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Dark Patterns for Influencing Developer Behavior

CHRIS BROWN, North Carolina State University, USA
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The behavior of software engineers has a major impact on the technology we use everyday. Unfortunately, research shows developers
often demonstrate bad behaviors and make poor decisions in their work. Existing literature has explored using automated tools to
recommend useful behaviors to programmers. However, studies show these system-to-user suggestions are often ineffective while
user-to-user suggestions between peers are the most effective recommendation approach. To improve automated recommendations for
developer behaviors, this work delves into two interdisciplinary methods to influence human behavior: nudge theory and dark patterns.
We present a comparison of these two approaches for impacting the behavior and decision-making of humans, and offer prototype
designs for dark pattern recommender bots to generate suggestions to improve the choices and behavior of software developers.
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1 INTRODUCTION

Decision-making is a vital part of software engineering, regarded as “the most undervalued” and “most important” skill
in software development.1 However, developers frequently make bad decisions in their work. For instance, despite
scientific evidence of their benefit, research shows developers often avoid using static analysis tools to automatically
find defects in code [12] and prevent security vulnerabilities [25]. Ultimately, these poor decisions by software engineers
are costly. Studies show debugging, the process of finding and fixing errors, consumes the majority of development
costs and developers’ time [18] while software failures impact billions of users and cost trillions of dollars each year.2

Software engineering literature has explored various ways to improve the decision-making of developers. For example,
the Association for Computing Machinery (ACM) published a Code of Ethics to guide the decisions of programmers
while developing and maintaining software applications [8]. However, research shows developers often ignore these
guidelines [14]. For instance, even though the ACM Code of Ethics encourages computing professionals to be “honest
and trustworthy”3 and “ensure that the public good is the central concern”,4 developers still make unethical decisions
such as implementing dark patterns, or deceptive user interfaces that often trick users to modify their behavior online.
1https://hackernoon.com/decision-making-the-most-undervalued-skill-in-software-engineering-f9b8e5835ca6
2https://www.tricentis.com/news/tricentis-software-fail-watch-finds-3-6-billion-people-affected-and-1-7-trillion-revenue-lost-by-software-failures-
last-year/
3https://www.acm.org/code-of-ethics#h-1.3-be-honest-and-trustworthy
4https://www.acm.org/code-of-ethics#h-3.1-ensure-that-the-public-good-is-the-central-concern-during-all-professional-computing-work
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2 Brown and Parnin

Software engineering researchers have also explored automated approaches to improve the choices and behavior of
programmers [20]. Despite the value of bots in software development [23], studies suggest recommendations from these
systems are often ineffective for influencing developer behavior [3]. Moreover, research shows peer interactions, or
recommendations between colleagues duringwork activities, are themost effectivemethod for making recommendations
to developers compared to technical approaches [15]. However, opportunities for these in-person suggestions between
developers in industry are infrequent and declining [16], motivating the need for automated techniques.

To improve the efficacy of automated recommendations, our prior work proposes incorporating concepts from nudge

theory into bots [5]. Nudge theory is a behavioral science framework for improving human behavior by influencing
decisions without 1) providing incentives or 2) banning alternative choices [21]. Dark patterns are another form of
indirect influence to alter human behavior, and in this work we propose using this concept to improve the decision-
making of programmers while they develop and maintain software applications. The contributions of this work are a
comparison of nudge theory and dark patterns as mechanisms for modifying human behavior and examples of systems
using dark pattern strategies to convince developers to adopt better behaviors.

2 BACKGROUND

2.1 Nudge Theory

Behavioral science research suggests nudges are effective for improving human decision-making [21]. For example,
studies show placing healthy options near the front of a cafeteria encourages students to purchase and consume
healthier options [11]. Furthermore, digital nudging is the process of using technology to nudge humans toward better
behaviors in digital choice environments [22]. For example, the Square mobile payment app changed the default user
action to tip merchants which led to a 133% increase in tips.5 This intervention is a nudge because it does not reward
users for choosing to tip nor force gratuity as the only option. Prior work suggests digital nudges are beneficial for
encouraging humans to adopt better privacy behaviors online [1] and reduce social media usage [19].

