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Motivation

3

- “[Software engineers] have the power to make or break 
business...Developers are now the real decision makers in technology.” 
[O’Grady, 2013] 

- “The most important skill in software development is not how good your 
coding skills are or how much you know about machine learning and data 
science. It’s decision-making!” [Woo, 2019]

- “Though rarely discussed in the software engineering literature, [our] results 
suggest effective decision-making is critical...as engineers grow in their 
careers, they are tasked with making decisions in increasingly more complex 
and ambiguous situations, often with significant ramifications.” [Li, 2015]

Decision-making is a vital part of software engineering.



Problem
Software engineers need help making decisions...
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Recommendation Systems for 
Software Engineering

      [Robillard, 2010][Tricentis, 2017]
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Research Goal
Given a developer who is unaware of a useful 
behavior during a development situation, 
identify the most effective strategy to convince 
them to adopt the behavior.
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https://twitter.com/gvwilson/status/1142245508464795649?s=20
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Background: Developer Behavior
Tools and practices designed to help 
developers complete programming tasks.

Improve code quality [Ayewah, 2010],
Prevent errors [Bessey, 2010],
Reduce developer effort [Singh, 2017],...

Result Understandability,
Customizability,
Tool Output,…
 [Johnson, 2013]



Background: Developer Behavior
Developer Behavior Adoption Problem
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Developer Inertia

 

[Murphy-Hill, 2015]

Research-Practice Gap

      [Norman, 2010]

Decision Fatigue

  [Makabee, 2011]



Background: Nudge Theory

[Thaler and Sunstein, 2009]
9

Any factor that impacts human decision-making 
without providing incentives or banning alternatives



Background: Digital Nudges
The use of nudges to guide users’ behavior 
in digital choice environments. 

[Weinmann, 2016] 10



Background: Choice Architecture
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The framing and presentation of choices to 
decision-makers
“There is no such thing as a ‘neutral’ design...Choice 
architecture, both good and bad, is pervasive and 
unavoidable, and it greatly affects our decisions.” 
[Thaler, 2009]



Scope of Work
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Thesis Statement

By incorporating developer 
recommendation choice architectures 
into recommendations for software 
engineers, we can nudge developers to 
adopt behaviors useful for improving 
code quality and developer productivity.
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Plan of Work

  Determine effective strategies 

  Examine existing systems  

  Develop new tool
14



Expected Contributions
1. A conceptual framework for using concepts from 

nudge theory to make effective developer 
recommendations.

2. A set of experiments to evaluate and provide 
evidence for the conceptual framework.

3. An automated recommender system to nudge 
software engineers to adopt developer 
behaviors.
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Thesis: Effective Strategies

By incorporating developer 
recommendation choice architectures 
into recommendations for software 
engineers, we can nudge developers to 
adopt behaviors useful for improving 
code quality and developer productivity.
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[Completed] Peer Interactions
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➔ “How Software Users Recommend Tools to Each 
Other”  [Brown, 2017]

RQ. What characteristics of peer interactions make 
recommendations effective?



Peer Interactions
The process of discovering tools from colleagues 
during normal work activities [Murphy-Hill, 2011]
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Peer Interactions: Methodology
Study Design
● 26 participants (13 pairs)

○ Professionals and 
Students

● Tasks
○ Kaggle ML Competition

● Setup
○ Software Usage
○ Internet Restriction

19

Data Analysis
● Screen and audio recordings

1. Politeness [Leech, 1983]
2. Persuasiveness [Shen, 2012]
3. Receptiveness [Fogg, 2009]
4. Time Pressure [Andrews, 1996]
5. Tool Observability [Murphy-Hill, 2015]

● Effectiveness
○ Tool used 
○ Tool ignored
○ Unknown



Peer Interactions: Results

1. Politeness 
2. Persuasiveness
3. Receptiveness* (Wilcoxon, p = 0.0002, OR = 0.2840) 
4. Time Pressure 
5. Tool Observability 
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Effective Ineffective Unknown Total

n 71 35 36 142



Peer Interactions: Receptiveness

Demonstrate Desire Familiarity

21

“Oh! Add level! 
Yes, awesome!” 
- L14

“I don’t know R.” - S9

[Fogg, 2009]



[Completed] Sorry to Bother You

22

➔ “Sorry to Bother You: Designing Bots for Effective 
Recommendations”  [Brown, 2019]

Goal: Identify and evaluate a baseline approach for 
automated developer recommendations.



