the sources (nodes in the logical plan). To this end, we augment
Spark’s query processing module by attaching a taint object, OpIndex, that contains a unique
identifier initiated in the query parsing phase. Figure 5 depicts how a taint is attached to every
node in the logical plan and propagates through each phase of the query processing.
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Filter

c_birth_year>1980

Join

Customer_

demographics Customer

BroadcastHashJoinExec

FilterExec

c_birth_year>1980
LogicalRelation

Customer_

demographics

LogicalRelation

customer

RDD4

RDD2

RDD3

RDD1

Original Query

Logical Plan Optimized Plan Physical PlanAnalyzed Plan

SELECT * FROM customer INNER JOIN demographics ON c_demo_sk=cd_demo_sk 

WHERE c_birth_year > 1980

t1

t2

t4
t5

t3

t2

t4t5

t1 t1

t3

t2

t5

Example Taint 

Propagation

LogicalPlan.Filter  

 .setOpIndex(t2)

OptimizedPlan.FilterExec.setOpInd

ex(LogicalPlan.Filter.getOpIndex)

${row}.setOpIndex(Optimized

Plan.FilterExec.getOpIndex)t2

𝝈

⨝

π

t3

t4

RDD-based Tasks

Represents Taint

t2

Fig. 5. DeSQL generates a taint, OpIndex, for each node in the logical and propagates it through each step of

query processing and optimization.

We augment each node type in each type of plan (e.g., LogicalPlan, AnalyzedPlan, OptimizedPlan,
SparkPlan, and CodeGen) with OpIndex i.e., class TreeNode {... var OpIndex: Int ...}.
Whenever a plan’s node transforms into the next plan’s node, we propagate (and merge if necessary)
the appropriate taints to the new node, as depicted at the bottom of Figure 5. In the code generation
phase, DeSQL injects the corresponding taint in the generated code (a user-defined function
to MapPartitionRDD). The taint is later used to tag the intermediate data to match with the
corresponding subquery.

4.3 Debugging Data Monitoring

The goal of this step is two-fold. First, during execution, it must annotate intermediate query data
(referred to as debug data) with the appropriate constituent subquery identifier. Second, it must
retrieve only the debug data requested for a constituent subquery. During the taint analysis phase,
DeSQL injects individual taint in the auto-generated code for Spark tasks to annotate the intermedi-
ate data as the output of a constituent subquery. Specifically, it injects DeSQL.Tap(row, OpIndex)

functions after a code is generated for each operation in Spark. The variable row represents the
data after applying the given operation, and OpIndex represents the identifier (adopted from the
taint) for the operation in the logical plan that also represents a constituent subquery. The primary
goal of this function is to intercept intermediate data after each operation in the task. However,
storing such debug data externally incurs large storage overhead and will likely slow down the
original query due to excessive I/O operations.
DeSQL leverages Spark’s RDD lineage mechanism to address this challenge. We make the

following observations. First, once a debug data is captured, it is completely immutable. Thus,
no additional operations are made on it, and it can be recomputed as it adheres to Spark’s RDD
properties. Second, by marking the intermediate data with an OpIndex, a simple and lightweight
filter can quickly separate the debug data from the standard query output. Instead of creating a
separate stream or storage of debug data, DeSQL merges the debug data with the existing output
data. When a query is executed, the intercepted data is first duplicated and then appended with an
OpIndex. This field is unset in regular output data. Finally, the debug data is re-injected back into
the regular data stream. Note that DeSQL only records the lineage of transformations, leveraging
Spark’s lazy materialization of RDDs. The duplicated rows are not physically created until an
action is triggered on the RDD. Figure 6 shows how the data is intercepted and merged into the
regular output stream and how the debug data bypasses the downstream query operations. Before
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Fig. 6. DeSQL utilizes the regular output data stream to propagate constituent subqueries’ debugging data

collecting the final query results, the output stream splits into two data streams: debug and output
using FilterRDD i.e.,stream.filter(_.isDebug) and stream.filter(!_.isDebug), but only
the standard output is materialized whereas the other debug data is only materialized on demand.
Once the query execution finishes, a user may perform interactive debugging on the query.

DeSQL presents a list of queries in a hierarchical view to allow the user to step through each
data processing step in the query. If a user requests to see the data against a constituent subquery,
DeSQL retrieves the RDD representing the debug stream, applies another filter to filter the data
that contains the OpIndex of that subquery, and, finally, materializes the subquery results to show
to the user. The use of RDD to represent debug data allows users to perform lightweight sampling
and filter on the debug data on the cloud before gathering it.