Nudges are impactful for improving human behavior because of their ability to influence the context and environment
surrounding decisions, or choice architecture [21]. To encourage software engineers to adopt better behaviors, we
introduced developer recommendation choice architectures as a novel framework that incorporates concepts from nudge
theory to improve the effectiveness of automated recommendations [5]. By incorporating actionability, feedback,
and locality into the design of bots, we argue these systems can nudge developers to adopt useful tools and practices.
For instance, we found developers prefer actionable static analysis tool recommendations over static approaches [4].

2.2 Dark Patterns

Dark patterns are user interface designs that deceptively influence the decision-making and behavior of users online.6

User experience (UX) and human factors researchers show dark patterns can influence the choices of humans. For
instance, studies show websites often incorporate misleading and dishonest user interface designs that impact users’
online shopping behaviors [13] and their divulgence of private data [6]. Prior work suggests dark patterns evolved from
explorations into nudge theory [17]. Similar to digital nudges, dark patterns rely on covert and subliminal techniques
to cognitively influence the decision-making of users in digital choice environments. However, while the intention
of nudges is to improve human decision-making and encourage the adoption of beneficial target behaviors [21], dark
patterns often work against user interests and trick them into adopting behaviors favorable for the designers.5

5https://www.fastcompany.com/3022182/how-square-registers-ui-guilts-you-into-leaving-tips
6https://darkpatterns.org/
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Dark Patterns for Influencing Developer Behavior 3

Dark patterns patterns are primarily viewed as unethical and widely discouraged due to their deceptive nature [9],
however researchers have considered opportunities where using technology to trick users is beneficial [10]. For example,
Fogg and colleagues present design patterns for creating technology to persuade users to adopt desired behaviors [7].
In this work, we aim to explore the following question: can dark patterns be used to trick software engineers into
adopting better programming behaviors? While most research examining digital nudges and dark patterns investigates
their impact on the decision-making of software users, this work seeks to explore how these concepts can influence the
choices and behavior of developers who build and maintain the software we use.

3 DARK PATTERN RECOMMENDATIONS

To improve the decision-making of developers, we present examples of automated systems incorporating dark patterns
to recommend beneficial software engineering behaviors to developers. In this case, the behavior we focus on is static
analysis tool adoption. Research shows utilizing static analysis tools provides a variety of benefits to development
teams, such as preventing errors and improving code quality [2]. However, studies also show that software engineers
rarely use these automated code-checking systems in practice [12]. The design of these sample recommendations
incorporate five strategies for dark patterns introduced in prior work by Gray and colleagues: nagging, obstruction,
sneaking, interface interference, and forced action [10]. Here, we briefly describe sample automated recommendations
with each technique to improve static analysis tool adoption among software engineers.

Nagging. Nagging refers to repeated intrusions to influence user behavior while completing a task. For instance, the
Microsoft Clippy help systemwas designed to guide users, but they found it’s interruptions frustrating and irritating [24].
To encourage developers to adopt static analysis tools in their work, one approach is to consistently nag programmers
to incorporate code-checking systems into their workflow. For example, Figure 1a presents a sample bot that generates
nagging automated GitHub issues to recommend static analysis tools to developers on coding projects.

Obstruction. Obstruction concerns design decisions that create barriers inhibiting users from completing tasks in
order to force certain behaviors and actions. For instance, Clubhouse blocks users from adding contacts unless they
provide access to their data from Twitter.7 An example of this strategy for increasing the adoption of static analysis
tools is coding editors or code hosting platforms preventing users from merging contributions into repositories unless
the changes to the program have been analyzed by a code-checking tool (see Figure 1b).