Naive telemarketer design

- Static Recommendations
- Generic Messages
- Socially Inept

23
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Sorry to Bother You: Methodology
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● 52 GitHub projects
○ Java 8+
○ Maven
○ No Error Prone

● tool-recommender-bot
○ Build configuration files
○ Automated pull requests

Study Design Data Analysis
● Effectiveness

○ Merged
○ Closed/No Response

● Developer Feedback
○ 24 Pull Request 

Comments



Sorry to Bother You: Results
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n Percent

Merged 2 4%

Closed 10 19%

No Response 40 77%



Sorry to Bother You: Feedback

27

Social Context Developer Workflow



Conceptual Framework

1. Desire
2. Familiarity
3. Social Context
4. Developer Workflow

1. Actionability
2. Feedback
3. Locality

a. Spatial
b. Temporal

[Johnson, 2012] 28



Actionability
The ease with which users can act on 
recommendations

29

Default Rule
Automatic Enrollment
[Madrian, 2001]

Static Analysis
Splint (Secure Programming Lint)
[Evans, 2002]



Feedback
Information provided to users in 
recommendations to encourage adoption
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Compiler Error Messages
Argument structure
[Barik, 2018]

Customized Information
Daily caloric intake
[Wisdom, 2010]



Locality: Spatial
The setting of recommendations to improve 
user behavior

31

Flower
In situ navigation
[Smith, 2017]

Decision Staging
Healthy Convenience Lines
[Hanks, 2012]



Locality: Temporal
The setting of recommendations to improve 
user behavior

32

Scaling Static Analyses at Facebook
“diff time”
[Distefano, 2019]

Time-limited windows
Present-biased farmers
[Duflo, 2011]



Thesis: Existing Systems

By incorporating developer 
recommendation choice architectures 
into recommendations for software 
engineers, we can nudge developers to 
adopt behaviors useful for improving 
code quality and developer productivity.
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[Proposed] Suggestions
➔ “Understanding the Impact of GitHub Suggested 

Changes on Recommendations Between 
Developers”   

RQ1. What suggestions do developers make with suggested changes?
RQ2. How effective is the suggested changes feature on GitHub?
RQ3. How useful is the suggested changes feature for developers?
RQ4. How well does the suggested changes feature generalize to other 
types of recommendations?

34



GitHub Suggested Changes

35

Actionability     Feedback
Spatial Locality     Temporal Locality



Suggestions: Methodology

RQ1. Categorizing Suggested Changes: 
● Detecting Suggested Changes

○ Most recently updated repositories
○ ```suggestion{…}```
○ 100 suggested changes

36

Phase 1: An Empirical Study on GitHub Suggested Changes

Open Coding
(IRR = 71%, Cohen’s κ= 0.5942)



Suggestions: Methodology

RQ2. Defining Effectiveness:
● Detecting Suggested Changes

○ Top-forked repositories
○ ```suggestion{…}```
○ Line of code exists in subsequent commit

37

Phase 1: An Empirical Study on GitHub Suggested Changes

Acceptance
[Middleton, 2018]
Timing
[Layman, 2007]

Pull Requests [Gousious, 2014]

Issues [Bissyandé, 2013]

Suggested Changes

Criteria GitHub Recommendation Systems



Suggestions: Methodology

38

RQ3. Determining Usefulness:
● Suggesters and Suggestees
● 5-point Likert and open-ended
● 39 responses

Open Coding
Useful (IRR = 72%, κ = 0.6828) 
Unuseful (IRR = 77%, κ = 0.7125)