Table 4. Data Regeneration Example

All Possible Sub Queries Data Availability

SELECT bar FROM frequents Available

SELECT bar FROM frequents WHERE patron = "Ben" Unavailable

SELECT bar FROM frequents WHERE patron = "Ben" OR times > 1 Available

Original Query : SELECT bar FROM frequents WHERE patron = "Ben" OR times > 1

4.4 Data Regeneration

Aggressive query optimization strategies often lead to misconceptions related to query execution,
which further impedes a user’s ability to understand the root cause of issues. This is mainly because
the user-written query looks widely different than the generated code that runs on the machine.
Figure 5 shows one of the simplest query optimizations that pushes the filter closer to the data
source for early data reduction and hence, faster query execution time. Such an optimization also
causes challenges in providing a full logical view of all constituent subqueries. For example, the
query in Table 4 is decomposed into: 1) SELECT bar FROM frequents; 2) SELECT bar FROM

frequents WHERE patron = "Ben"; and 3) SELECT bar FROM frequents WHERE patron =

"Ben" OR times > 1. Due to the optimization, the final physical plan does not contain any
execution where the debug data for subquery SELECT bar FROM frequents WHERE patron =

"Ben" could be intercepted.
Assuming that query optimizations are heavily verified against semantic equivalence, DeSQL

regenerates intermediate data for subqueries for which no intermediate data exists in the original
query execution. However, regenerating such data from scratch can be costly and requires rerunning
partial queries. DeSQL aims for maximum data and computation reuse. Since it already has the data
for most of the subqueries, DeSQL localizes the closest materialization point, i.e., a subquery with
debugging data, and uses its data to regenerate the result for the subquery without the debug data.
The closest materialization points represent the query with a minimum difference in operations and
is a legal subquery of the current constituent subquery. In our example, patron = "Ben" is the clause
required to compute the missing data from the first subquery, which already contains the superset
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Table 5. Subject TPC-DS�eries
Query
#

Description # of
Tables

# of sub
queries

Operators
Included

Max
Rows

ReGen

1 Retrieving records from the "customer" table where the
birth year of the customer is greater than 1980.

1 2 SELECT, FROM, WHERE 20M ✗

2 Retrieving records from the "customer" table where the
"c_customer_sk" is either above 6 or below 19.

1 3 SELECT, FROM, WHERE, OR 20M ✓

3 Retrieving records from the "customer" table where the
"c_customer_sk" is between 6 and 19.

1 2 SELECT, FROM, WHERE,
AND

20M ✗

4 Retrieve female customer demographics born after 1980
with a matching entry in the "customer" table.

2 5 SELECT, FROM, WHERE,
AND, IN

116.4M ✗

5 Retrieve female customer demographics born after 1980
but within first five months of the year, with a matching
entry in the "customer" table.

2 6 SELECT, FROM, WHERE,
AND, IN

116.4M ✗

6 Retrieving customers that have a matching demographic
information in the "customer_demographics" table.

2 3 SELECT, FROM, JOIN 116.4M ✓

7 Retrieving number of customers who were born in each
month of the year.

1 3 SELECT, FROM, COUNT,
GROUP BY

20M ✓

8 Retrieve customers born after 1980 with cd_demo_sk >
3.

2 5 SELECT, FROM, WHERE,
JOIN, AND

116.4M ✓

9 Retrieve customers born after 1980 with cd_demo_sk >
3, belonging to households with <2 dependents.

3 8 SELECT, FROM, WHERE,
JOIN, AND, IN

117.04M ✓

10 Retrieve customers born after 1980 with cd _demo _sk
> 3, belonging to households with <2 dependents, and
born on a same-day-of-the-year leap year.

4 12 SELECT, FROM, WHERE,
JOIN, AND, IN, COUNT,
GROUP BY

132.89M ✓

of the debug data. After concluding this step, DeSQL enables complete, step-through debugging of
the user query where a user can watch the data at each step of the query execution.

4.5 Implementation and Limitation

DeSQL is offered as a custom distribution of Apache Spark 3.0.0. Internally, DeSQL comprises (1) a
Scala-based external library that exposes the debugging controls to the query developer through
the web-based user interface and (2) an add-on to Spark’s query processing engine. The overall
design of DeSQL is mostly decoupled from Spark internal, which allows minimal modification
as Spark’s internal code evolves in the future version. DeSQL can be invoked with a single-line
modification in the SparkSQL application, as shown below.