Sneaking. Sneaking refers to hiding or disguising information relevant to users’ decision-making processes. An example
of this strategy can be found in online ticket purchasing websites such as TicketMaster, which frequently have hidden
service fees and convenience costs not revealed to customers until checkout.8 Likewise, covert approaches can be
used to increase code quality by automatically running static analysis tools on source code in integrated development
environments (IDEs) while developers are completing programming tasks without their knowledge or permission.

Interface Interference. Interface interference concerns manipulating user interface designs to trick users into adopting
certain behaviors. For example, TurboTax modified their website to hide their free tax filing program to coerce users
into using their paid platform.9 Examples of interface interference to convince developers to increase static analysis tool
usage involve changing programming environments until a development tool has been run on the code (i.e., graying
out options to disallow committing code in IDEs until a code-checking tool is run in Figure 1c).

7https://medium.com/privacy-technology/when-fomo-trumps-privacy-the-clubhouse-edition-82526c6cd702
8https://www.huffpost.com/entry/concert-ticket-hidden-fees_l_5dfd1021e4b05b08bab527ef
9https://www.propublica.org/article/turbotax-just-tricked-you-into-paying-to-file-your-taxes
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4 Brown and Parnin

Forced Action. Forced action involves demanding users perform specific activities in order to continue or complete a
task. An example of this can be seen in WhatsApp, which requires users to share their data with Facebook in order to
use the app.10 While a property of nudges is that they cannot force choosers to select certain behaviors, dark patterns
can force humans to adopt specific behaviors, such as requiring programmers to use static analysis tools. For example,
Figure 1d depicts a bot that prevents pull requests from being merged until all reported static analysis bugs are fixed.

(a) Nagging (b) Obstruction

(c) Interface Inter-
ference

(d) Forced Action

Fig. 1. Dark Pattern Recommendation Examples

4 IMPLICATIONS AND FUTUREWORK

This work explores using dark patterns to design automated recommendations for improving the behavior of software
engineers. As our society becomes increasingly dependent upon technology, the need for developers to adopt beneficial
programming behaviors and make better decisions also grows. One example of a beneficial behavior developers often
avoid is incorporating static analysis tools into their workflow, despite the fact these systems provide many benefits to
development teams by automatically finding and reporting errors in code. To increase the adoption of these systems,
this work proposes several designs for developer recommender bots incorporating dark patterns.

Future directions of this research involve implementing the dark pattern recommendations in automated systems
and evaluating their impact on developer behavior. We hypothesize certain dark pattern strategies will be more effective
than others. For instance, nagging would most likely be unsuccessful because prior work shows interrupting developers’
workflow leads to ineffective recommendations [3]. Additionally, we aim to create bots to suggest good programming
behaviors beyond static analysis tool adoption, such as ethical programming decisions. Furthermore, future work
can explore applying concepts from other disciplines to improve the behavior and decision-making of developers. In
this work, we attempt to portray dark patterns derived from UX research as a design mechanism for improving the
effectiveness of automated systems to recommend useful development tools and practices to software engineers.
10https://bgr.com/2021/01/07/whatsapp-privacy-policy-change-data-sharing-facebook/

Manuscript submitted to ACM

https://bgr.com/2021/01/07/whatsapp-privacy-policy-change-data-sharing-facebook/


209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Dark Patterns for Influencing Developer Behavior 5

REFERENCES
[1] Alessandro Acquisti, Idris Adjerid, Rebecca Balebako, Laura Brandimarte, Lorrie Faith Cranor, Saranga Komanduri, Pedro Giovanni Leon, Norman

Sadeh, Florian Schaub, Manya Sleeper, et al. 2017. Nudges for privacy and security: Understanding and assisting users’ choices online. ACM
Computing Surveys (CSUR) 50, 3 (2017), 44.

[2] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler, and J. Penix. 2008. Using Static Analysis to Find Bugs. IEEE Software 25, 5 (2008), 22–29.
https://doi.org/10.1109/MS.2008.130

[3] Chris Brown and Chris Parnin. 2019. Sorry to bother you: designing bots for effective recommendations. In Proceedings of the 1st International
Workshop on Bots in Software Engineering. IEEE Press, 54–58.

