
Digital Nudges for Encouraging
Developer Behaviors

Chris Brown
dcbrow10@ncsu.edu

Committee:
Dr. Chris Parnin (Chair)
Dr. Anne McLaughlin (PSY, GSR)
Dr. Sarah Heckman
Dr. Kathryn Stolee
Oral Preliminary Exam
North Carolina State University

mailto:dcbrow10@ncsu.edu

Outline
● Motivation
● Background
● Thesis Statement
● Experiments and Evaluations

○ Completed
○ Proposed

● Research Plan
2

Motivation

3

- “[Software engineers] have the power to make or break
business...Developers are now the real decision makers in technology.”
[O’Grady, 2013]

- “The most important skill in software development is not how good your
coding skills are or how much you know about machine learning and data
science. It’s decision-making!” [Woo, 2019]

- “Though rarely discussed in the software engineering literature, [our] results
suggest effective decision-making is critical...as engineers grow in their
careers, they are tasked with making decisions in increasingly more complex
and ambiguous situations, often with significant ramifications.” [Li, 2015]

Decision-making is a vital part of software engineering.

Problem
Software engineers need help making decisions...

4

Recommendation Systems for
Software Engineering

 [Robillard, 2010][Tricentis, 2017]

5

Research Goal
Given a developer who is unaware of a useful
behavior during a development situation,
identify the most effective strategy to convince
them to adopt the behavior.

6

https://twitter.com/gvwilson/status/1142245508464795649?s=20

7

Background: Developer Behavior
Tools and practices designed to help
developers complete programming tasks.

Improve code quality [Ayewah, 2010],
Prevent errors [Bessey, 2010],
Reduce developer effort [Singh, 2017],...

Result Understandability,
Customizability,
Tool Output,…
 [Johnson, 2013]

Background: Developer Behavior
Developer Behavior Adoption Problem

8

Developer Inertia

[Murphy-Hill, 2015]

Research-Practice Gap

 [Norman, 2010]

Decision Fatigue

 [Makabee, 2011]

Background: Nudge Theory

[Thaler and Sunstein, 2009]
9

Any factor that impacts human decision-making
without providing incentives or banning alternatives

Background: Digital Nudges
The use of nudges to guide users’ behavior
in digital choice environments.

[Weinmann, 2016] 10

Background: Choice Architecture

11

The framing and presentation of choices to
decision-makers
“There is no such thing as a ‘neutral’ design...Choice
architecture, both good and bad, is pervasive and
unavoidable, and it greatly affects our decisions.”
[Thaler, 2009]

Scope of Work

12

Thesis Statement

By incorporating developer
recommendation choice architectures
into recommendations for software
engineers, we can nudge developers to
adopt behaviors useful for improving
code quality and developer productivity.

13

Plan of Work

 Determine effective strategies

 Examine existing systems

 Develop new tool
14

Expected Contributions
1. A conceptual framework for using concepts from

nudge theory to make effective developer
recommendations.

2. A set of experiments to evaluate and provide
evidence for the conceptual framework.

3. An automated recommender system to nudge
software engineers to adopt developer
behaviors.

15

Thesis: Effective Strategies

By incorporating developer
recommendation choice architectures
into recommendations for software
engineers, we can nudge developers to
adopt behaviors useful for improving
code quality and developer productivity.

16

[Completed] Peer Interactions

17

➔ “How Software Users Recommend Tools to Each
Other” [Brown, 2017]

RQ. What characteristics of peer interactions make
recommendations effective?

Peer Interactions
The process of discovering tools from colleagues
during normal work activities [Murphy-Hill, 2011]

18

Peer Interactions: Methodology
Study Design
● 26 participants (13 pairs)

○ Professionals and
Students

● Tasks
○ Kaggle ML Competition

● Setup
○ Software Usage
○ Internet Restriction

19

Data Analysis
● Screen and audio recordings

1. Politeness [Leech, 1983]
2. Persuasiveness [Shen, 2012]
3. Receptiveness [Fogg, 2009]
4. Time Pressure [Andrews, 1996]
5. Tool Observability [Murphy-Hill, 2015]

● Effectiveness
○ Tool used
○ Tool ignored
○ Unknown

Peer Interactions: Results

1. Politeness
2. Persuasiveness
3. Receptiveness* (Wilcoxon, p = 0.0002, OR = 0.2840)
4. Time Pressure
5. Tool Observability

20

Effective Ineffective Unknown Total

n 71 35 36 142

Peer Interactions: Receptiveness

Demonstrate Desire Familiarity

21

“Oh! Add level!
Yes, awesome!”
- L14

“I don’t know R.” - S9

[Fogg, 2009]

[Completed] Sorry to Bother You

22

➔ “Sorry to Bother You: Designing Bots for Effective
Recommendations” [Brown, 2019]

Goal: Identify and evaluate a baseline approach for
automated developer recommendations.