+ val deSqlContext = new DeSqlContext()

+ val debuggerResults = deSqlContext.enable(query, sparkSession)

While DeSQL’s implementation supports standard SQL features, it may have limited applicability
on non-standard SQL dialects and features. Thus, its utility may reduce when dealing with propri-
etary [35] or extended SQL dialects [35]. For instance, recursive SQL queries and correlated queries
are valid SQL queries in many dialects [31]; however, such queries cannot be safely converted into
directed acyclic graphs and, therefore, disallowed in DISC systems. DeSQL does not support debug-
ging on the recursive and correlated queries. The general principles behind DeSQL are applicable
to most DISC systems such as Apache Hive; however, a fully functional implementation of DeSQL
for other DISC systems will require engineering efforts tailored for the specific query processor.
The same limitation also holds in the case when a major redesign of the core query processor in
Apache Spark will require trivial re-engineering of DeSQL’s hooks.

5 EXPERIMENTAL EVALUATIONS

We first evaluate DeSQL on its runtime cost, debugging efficiency, and scalability. Our evaluation
plan spans four research questions:

• How much runtime overhead does DeSQL incur compared to baseline?
• How does DeSQL scale to larger datasets and an increasing number of workers?
• How efficient is DeSQL compared to a standard, naïve debugging approach?
• What is the cost of data regeneration in DeSQL?
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Fig. 7. These plots compare DeSQL’s running time overhead against the vanilla Spark for multiple SQL

queries. The average DeSQL’s running time overhead is 10%. Scale factor x25 represents expanding the input

tables 25 times.

Baselines.We use two baselines, Vanilla Apache Spark and Naïve SQL Debugging, in our experi-
ments. Since there is no existing technique to debug SQL queries interactively, we compareDeSQL’s
debugging time against a naïve debugging approach where a user must re-run handcrafted sub-
queries manually to inspect intermediate query data. While it is true that not every error requires
running all subqueries, users are initially unaware of the specific subquery responsible for an error.
If such information is available, both DeSQL and baseline will equally benefit from it.
Benchmark Queries and Datasets. We conduct experiments using 10 TPC-DS queries, an
industry-standard benchmark for decision support systems [29]. It models retail product suppliers
selling items via stores, catalogs, and the internet. TPC-DS queries have been consistently used
as benchmarks in various DISC-based SQL platforms [11, 37, 41] and prior work on SQL query
analysis [20]. TPC-DS comes with data generators. We use these generators to produce data tables
with the scale factors of ×25, ×50, ×75, ×100, and ×200. Table 5 describes each subject query. These
queries are of varying complexities, including both simpler and complex nested queries. The current
implementation of DeSQL is equipped to handle a comprehensive array of query constructs and
operators. This includes various types of JOIN, multi-layer nesting with IN and LIKE operators, and
aggregation functions like COUNT and SUM with GROUP BY operators. For instance, Q10 retrieves
data for customers from specific demographics. This query ingests four tables that collectively
contain around 132.9M tuples and includes aggregation, joins, and nested queries. Due to query
optimizations of Spark [2], DeSQL performs debug data regeneration for two of its constituent
subqueries. The last column of this table indicates if data regeneration is needed for any of the
constituent subqueries.
Evaluation Environment.We run all experiments on a 12-node cluster that contains 1 name node
and 11 data nodes. Each node has at least 8 cores with a 3.10 GHz CPU, 48GB Memory, and 4TB disk
space. Collectively, the cluster contains 104 cores, 53TB of storage, and 576GB of memory. We build
DeSQL on Apache Spark version 3.0.0 and use vanilla Spark 3.0.0 for overhead comparisons. The
associated datasets are stored on HDFS version 2.7 with a replication factor of 3. All experiments
are run in a dedicated setting without any shared resources. We repeat each experiment three times
and calculate the average of the reported metrics to eliminate any noise. Note that factors such as
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Fig. 8. These plots compare DeSQL’s scalability against the vanilla Spark for multiple SQL queries to illustrate

how both platforms perform in terms of scale-up and scale-out properties.

data distribution, task scheduling, and resource availability in Spark can lead to minor variations in
query runtimes when executed multiple times.