[4] Chris Brown and Chris Parnin. 2020. Comparing Different Developer Behavior Recommendation Styles. In Proceedings of the IEEE/ACM 42nd
International Conference on Software Engineering Workshops (Seoul, Republic of Korea) (ICSEW’20). Association for Computing Machinery, New
York, NY, USA, 78–85. https://doi.org/10.1145/3387940.3391481

[5] Chris Brown and Chris Parnin. 2020. Sorry to Bother You Again: Developer Recommendation Choice Architectures for Designing Effective Bots. In
Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops (Seoul, Republic of Korea) (ICSEW’20). Association for
Computing Machinery, New York, NY, USA, 56–60. https://doi.org/10.1145/3387940.3391506

[6] Christoph Bösch, Benjamin Erb, Frank Kargl, Henning Kopp, and Stefan Pfattheicher. 01 Oct. 2016. Tales from the Dark Side: Privacy Dark Strategies
and Privacy Dark Patterns. Proceedings on Privacy Enhancing Technologies 2016, 4 (01 Oct. 2016), 237 – 254. https://doi.org/10.1515/popets-2016-0038

[7] BJ Fogg. 2009. Creating Persuasive Technologies: An Eight-step Design Process. In Proceedings of the 4th International Conference on Persuasive
Technology (Claremont, California, USA) (Persuasive ’09). ACM, New York, NY, USA, Article 44, 6 pages. https://doi.org/10.1145/1541948.1542005

[8] Association for Computing Machinery. 2018. ACM Code of Ethics and Professional Conduct. https://www.acm.org/code-of-ethics
[9] Colin M. Gray, Shruthi Sai Chivukula, and Ahreum Lee. 2020. What Kind of Work Do "Asshole Designers" Create? Describing Properties of Ethical

Concern on Reddit. Association for Computing Machinery, New York, NY, USA, 61–73. https://doi.org/10.1145/3357236.3395486
[10] Colin M. Gray, Yubo Kou, Bryan Battles, Joseph Hoggatt, and Austin L. Toombs. 2018. The Dark (Patterns) Side of UX Design. In Proceedings of the

2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New York,
NY, USA, 1–14. https://doi.org/10.1145/3173574.3174108

[11] Andrew S. Hanks, David R. Just, Laura E. Smith, and Brian Wansink. 2012. Healthy convenience: nudging students toward healthier choices in the
lunchroom. Journal of Public Health 34, 3 (01 2012), 370–376. https://doi.org/10.1093/pubmed/fds003 arXiv:http://oup.prod.sis.lan/jpubhealth/article-
pdf/34/3/370/12782601/fds003.pdf

[12] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. 2013. Why Don’t Software Developers Use Static Analysis Tools to
Find Bugs?. 2. Conference. In Proceedings of the 2013 International Conference on Software Engineering (ICSE) (San Francisco, CA, USA) (ICSE ’13).
IEEE Press, Piscataway, NJ, USA, 672–681. https://doi.org/10.1109/ICSE.2013.6606613

[13] Arunesh Mathur, Gunes Acar, Michael J. Friedman, Elena Lucherini, Jonathan Mayer, Marshini Chetty, and Arvind Narayanan. 2019. Dark
Patterns at Scale: Findings from a Crawl of 11K Shopping Websites. Proc. ACM Hum.-Comput. Interact. 3, CSCW, Article 81 (Nov. 2019), 32 pages.
https://doi.org/10.1145/3359183

[14] Andrew McNamara, Justin Smith, and Emerson Murphy-Hill. 2018. Does ACM’s Code of Ethics Change Ethical Decision Making in Software
Development?. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association for Computing Machinery, New York, NY, USA, 729–733.
https://doi.org/10.1145/3236024.3264833