Naive telemarketer design

- Static Recommendations
- Generic Messages
- Socially Inept

23

24

Sorry to Bother You: Methodology

25

● 52 GitHub projects
○ Java 8+
○ Maven
○ No Error Prone

● tool-recommender-bot
○ Build configuration files
○ Automated pull requests

Study Design Data Analysis
● Effectiveness

○ Merged
○ Closed/No Response

● Developer Feedback
○ 24 Pull Request

Comments

Sorry to Bother You: Results

26

n Percent

Merged 2 4%

Closed 10 19%

No Response 40 77%

Sorry to Bother You: Feedback

27

Social Context Developer Workflow

Conceptual Framework

1. Desire
2. Familiarity
3. Social Context
4. Developer Workflow

1. Actionability
2. Feedback
3. Locality

a. Spatial
b. Temporal

[Johnson, 2012] 28

Actionability
The ease with which users can act on
recommendations

29

Default Rule
Automatic Enrollment
[Madrian, 2001]

Static Analysis
Splint (Secure Programming Lint)
[Evans, 2002]

Feedback
Information provided to users in
recommendations to encourage adoption

30

Compiler Error Messages
Argument structure
[Barik, 2018]

Customized Information
Daily caloric intake
[Wisdom, 2010]

Locality: Spatial
The setting of recommendations to improve
user behavior

31

Flower
In situ navigation
[Smith, 2017]

Decision Staging
Healthy Convenience Lines
[Hanks, 2012]

Locality: Temporal
The setting of recommendations to improve
user behavior

32

Scaling Static Analyses at Facebook
“diff time”
[Distefano, 2019]

Time-limited windows
Present-biased farmers
[Duflo, 2011]

Thesis: Existing Systems

By incorporating developer
recommendation choice architectures
into recommendations for software
engineers, we can nudge developers to
adopt behaviors useful for improving
code quality and developer productivity.

33

[Proposed] Suggestions
➔ “Understanding the Impact of GitHub Suggested

Changes on Recommendations Between
Developers”

RQ1. What suggestions do developers make with suggested changes?
RQ2. How effective is the suggested changes feature on GitHub?
RQ3. How useful is the suggested changes feature for developers?
RQ4. How well does the suggested changes feature generalize to other
types of recommendations?

34

GitHub Suggested Changes

35

Actionability Feedback
Spatial Locality Temporal Locality

Suggestions: Methodology

RQ1. Categorizing Suggested Changes:
● Detecting Suggested Changes

○ Most recently updated repositories
○ ```suggestion{…}```
○ 100 suggested changes

36

Phase 1: An Empirical Study on GitHub Suggested Changes

Open Coding
(IRR = 71%, Cohen’s κ= 0.5942)

Suggestions: Methodology

RQ2. Defining Effectiveness:
● Detecting Suggested Changes

○ Top-forked repositories
○ ```suggestion{…}```
○ Line of code exists in subsequent commit

37

Phase 1: An Empirical Study on GitHub Suggested Changes

Acceptance
[Middleton, 2018]
Timing
[Layman, 2007]

Pull Requests [Gousious, 2014]

Issues [Bissyandé, 2013]

Suggested Changes

Criteria GitHub Recommendation Systems

Suggestions: Methodology

38

RQ3. Determining Usefulness:
● Suggesters and Suggestees
● 5-point Likert and open-ended
● 39 responses

Open Coding
Useful (IRR = 72%, κ = 0.6828)
Unuseful (IRR = 77%, κ = 0.7125)

Communication. “I find it *so*
useful. It completely removes all
ambiguity about what I'm asking for if
I can just directly put the code there.”
- R14
Unsupported features.
- Multi-line suggestions

Phase 2: Developer Feedback on Suggested Changes

Suggestions: Methodology

39

Phase 2: Developer Feedback on Suggested Changes
RQ4. Determining Generalizeability:

● 14 professional developers
● Tool Recommendations

● Screen and audio recordings
● Think-aloud
● Likelihood of adoption
● Semi-Structured Interview

Suggestions: Expected Results
1) Suggested changes are an effective system

for a different types of recommendations,

2) Developers find this feature useful and
applicable for various recommendations, and

3) Suggested changes can provide design
implications for developing effective
automated recommender systems.