5.1 DeSQL’s Runtime Overhead

One of our design goals for DeSQL is that it must impose minimal overhead if debugging is deemed
unnecessary. To measure the runtime overhead, we compare the job completion time of each
subject query on (1) Apache Spark with DeSQL operating at full capacity and (2) vanilla Apache
Spark. Figure 7 reports the results from each subject query. The y-axis measures the end-to-end job
completion, and the x-axis represents the input dataset size. Generally, the difference between the
job completion times from the two versions is marginal. For instance, in subject Query 5, DeSQL
incurs an additional runtime of 2 seconds for dataset size ×25 and 11 seconds for dataset size ×50,
resulting in less than 6% and 19% runtime overhead, respectively, over vanilla Apache Spark.
On a larger dataset size, the same Query 5 takes 15 seconds more to complete with DeSQL

enabled, leading to 7% overhead. As the size of the dataset increases, the absolute overhead of
DeSQL also increases slightly. Due to DeSQL’s lightweight data monitoring and fixed cost taint
analysis, the relative overhead tends to stay the same (or sometimes decrease) for larger datasets.
These overheads are slightly larger in queries with a higher number of constituent subqueries, as
there are a higher number of locations in the user query where the intermediate must be intercepted
and tagged. Even with over 12 subqueries in subject Query 10, the overhead is well within 9%.
Overall, DeSQL incurs an average overhead of 10% across all ten subject queries, demonstrating its
ability to provide interactive debugging solutions at a minimal cost. The primary contributor to
this overhead is the data interception mechanism (DeSQL.Tap) that first duplicates the data row,
attaches a tag, and then injects it back into the output data stream. By including debug data in the
output data stream, the intermediate query data size increases, which can elongate shuffle times.

5.2 Scalability of DeSQL

We verify if DeSQL retains Apache Spark’s scale-up properties, i.e., changes in job time when the
input data size increase, and scale-out properties, i.e., changes in job time when the number of
worker nodes increases. Both experiments are crucial in validating that DeSQL does not impede
Spark’s ability to scale to large datasets and extended cloud computing environments.
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5.2.1 Scale Up Evaluations. Figure 7 shows the results from the scale-up experiment whereDeSQL’s
overhead cost is evaluated on increasing input dataset size. We scale the TPC-DS dataset by the
factor of 25, 50, 75, 100, and 200. The default sizes for these datasets are relatively small and are
not suited for DISC systems. Thus, our scale-up experiment starts from the scaling factor of 25 i.e.,
the relevant tables are 25× larger in size than the original tables. For instance, in subject Query 9,
DeSQL incurs an additional runtime of 5 seconds for dataset size ×25 and 15 seconds for dataset
size ×50. This results in less than 14% and 25% overhead, respectively, over vanilla Apache Spark.

More importantly, subject queries running on DeSQL follow similar patterns of job completion
times as vanilla Spark with a nearly constant overhead of 10%. For example, query Q7 running times
in DeSQL and vanilla Spark are nearly identical. This query has three constituent subqueries, and
it ingests a total of 20M rows. On the other hand, queries Q9 and Q8 have slightly larger overheads,
between 19% and 29%, on larger dataset sizes. This is mainly because these queries require query
regeneration in at least one of their constituent subqueries. Overall, across ten queries running on
five different dataset sizes, DeSQL closely follows the scale-up behavior of vanilla Spark, validating
its scalability in dealing with large amounts of data. The main cause behind such desirable behavior
is that DeSQL’s data interception mechanism incurs a constant time overhead while processing a
single data record, regardless of the type of operation.

5.2.2 Scale out Evaluations. We evaluate the scale-out properties of DeSQL by increasing the
number of workers from 2 to 10 and measuring the job completion time. This experiment explicitly
answers if the modification needed for DeSQL has influenced the ability to utilize additional nodes
on the cluster. As the number of workers increases, the available resources and parallel processing
capacity of the Spark cluster also increases. This enables Spark to distribute the workload more
evenly among the workers, allowing for efficient parallel execution of queries. Figure 8 reports the
results from this experiment, where the y-axis represents the end-to-end job completion time and
the x-axis indicates the number of worker nodes. Overall, across all subject queries, DeSQL shows
a similar job completion time pattern as vanilla Spark, indicating its minimal impact on resource
utilization. In fact, the gap between the DeSQL’s performance and baseline narrows as more nodes
are added to the Spark cluster, which is consistent across all subject queries. For example, in subject
query Q3, DeSQL takes 92 seconds more than the baseline Spark on a 2-node cluster, which reduces
to barely 10 seconds difference on a 10-node cluster. The results show that DeSQL retains Apache
Spark’s resource utilization ability and, for a higher number of worker nodes, DeSQL’s performance
starts converging with Spark’s processing performance.