Communication. “I find it *so* 
useful. It completely removes all 
ambiguity about what I'm asking for if 
I can just directly put the code there.”  
- R14
Unsupported features. 
- Multi-line suggestions

Phase 2: Developer Feedback on Suggested Changes



Suggestions: Methodology

39

Phase 2: Developer Feedback on Suggested Changes
RQ4. Determining Generalizeability:

● 14 professional developers
● Tool Recommendations

● Screen and audio recordings
● Think-aloud
● Likelihood of adoption
● Semi-Structured Interview



Suggestions: Expected Results
1) Suggested changes are an effective system 

for a different types of recommendations, 

2) Developers find this feature useful and 
applicable for various recommendations, and

3) Suggested changes can provide design 
implications for developing effective 
automated recommender systems.
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Thesis: New Tool

By incorporating developer 
recommendation choice architectures 
into recommendations for software 
engineers, we can nudge developers to 
adopt behaviors useful for improving 
code quality and developer productivity.
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[Proposed] Nudge-Bot
➔ “Nudging Students Toward Better Software 

Engineering Behaviors”  

RQ1. How do nudges influence software engineering 
student productivity?
RQ2. How do nudges impact the quality of software 
engineering student projects?

42



Nudge-Bot: Methodology

43

Study Design
● Software Engineering (CSC326)
● Final Team Project
● iTrust
● nudge-bot

Project Management
[Beaubouef, 2005]
[Charette, 2005]

Nudging Behaviors:
Active              Passive

Defining Behavior:



Nudge-Bot: Methodology

44

RQ1. Defining Productivity:

RQ2. Defining Code Quality:

● Time before milestone deadline
● Total time to complete project
● Total functional requirements met

● Final grade
● Total process requirements met

● Student feedback

[Beaubouef, 2005]

[Figas, 2013]



Nudge-Bot: Expected Results
1) Increase the number of functional and 
process requirements utilized by teams,

2) Improve productivity and reduce 
procrastination time by encouraging students to 
complete work on their projects sooner, and

3) Enhance the overall software quality and 
raise student grades for the final team project.

45
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Research Plan

Completed
● Peer Interactions [VL/HCC 2017]
● Sorry to Bother You [BotSE 2019]

Upcoming
● suggestions [ICSE 2020 (in submission)]
● nudge-bot [ICSE SEET 2021]
● Dissertation [Summer/Fall 2020]
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Research Plan
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Chris Brown
     dcbrow10@ncsu.edu
     https://chbrown13.github.io
     https://github.com/chbrown13

Thanks
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By incorporating developer recommendation choice 
architectures into  recommendations for software 
engineers, we can nudge developers to adopt behaviors 
useful for improving code quality and developer 
productivity.

mailto:dcbrow10@ncsu.edu
https://chbrown13.github.io
https://github.com/chbrown13
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Background: Developer Behavior
Developer Behavior Adoption Problem

54

Developer Inertia

 

[Murphy-Hill, 2015]

Research-Practice Gap

     [Norman, 2010]

            Choice Overload

  [Chin, 2018]



Background: Decision-Maker Behavior
Decision Problems [Johnson, 2012]
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Decision Inertia

 

[Madrian, 2001]

Individual Differences

[Costa, 2010]

        Alternative Overload

[Kling, 2011]
  



Developer Recommendation Choice 
Architectures

56

1. Actionability
2. Feedback
3. Locality

a. Spatial
b. Temporal

Choice Architecture Tools
1. Reduce alternatives
2. Technology aids
3. Use defaults
4. Focus on satisficing
5. Limited time windows
6. Decision staging
7. Partitioning of options
8. Attribute labelling
9. Translate for evaluability

10. Customized information
11. Focus on experience
[Johnson, 2012]



Developer Recommendation Choice 
Architectures

57

Actionability
- Reduce alternatives
- Technology aids
- Use defaults (Default Rule)

[Johnson, 2012]

Feedback
- Focus on satisficing
- Translate for evaluability
- Customized information
- Attribute labelling
- Focus on experience

Locality
- Limited time windows
- Decision staging
- Partitioning of options



Proposed: Sorry to Bother You 2

[BotSE, FSE, ASE]
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Nudge-Bot



Peer Interactions



Recommendation Model
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1. Task Analysis

Peers analyze goal and define operations to 
reach desired state.
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2. Task Execution

Driver applies selection rule and begins 
executing their method.