40

Thesis: New Tool

By incorporating developer
recommendation choice architectures
into recommendations for software
engineers, we can nudge developers to
adopt behaviors useful for improving
code quality and developer productivity.

41

[Proposed] Nudge-Bot
➔ “Nudging Students Toward Better Software

Engineering Behaviors”

RQ1. How do nudges influence software engineering
student productivity?
RQ2. How do nudges impact the quality of software
engineering student projects?

42

Nudge-Bot: Methodology

43

Study Design
● Software Engineering (CSC326)
● Final Team Project
● iTrust
● nudge-bot

Project Management
[Beaubouef, 2005]
[Charette, 2005]

Nudging Behaviors:
Active Passive

Defining Behavior:

Nudge-Bot: Methodology

44

RQ1. Defining Productivity:

RQ2. Defining Code Quality:

● Time before milestone deadline
● Total time to complete project
● Total functional requirements met

● Final grade
● Total process requirements met

● Student feedback

[Beaubouef, 2005]

[Figas, 2013]

Nudge-Bot: Expected Results
1) Increase the number of functional and
process requirements utilized by teams,

2) Improve productivity and reduce
procrastination time by encouraging students to
complete work on their projects sooner, and

3) Enhance the overall software quality and
raise student grades for the final team project.

45

46

Research Plan

Completed
● Peer Interactions [VL/HCC 2017]
● Sorry to Bother You [BotSE 2019]

Upcoming
● suggestions [ICSE 2020 (in submission)]
● nudge-bot [ICSE SEET 2021]
● Dissertation [Summer/Fall 2020]

Publication List
1. Chris Brown and Chris Parnin. “Sorry to bother you: Designing bots for effective recommendations”.

In Proceedings of the 1st International Workshop on Bots in Software Engineering (BotSE 2019),
pages 54–58,Montreal, QC, Canada, May 2019. IEEE Press

2. Chris Brown. “Digital nudges for encouraging developer actions”. In Proceedings of the 41st
International Conference on Software Engineering (ICSE 2019): Companion Proceedings, pages
202–205, Montreal,QC, Canada, May 2019. IEEE Press

3. Peng Sun, Chris Brown, Ivan Beschastnikh, and Kathryn T. Stolee.“Mining specifications from
documentation using a crowd”. In 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER 2019), pages 275–286, Hangzhou, China, Feb 2019. IEEE
Press

4. Chris Brown, Justin Middleton, Esha Sharma, and Emerson Murphy-Hill. “How software users
recommend tools to each other”. In2017 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC 2019) pages 129–137, Raleigh, NC, USA, Oct 2017. IEEE Press

5. Justin Smith, Chris Brown, and Emerson Murphy-Hill. “Flower: navigating program flow in the ide”. In
2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2017) pages
19–23, Raleigh, NC, USA, Oct 2017. IEEE Press

47

Research Plan

48

Chris Brown
 dcbrow10@ncsu.edu
 https://chbrown13.github.io
 https://github.com/chbrown13

Thanks

49

By incorporating developer recommendation choice
architectures into recommendations for software
engineers, we can nudge developers to adopt behaviors
useful for improving code quality and developer
productivity.

mailto:dcbrow10@ncsu.edu
https://chbrown13.github.io
https://github.com/chbrown13

Citations

50

● Alós-Ferrer, C., Hügelschäfer, S., and Li, J.:. "Inertia and decision making." Frontiers in psychology 7 (2016)
● Ayewah, N., Pugh, W.: The google findbugs fixit. In: Proceedings of the 19th International symposium on Software testing and analysis.

pp. 241–252. ACM (2010)
● Barik, T., Ford, D., Murphy-Hill, E., Parnin, C.: How should compilers explain problems to developers? In: Proceedings of the 2018 26th

ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. pp.
633–643. ACM (2018)

● Beaubouef, T., Mason, J.: Why the high attrition rate for computer science students: some thoughts and observations. ACM SIGCSE
Bulletin 37(2), pp. 103–106 (2005)

● Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C., Kamsky, A., McPeak, S., Engler, D.: A few billion lines of
code later: using static analysis to find bugs in the real world. Communications of the ACM 53(2), 66–75 (2010)

● Bissyandé T. F., Lo D., Jiang L., Réveillere L., Klein J., and Traon, Y. T. Got issues? who cares about it? a large scale investigation of issue
trackers from github. In 2013 IEEE 24th international symposium on software reliability engineering (ISSRE). IEEE Press (2013)

● Brown, C., Middleton, J., Sharma, E., Murphy-Hill, E.: How software users recommend tools to each other. In: Visual Languages and
Human-Centric Computing (2017)

● Brown, C., Parnin, C.: Sorry to bother you: designing bots for effective recommendations. In: Proceedings of the 1st International
Workshop on Bots in Software Engineering. pp. 54–58. IEEE Press (2019)

● Charette, R.N.: Why software fails [software failure]. IEEE spectrum 42(9), pp. 42–49 (2005)
● Chin, C.: For JavaScript Developers, More Choices Mean Hard Choices. Wired (2018)

https://www.wired.com/story/javascript-developers-more-choices-mean-hard-choices/
● Distefano, D., Fähndrich, M., Logozzo, F., O’Hearn, P.W.: Scaling static analyses at facebook. Commun. ACM 62(8), pp. 62–70 (2019)
● Duflo, E., Kremer, M., Robinson, J.: Nudging farmers to use fertilizer: Theory and experimental evidence from kenya. American economic

review 101(6), pp. 2350–90 (2011)
● Evans, D. and Larochelle, D., 2002. Improving security using extensible lightweight static analysis. IEEE software, 19(1),

pp.42-51.

https://www.wired.com/story/javascript-developers-more-choices-mean-hard-choices/

Citations
● Fogg, B.: Creating persuasive technologies: An eight-step design process. In: Proceedings of the 4th International Conference on

Persuasive Technology. pp. 44:1–44:6. Persuasive ’09, ACM, New York, NY, USA (2009)
● Gousios, G., Pinzger, M., Deursen, A.v.: An exploratory study of the pull-based software development model. In: Proceedings of the 36th

International Conference on Software Engineering. pp. 345–355. ACM (2014)
● Hanks, A.S., Just, D.R., Smith, L.E., Wansink, B.: Healthy convenience: nudging students toward healthier choices in the lunchroom.

Journal of Public Health 34 (3), pp. 370–376 (2012)
● Johnson, B., Song, Y., Murphy-Hill, E., Bowdidge, R.: Why Don’t Software Developers Use Static Analysis Tools to Find Bugs? In:

Proceedings of the 2013 International Conference on Software Engineering (ICSE). pp. 672–681. ICSE ’13, IEEE Press, Piscataway, NJ,
USA (2013)

● Johnson, E.J., Shu, S.B., Dellaert, B.G., Fox, C., Goldstein, D.G., Häubl, G., Larrick, R.P., Payne, J.W., Peters, E., Schkade, D. and
Wansink, B.: Beyond nudges: Tools of a choice architecture. Marketing Letters, 23(2), pp.487-504 (2012)

● Layman, L., Williams, L., Amant, R.S.: Toward reducing fault fix time: Understanding developer behavior for the design of automated fault
detection tools. In: Empirical Software Engineering and Measurement, 2007. ESEM 2007. pp. 176–185. IEEE (2007)

● Leech, G.: Principles of Pragmatics. Longman linguistics library ; title no. 30, Longman (1983)
● Li, P.L., Ko, A.J., Zhu, J.: What makes a great software engineer? In: Proceedings of the 37th International Conference on Software

Engineering-Volume 1. pp. 700–710. IEEE Press (2015)
● Madrian, B.C., Shea, D.F.: The power of suggestion: Inertia in 401 (k) participation and savings behavior. The Quarterly journal of

economics 116(4), 1149–1187 (2001)
● Makabee, H.: How Decision Fatigue Affects the Efficacy of Programmers. Effective Software Design (2011)

 https://effectivesoftwaredesign.com/2011/08/23/how-decision-fatigue-affects-the-efficacy-of-programmers/
● Middleton, J., Murphy-Hill, E., Green, D., Meade, A., Mayer, R., White, D., McDonald, S.: Which contributions predict whether developers

are accepted into github teams. In: Proceedings of the 15th International Conference on Mining Software Repositories. pp. 403–413. MSR
’18, ACM, New York, NY, USA (2018)