5.3 Debugging Time Savings

We design experiments to measure DeSQL’s efficiency in performing debugging i.e., extracting
the debugging data for each constituent subquery from their corresponding RDD abstractions.
As mentioned earlier, there is no standard technology to facilitate interactive debugging in DISC-
backed SQL platforms [11, 37, 41]. Our baseline, naïve debugging, is the current, most common
practice of debugging an SQL query, which comprises breaking down the query manually and then
running the resulting subqueries one after another.
In DeSQL, extracting debug data involves merging all debug data into a single RDD and then

filtering the debug data based on a constituent subquery’s OpIndex. Figure 9 presents the results
from these experiments. The y-axis represents the debugging time, and the x-axis represents the
number of rows. The debugging time is the cumulative time DeSQL takes to collect the data for all
constituent subqueries of a subject query. For example, in Q10, DeSQL takes a total of 191 seconds
to find the complete debugging data for all subqueries, whereas naive debugging takes 1391 seconds.
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Fig. 9. These plots compare DeSQL’s debugging time against the Naïve debugging techniques in vanilla

Spark for multiple SQL queries. On average DeSQL is 7.4× faster than the Naïve Debugging.

DeSQL reduces the total debugging time for all subqueries by 86.2% compared to naïve debugging.
We further categorize the cumulative debugging time into each subquery’s debugging time.

For almost every subquery, DeSQL’s debugging time is always lower than the naïve debugging
time. One primary reason is that DeSQL intercepts the debug data during the original job execution,
reducing the amount of redundant work needed to regenerate such data. Second, it uses RDD
abstraction to store debug data for every subquery. Thus, all debug data is lazily computed and
stored in distributed remote datanodes and only materialized when needed, leading to very low
runtime overhead and quick debugging time. The cost of the first subquery is usually higher than
the rest. This is due to a longer RDD lineage chain for debug data stream. When the first query
is collected, the Spark traces its RDD lineage to the closest materialization point (similar to a
checkpoint) of the original query’s DAG. It then computes the collective debug data stream from
the checkpoint, and the collective data stream becomes the closest materialization point for the
rest of the debugging subqueries.
Overall, DeSQL debugging time is 7.4× less than the naïve debugging time, on average, when

finding the complete debugging data for each subject query. In some cases, DeSQL’s debugging time
is lowerwith larger datasets than the debugging timewith smaller datasets. This behavior is common
in DISC systems due to reduce-phase skew arising from an imbalance in key distributions [23].
5.4 Cost of Data Regeneration
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Fig. 10. Debugging time of each constituent

subqueries in each subject query.

Due to query optimization, a constituent subquery’s de-
bug data may not be observed during the original query
execution. DeSQL regenerates such data from the latest
materialization point i.e., the closest constituent subquery.
The process of data regeneration takes longer compared
to normal subqueries, as multiple operations must be
applied to the closest subquery’s data to compute the rel-
evant debug data. To understand the cost of regeneration
further, we measure the difference in debugging time of
individual constituent subqueries and compare it with
subqueries that require data regeneration, as shown in
Figure 10. Each block inside the bar represents the indi-
vidual duration of all sub-queries within a single query.
For instance, in Query 6, the last subquery takes significantly longer (13.8 seconds) than the average
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time of other subqueries (9.3 seconds). This is due to the presence of a join operator that requires
data generation. Similarly, in Query 10, the second box from the bottom takes slightly longer,
representing a subquery with COUNT that takes 14 seconds, which also requires data regeneration.
Overall, subqueries that do not require regeneration are 2.2× faster than subqueries that require
regeneration. Note that Query 7’s debugging time is low owing to only three very low-complexity
constituent subqueries.

6 USER STUDY

We augment our evaluation with a user study to measure the efficacy and usability of DeSQL in
debugging faulty SQL queries. We aim to investigate the following research questions.

• Does DeSQL decrease SQL query debugging time compared to traditional methods?
• Without DeSQL, what debugging approaches do developers use for SQL queries?