[15] Emerson Murphy-Hill, Da Young Lee, Gail C. Murphy, and Joanna McGrenere. 2015. How Do Users Discover New Tools in Software Development
and Beyond? Computer Supported Cooperative Work (CSCW) 24, 5 (2015), 389–422. https://doi.org/10.1007/s10606-015-9230-9

[16] Emerson Murphy-Hill and Gail C. Murphy. 2011. Peer Interaction Effectively, Yet Infrequently, Enables Programmers to Discover New Tools. In
Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work (Hangzhou, China) (CSCW ’11). ACM, New York, NY, USA, 405–414.
https://doi.org/10.1145/1958824.1958888

[17] Arvind Narayanan, Arunesh Mathur, Marshini Chetty, and Mihir Kshirsagar. 2020. Dark Patterns: Past, Present, and Future. Commun. ACM 63, 9
(Aug. 2020), 42–47. https://doi.org/10.1145/3397884

[18] National Institute of Standards and Technology. 2002. The economic impacts of inadequate infrastructure for software testing. U.S. Department of
Commerce Technology Administration (2002).

[19] Aditya Kumar Purohit, Louis Barclay, and Adrian Holzer. 2020. Designing for Digital Detox: Making Social Media Less Addictive with Digital
Nudges. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems. 1–9.

[20] Martin Robillard, Robert Walker, and Thomas Zimmermann. 2010. Recommendation systems for software engineering. IEEE software 27, 4 (2010),
80–86.

[21] Richard H Thaler and Cass R Sunstein. 2009. Nudge: Improving decisions about health, wealth, and happiness. Penguin.
[22] Markus Weinmann, Christoph Schneider, and Jan vom Brocke. 2016. Digital nudging. Business & Information Systems Engineering 58, 6 (2016),

433–436.
[23] Mairieli Wessel, Bruno Mendes de Souza, Igor Steinmacher, Igor S Wiese, Ivanilton Polato, Ana Paula Chaves, and Marco A Gerosa. 2018. The power

of bots: Characterizing and understanding bots in OSS projects. Proceedings of the ACM on Human-Computer Interaction 2, CSCW (2018), 182.

Manuscript submitted to ACM

https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1145/3387940.3391481
https://doi.org/10.1145/3387940.3391506
https://doi.org/10.1515/popets-2016-0038
https://doi.org/10.1145/1541948.1542005
https://www.acm.org/code-of-ethics
https://doi.org/10.1145/3357236.3395486
https://doi.org/10.1145/3173574.3174108
https://doi.org/10.1093/pubmed/fds003
https://arxiv.org/abs/http://oup.prod.sis.lan/jpubhealth/article-pdf/34/3/370/12782601/fds003.pdf
https://arxiv.org/abs/http://oup.prod.sis.lan/jpubhealth/article-pdf/34/3/370/12782601/fds003.pdf
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1145/3359183
https://doi.org/10.1145/3236024.3264833
https://doi.org/10.1007/s10606-015-9230-9
https://doi.org/10.1145/1958824.1958888
https://doi.org/10.1145/3397884


261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Brown and Parnin

[24] Brian Whitworth. 2005. Polite computing. Behaviour & Information Technology 24, 5 (2005), 353–363. https://doi.org/10.1080/01449290512331333700
arXiv:http://dx.doi.org/10.1080/01449290512331333700

[25] Shundan Xiao, Jim Witschey, and Emerson Murphy-Hill. 2014. Social Influences on Secure Development Tool Adoption: Why Security Tools Spread.
In Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing (Baltimore, Maryland, USA) (CSCW ’14).
ACM, New York, NY, USA, 1095–1106. https://doi.org/10.1145/2531602.2531722

Manuscript submitted to ACM

https://doi.org/10.1080/01449290512331333700
https://arxiv.org/abs/http://dx.doi.org/10.1080/01449290512331333700
https://doi.org/10.1145/2531602.2531722

	Abstract
	1 Introduction
	2 Background
	2.1 Nudge Theory
	2.2 Dark Patterns

	3 Dark Pattern Recommendations
	4 Implications and Future Work
	References