● Murphy-Hill, E., Murphy, G.C.: Peer interaction effectively, yet infrequently, enables programmers to discover new tools. In: Proceedings of
the ACM 2011 Conference on Computer Supported Cooperative Work. pp. 405–414. CSCW ’11, ACM, New York, NY, USA (2011). 51

https://effectivesoftwaredesign.com/2011/08/23/how-decision-fatigue-affects-the-efficacy-of-programmers/

Citations
● Murphy-Hill, E., Murphy, G.C. and McGrenere, J.:How Do Users Discover New Tools in Software Development and Beyond?. Computer

Supported Cooperative Work (CSCW), 24(5), pp.389-422 (2015)
● Norman, D. A.: The research-Practice Gap: The need for translational developers. Interactions, 17(4), (2010).
● O’Grady, S.: The New Kingmakers: How Developers Conquered the World. “O’Reilly Media, Inc.” (2013)
● Robillard, M., Walker, R., Zimmermann, T.: Recommendation systems for software engineering. IEEE software 27(4), 80–86 (2010)
● Singh, D., Sekar, V.R., Stolee, K.T., Johnson, B.: Evaluating how static analysis tools can reduce code review effort. In: 2017 IEEE

Symposium on Visual Languages and Human-Centric Computing (VL/HCC). pp. 101–105. IEEE (2017)
● Smith, J., Brown, C., Murphy-Hill, E.: Flower: Navigating program flow in the ide. In: 2017 IEEE Symposium on Visual Languages and

Human-Centric Computing (VL/HCC). pp. 19–23 (2017)
● Thaler, R.H., Sunstein, C.R.: Nudge: Improving decisions about health, wealth,and happiness. Penguin (2009)
● Tricentis.: Software Fail Watch: 5th edition. Tricentis (2017) https://www.tricentis.com/resources/software-fail-watch-5th-edition/
● Weinmann, M., Schneider, C., vom Brocke, J.: Digital nudging. Business & Information Systems Engineering 58(6), 433–436 (2016)
● Wisdom, J., Downs, J.S., Loewenstein, G.: Promoting healthy choices: Information versus convenience. American Economic Journal:

Applied Economics 2(2), 164–78 (2010)
● Woo, A. Decision-making: The most undervalued skill in software engineering. HackerNoon (2019)

https://hackernoon.com/decision-making-the-most-undervalued-skill-in-software-engineering-f9b8e5835ca6

52

https://www.tricentis.com/resources/software-fail-watch-5th-edition/
https://hackernoon.com/decision-making-the-most-undervalued-skill-in-software-engineering-f9b8e5835ca6

Back-Up

Background: Developer Behavior
Developer Behavior Adoption Problem

54

Developer Inertia

[Murphy-Hill, 2015]

Research-Practice Gap

 [Norman, 2010]

 Choice Overload

 [Chin, 2018]

Background: Decision-Maker Behavior
Decision Problems [Johnson, 2012]

55

Decision Inertia

[Madrian, 2001]

Individual Differences

[Costa, 2010]

 Alternative Overload

[Kling, 2011]

Developer Recommendation Choice
Architectures

56

1. Actionability
2. Feedback
3. Locality

a. Spatial
b. Temporal

Choice Architecture Tools
1. Reduce alternatives
2. Technology aids
3. Use defaults
4. Focus on satisficing
5. Limited time windows
6. Decision staging
7. Partitioning of options
8. Attribute labelling
9. Translate for evaluability

10. Customized information
11. Focus on experience
[Johnson, 2012]

Developer Recommendation Choice
Architectures

57

Actionability
- Reduce alternatives
- Technology aids
- Use defaults (Default Rule)

[Johnson, 2012]

Feedback
- Focus on satisficing
- Translate for evaluability
- Customized information
- Attribute labelling
- Focus on experience

Locality
- Limited time windows
- Decision staging
- Partitioning of options

Proposed: Sorry to Bother You 2

[BotSE, FSE, ASE]
58

Nudge-Bot

Peer Interactions

Recommendation Model

61

1. Task Analysis

Peers analyze goal and define operations to
reach desired state.

62

2. Task Execution

Driver applies selection rule and begins
executing their method.

63

3. Dialogue

- Unexpected Recommendation: Navigator
interrupts to ask about unexpected tool.