6.1 Study Design

We opted for a mixed-method user study that includes a hands-on debugging task in which we
measure a participant’s performance in debugging and a qualitative survey to learn the benefits
and limitations of DeSQL. We recruited a total of 15 participants, including 9 graduate and 6
undergraduate students. The participants’ backgrounds varied in terms of their experience with
Apache Spark and SQL. Almost all participants were proficient in SQL and had working knowledge
of rational databases. Approximately 53.3% of the participants had no prior experience with Apache
Spark, while 6.7% had worked with it for a few months, 33.3% for over a year, and 6.7% for 3-5
years. Each participant was tasked with debugging two distinct SQL queries. The participants were
introduced to the database schema and the structure of the queries involved in the study during a
tutorial session. They were given time to familiarize themselves with the database tables and the
query descriptions. This ensured that participants were equipped with the necessary knowledge to
proceed with the debugging tasks. The end-to-end study spanned 30 minutes per participant.
Task and Subject System. We prepared a comparable but different debugging task that involved
debugging two different SQL queries, each associated with a different bug and dataset. The two
queries terminate with incorrect results. The correct output was not shared with the participants.
Only the correctness of the output was known to participants. Query 1 operated on an Airline
Traffic dataset [31]. It finds aircraft information with a range between 3000 and 10000 kilometers,
considering only aircraft codes of at most 700. Query 2 operated on TPC-DS dataset. It finds customer
data, along with their demographics if available, for those born post-1980 from households with
less than 2 dependents. The two queries are available in DeSQL’s code repository. To maintain
fairness in the study, one query was given with vanilla Spark to half of the participants, and the
same query was given with DeSQL to the other half and vice versa. Participants were provided
with a detailed description of the query they were required to debug. They also had access to the
actual data files, query descriptions specifying the intended query behavior, and the details of the
observed incorrect output. They were allowed to run queries and make adjustments as needed
during the debugging process. No restrictions were imposed, allowing us to capture the natural
problem-solving approaches employed by developers when dealing with faulty SQL queries.

Table 6. Debugging Performance Comparison
Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Vanilla (min:sec) 10:56* 08:05 12:06 14:33 19:05 16:04 19:06* 13:05 22:52* 16:13 04:23 08:55 09:16* 09:46 08:06
DeSQL (min:sec) 03:12 02:15 03:05 04:45 04:16 03:18 05:16 02:36 05:03 04:18 01:06 03:16 01:09 02:16 03:04
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6.2 Debugging Efficiency

We first measured the time it took for each participant to localize the root cause of the incorrect
query output. Table 6 presents the time taken by each participant to debug the faulty SQL queries
manually and using the DeSQL-assisted approach. The results indicate a substantial improvement
in debugging efficiency when utilizing DeSQL. For example, participant (P5) who took the longest
with the DeSQL (5.3 minutes) was still faster than the majority of those using the vanilla method,
underlining the benefits of DeSQL. On average, compared to manually debugging, participants
were 74.1% faster at localizing the fault in the given queries when using DeSQL. Further, using a
t-test to compare the average debugging time for participants in each setting, we found a significant
difference in performance (C = 7.0542, ? < 0.00001). These results demonstrate that DeSQL signifi-
cantly reduces the time required for debugging SQL queries in real-world scenarios, making it a
valuable tool for developers. The time with * represents participants (P1, P7, P9, and P13) who could
not resolve the debugging issue within the given time frame. This was not the case with DeSQL,
where every participant managed to address the issues. This further underscores the effectiveness
of the DeSQL method.

6.3 User Behavior
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Fig. 11. User SQL Debugging Actions

Figure 11 provides a visual representation of the strate-
gies and actions employed by participants while debug-
ging SQL queries. These actions offer insights into the
typical approaches developers take when encountering
faulty SQL queries and serve as a valuable context for
understanding the need for tools like DeSQL. One promi-
nent observation is that a large portion of participants,
accounting for 53.3% (= = 8), chose to “Check Data” as an
initial action. This indicates that inspecting the underly-
ing data sources is a common first step in the debugging
process, highlighting the importance of data examination for identifying issues. Another prevalent
action taken by 53.3% (= = 8) of participants is “Trial & Error”. This trial-and-error approach
underscores the experimental nature of debugging and the importance of iterative adjustments to
the query. Additionally, the “Re-check Query” and “Run Sub-Queries” behaviors were prevalent,
each involving 40% (= = 6) of the total participants. These actions reflect a common approach
where developers seek contextual information through query descriptions and execute specific
sub-queries to isolate and diagnose problems within a complex SQL query.

Interestingly, a smaller number of participants, accounting for 13.3% (= = 2), applied “Decompose
Query”. This action demonstrates an understanding of query complexity and the benefit of breaking
down queries intomanageable parts for analysis. It is worth noting thatmanual query decomposition
can be challenging and time-consuming, which could explain why fewer participants opted for this
approach. Furthermore, two (13.3%) attempted to “Find Slip Mistakes”. This action aligns with the
concept of identifying typographical errors or minor mistakes that can impact query execution.
Lastly, one participant (6.7%) opted to “Use limits”. This action reflects the strategy of limiting query
results to pinpoint problematic areas, which can be an effective approach to isolating issues.

6.4 Participant Feedback and Insights

Table 7 presents a comprehensive summary of participants’ feedback regarding their experience
with DeSQL while debugging SQL queries in Apache Spark. The participants were asked to rate
their experiences across various aspects.
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In terms of how well DeSQL’s interface aligned with participants’ workflows, 66.7% (= = 10)
of respondents gave it the highest rating of 5, indicating that DeSQL seamlessly integrated into
their debugging processes. An additional 33.3% (= = 4) rated it as a 4, further affirming the tool’s
positive impact on workflow alignment. Importantly, none of the participants rated it lower than 4,
indicating a high level of satisfaction and comfort with the tool’s interface. When comparing the
efficiency of using DeSQL to traditional methods of debugging SQL queries in Apache Spark, a
substantial 53.3% (= = 8) of participants found DeSQL to be “Much More Efficient”, while another
46.7% (= = 7) rated it as “More Efficient”. This indicates a consensus among the participants that
DeSQL enhances the efficiency of the debugging process compared to conventional approaches.
Regarding the most helpful features of DeSQL’s debugging interface, 66.7% (= = 10) of partici-

pants highlighted “Intermediate Data Monitoring” as the standout feature. This suggests that the
ability to closely monitor and analyze intermediate data during the debugging process greatly
aids in identifying and resolving SQL query issues. Additionally, 20% (= = 3) of participants found
“Subquery Decomposition” to be beneficial, indicating that this feature assists in breaking down
complex queries into more manageable components. A smaller portion (13.3%, = = 2) appreci-
ated the “Step-through Debugging Experience”, which indicates the tool’s interactive step-by-step
debugging functionality is valued by users.

Moreover, 93.3% (= = 14) of participants encountered no challenges while usingDeSQL, indicating
its overall user-friendliness. Only one participant cited “Navigation and Controls” as a minor
concern, suggesting room for improvement. Also, 86.7% (= = 13) of users expressed a strong
likelihood of choosing DeSQL over traditional debugging methods for future SQL query issues,
while 13.3% (= = 2) showed moderate interest. Lastly, when self-assessing speed in debugging SQL
queries, 100% of participants found DeSQL outperformed traditional methods.

Table 7. Feedback on DeSQL Interface, Efficiency, and Helpful Features

Feedback Category Rating (Out of 5) % of Participants

How well did DeSQL’s interface align with

your workflow when debugging SQL

queries in Apache Spark?

5 66.7%

4 33.3%

3 0%

2 0%

1 0%

Compared to traditional methods of

debugging SQL queries on Apache Spark,

how would you rate the efficiency of using

DeSQL?

Much More Efficient 53.3%

More Efficient 46.7%

About the Same 0%

Less Efficient 0%

Much Less Efficient 0%

What feature of DeSQL’s debugging

interface did you find most helpful in

debugging Query?

Subquery Decomposition 20%

Intermediate Data Monitoring 66.7%

Step-through Debugging Experience 13.3%

6.5 Threats to Validity

Our study, while yielding promising results, is subject to potential threats to validity that need to be
considered. One potential threat is sampling bias. Since our participant pool primarily consisted of
individuals with limited experience in Apache Spark, the results may be skewed toward those who
are less familiar with traditional debugging tools. To mitigate this, we deliberately designed our user
study to be user-experience independent of Apache Spark, focusing solely on SQL-related debugging
tasks. This approach allowed participants to evaluateDeSQL based on their SQL debugging expertise
rather than their familiarity with Spark. We acknowledge that not all SQL queries may be equally
challenging for each user. To mitigate potential bias, we ensured that each participant worked with
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both the DeSQL and vanilla Spark debugging environments, with each query being assigned an
equal number of times to both tools. This approach balanced the difficulty variation between the
two tools, helping us obtain more objective feedback.

7 RELATED WORK

Explainability of SQL. When a query returns suspicious output, developers seek an explanation
with pointers to the root cause. Prior research has extensively studied the problem of explainability,
or difficulties of explaining SQL query output in an understandable way to humans [12, 24, 25, 33, 39].
Miao et al. propose a technique to find the smallest counterexample to SQL queries, given an apriori
known counterexample [25]. They explain inequivalence between the two queries by finding the
minimal data set that causes them to produce different results. Scorpion [39] explores large data
sets by identifying predicates that explain outliers in an aggregate query result. An overlapping
theme in such automated approaches is that they often require a programmable output oracle,
which is difficult to find, especially in exploratory analysis.