- Expected Recommendation: Driver asks for
help from navigator.

- Unexpected Observation: Driver explains
actions and navigator reacts.

- Expected Observation: Navigator asks question
concerning tool used.

64

4. Reaction

The recommendee decides whether or not to
adopt the new tool.

65

Data Analysis

Cohen’s
Kappa

Pol. 0.50

Per. 0.28

Rec. 0.51

66

Characteristics of Interactions

1. Politeness [Leech, 1983]

2. Persuasiveness [Shen, 2012]

3. Receptiveness [Fogg, 2009]

4. Time Pressure [Andrews, 1996]

5. Tool Observability [Murphy-Hill, 2015]

67
[Murphy-Hill, 2015]

Politeness

Criteria Definition

Tact Minimize cost and maximize benefit to peer

Generosity Minimize benefit and maximize cost to self

Approbation Minimize dispraise and maximize praise of peer

Modesty Minimize praise and maximize dispraise of self

Agreement Minimize disagreement and maximize agreement between peers

Sympathy Minimize antipathy and maximize sympathy between peers

68[Leech, 1983]

Persuasiveness

Criteria Definition

Content Recommender provides credible sources to verify use of the tool

Structure Messages are organized by climax-anticlimax order of arguments
and conclusion explicitness

Style Messages should avoid hedging, hesitating, questioning
intonations, and powerless language

69[Shen, 2012]

Receptiveness

Criteria Definition

Demonstrate Desire User showed interest in discovering, using, or learning more
information about the suggested tool

Familiarity User explicitly expresses familiarity with the environment

70[Fogg, 2009]

Time Pressure

Criteria Definition

Time Pressure Driver or navigator makes a statement about time before, during, or
after a recommendation

71[Andrews, 1996]

Types of Tools

1. Observable

2. Non-Observable

72[Murphy-Hill, 2015]

Methodology: Scoring

Effectiveness
3 Recommendee always or mostly uses recommended tool
2 There were no opportunities to use the tool later in
the study after it was recommended
1 Recommendee mostly ignores or never uses
recommended tool

Politeness, Persuasiveness, Receptiveness
+1 Participant obeyed a specific criteria
0 Participant neither obeyed nor violated a criteria
-1 Participant violated a specific criteria

Time Pressure
Yes Time mentioned during or before peer interaction
No No mention of time during or before peer interaction

73

Types of Tools
Observable Proposed tool has user interface
Non-Observable Proposed tool does not have a user
interface

Results: Interaction Characteristics

(p = 0.4936) W

W = Wilcoxon rank sum, C = Pearson’s chi-squared, * = significant

(p = 0.4556) W

(p = 0.0002)* W (p = 0.1470) C

Polite Neutral Impolite

n 27 104 11

Receptive Neutral Unreceptive

n 64 56 22

74

Persuasive Unpersuasive

n 14 128

Time Pressure? Yes No

n 19 123

Results: Tool Observability

W = Wilcoxon rank sum, C = Pearson’s chi-squared, * = significant

(p = 0.4928) C

Observable Non-Observable

n 115 27

75

Sorry to Bother
You

Developer Feedback

● 24 comments on 17 projects
○ 6 bot comments for first-time contributors,

Contributing License Agreement signatures, test
coverage

○ 18 developer comments (non-automated)
■ Positive: 5
■ Pom.xml format: 5
■ Breaking builds: 8

77

Suggestions

Suggestions: Results (Phase 1)

79

(χ 2 = 1128.7155, p < .00001, α = .05)

(Kruskal-Wallis = 391.844102, p < .0001, α = .05)

Suggestions: Results (Phase 2)

80

(Kruskal-Wallis, p = .00079, α = .05)

Study Projects

81

Study Participants

82

Types of Suggested Changes
Non-functional: changes that don’t impact
code, i.e. rewording or fix spelling and grammar
issues in documentation and code comments.

83

Types of Suggested Changes

Corrective: changes to fix bugs and issues
found in the code.

84

Types of Suggested Changes

Improvement: changes to refactor or optimize
code.

85

Types of Suggested Changes

Formatting: changes that impact the
presentation of the code without changing
functionality

86

User Study Email

87

User Study Issue

88

User Study Pull Request

89

User Study Suggested Change

90

Suggestions: Usefulness

91

Suggestions: Pull Requests

92

Recommendations on GitHub

Pull Requests

93

Issues