Roy et al. [27, 33] provide explanations for SQL query outputs by either removing tuples from
the database or removing query components from the original query that have a significant impact
on the answers. Such an exhaustive method is effective but likely to incur prohibitive slowdowns
in DISC-backed SQL, where a given table can have millions of rows. X-Trace [12] enables tracing
the execution of SQL queries by capturing and correlating metadata from multiple system layers.
In contrast, I-REX [24] provides an interactive tracing interface for SQL queries that allows users to
understand the evaluation of complex queries with correlated subqueries. DataPlay [1] presents an
interactive query manipulation playground to perform trial-and-error debugging, which includes
manipulating and reordering the query components. These three approaches are closely related
to DeSQL, but are primarily designed for traditional relational database management systems.
They do not address issues (e.g., scalability or data regeneration) arising from underlying DISC
framework constructs such as query translation, optimization, and job scheduling. Habitat[15]
allows users to mark SQL subexpressions and generates a new query based on those marks to
observe their evaluation. However, it relies on executing queries on the target SQL database host
repetitively from scratch, which is infeasible in a DISC settings.
Data Provenance. Data provenance (DP) seeks to identify the input data tuples that play a role in
producing an output [5, 9, 10, 14, 28]. Traditional databasemanagement systems (DBMS) provenance
approaches are either tightly integrated with the DB systems and thus are not operable in a new
generation of SQL engines, or they require data and query manipulation, both of which can cause
large overheads at scale. Even in recent DP approaches such as Smoke [32], the lineage capture
logic is implemented into physical database operators with write-optimized lineage representations
to assist lineage queries when future queries are known upfront. Unlike DeSQL that provides a
transparent view into query execution, DP assists in a very specialized debugging focused on a
narrow subset of output.
Data provenance in DISC systems [6, 21] mostly capture data lineage at the level of data trans-

formations and store lineage tables in in-memory storage. Lineage tables captured at the physical
layer are generally hard to port back to the original query in DISC-backed SQL, decreasing their
value as a debugging tool. More fine-grained DP approaches [16, 18, 36, 40], inspired by dynamic
taint analysis [7], capture data by attaching taint to original data. These approaches suffer from
taint explosion problems—if one million rows are aggregated, the resulting taint will be a collection
of one million taints. DeSQL’s use of taint is only restricted to query operators, which are several
orders of magnitude less than the input data rows.
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Interactive Debugging in DISC. Inspector Gadget (IG) [30] is the early work on enabling custom
dataflow instrumentation for monitoring and debugging query data workflows in distributed envi-
ronments, such as Apache Pig/Hadoop. Similarly, in the Apache Spark ecosystem, BigDebug [17]
offers a set of interactive, real-time debugging primitives that allows users to selectively examine
distributed intermediate data, pinpoint crash-inducing records, and determine the root causes
of errors at the record level through a fine-grained data provenance capability. More recently,
Texera [38] provides interactive and real-time feedback during long-running analytics tasks, ad-
dressing a common problem with batch processing in DISC systems like Spark SQL. Other related
work [3, 8] also offers a mechanism to inspect DISC jobs. While such tools can augment DeSQL’s
ability to collect and interact with physical layer data, the collected debug data must be translated
to developer-friendly information that is consistent with the original query. This is one of the
primary challenges that DeSQL addresses.
Commercial tools of SQL Debugging. Transact-SQL (T-SQL) [26] helps debug stored procedures,
functions, and triggers, similar to traditional gdb debugging. However, it does not debug the
relations and dataflow portion of a query. T-SQL is incompatible with DISC-backed SQL, as the
stored procedures are translated into Java UDFs, making debugging on SQL stored procedures
meaningless. A similar tool, KeepTool’s PL/SQL Debugger [22], enables debugging of PL/SQL code
within the Oracle database environment, allowing developers to step through code line-by-line, set
breakpoints, inspect variables, and perform other debugging operations. It also suffers from the
same limitations as T-SQL. Both tools are now considered outdated and lack desired features to
support interactive debugging [13].

8 CONCLUSION

Trial-and-error debugging is an intuitive and de-facto method of debugging SQL queries due to its
broader utility. Despite its popularity, such debugging is highly error-prone, time-consuming, and
costly, especially in DISC-backed SQL such as Spark SQL. With DeSQL, we make interactive, step-
through debugging completely feasible and efficient on DISC systems. DeSQL’s value proposition
is its automated way of decomposing queries into constituent subqueries and utilizing existing data
pipelines of native Spark abstraction to deliver debugging data to the developer. DeSQL provides a
complete and transparent view of query execution in 13% less time than the original job time, with
a mere 10% runtime overhead. Our user study indicates that DeSQL is practical to facilitate SQL
debugging tasks. We envision that DeSQL’s low-cost access to a query’s intermediate query data
can enable a large variety of SQL explainability and provenance approaches, which are otherwise
infeasible on DISC systems.
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