63



3. Dialogue

- Unexpected Recommendation: Navigator 
interrupts to ask about unexpected tool.

- Expected Recommendation: Driver asks for 
help from navigator.

- Unexpected Observation: Driver explains 
actions and navigator reacts.

- Expected Observation: Navigator asks question 
concerning tool used.

64



4. Reaction

The recommendee decides whether or not to 
adopt the new tool.
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Data Analysis

Cohen’s 
Kappa

Pol. 0.50

Per. 0.28

Rec. 0.51
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Characteristics of Interactions

1. Politeness [Leech, 1983]

2. Persuasiveness [Shen, 2012]

3. Receptiveness [Fogg, 2009]

4. Time Pressure [Andrews, 1996]

5. Tool Observability [Murphy-Hill, 2015]

67
[Murphy-Hill, 2015]



Politeness

Criteria Definition

Tact Minimize cost and maximize benefit to peer

Generosity Minimize benefit and maximize cost to self

Approbation Minimize dispraise and maximize praise of peer

Modesty Minimize praise and maximize dispraise of self

Agreement Minimize disagreement and maximize agreement between peers

Sympathy Minimize antipathy and maximize sympathy between peers

68[Leech, 1983]



Persuasiveness

Criteria Definition

Content Recommender provides credible sources to verify use of the tool

Structure Messages are organized by climax-anticlimax order of arguments 
and conclusion explicitness

Style Messages should avoid hedging, hesitating, questioning 
intonations, and powerless language

69[Shen, 2012]



Receptiveness

Criteria Definition

Demonstrate Desire User showed interest in discovering, using, or learning more 
information about the suggested tool

Familiarity User explicitly expresses familiarity with the environment

70[Fogg, 2009]



Time Pressure

Criteria Definition

Time Pressure Driver or navigator makes a statement about time before, during, or 
after a recommendation

71[Andrews, 1996]



Types of Tools

1. Observable

2. Non-Observable

72[Murphy-Hill, 2015]



Methodology: Scoring

Effectiveness
3 Recommendee always or mostly uses recommended tool
2 There were no opportunities to use the tool later in
the study after it was recommended
1 Recommendee mostly ignores or never uses 
recommended tool

Politeness, Persuasiveness, Receptiveness
+1 Participant obeyed a specific criteria
0 Participant neither obeyed nor violated a criteria
-1 Participant violated a specific criteria

Time Pressure
Yes Time mentioned during or before peer interaction
No No mention of time during or before peer interaction

73

Types of Tools
Observable Proposed tool has user interface
Non-Observable Proposed tool does not have a user 
interface



Results: Interaction Characteristics

(p = 0.4936) W

W = Wilcoxon rank sum, C = Pearson’s chi-squared, * = significant

(p = 0.4556) W

(p = 0.0002)* W (p = 0.1470) C

Polite Neutral Impolite

n 27 104 11

Receptive Neutral Unreceptive

n 64 56 22

74

Persuasive Unpersuasive

n 14 128

Time Pressure? Yes No

n 19 123



Results: Tool Observability

W = Wilcoxon rank sum, C = Pearson’s chi-squared, * = significant

(p = 0.4928) C

Observable Non-Observable

n 115 27

75



Sorry to Bother 
You



Developer Feedback

● 24 comments on 17 projects
○ 6 bot comments for first-time contributors, 

Contributing License Agreement signatures, test 
coverage

○ 18 developer comments (non-automated)
■ Positive: 5
■ Pom.xml format: 5
■ Breaking builds: 8

77



Suggestions



Suggestions: Results (Phase 1)
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(χ 2 = 1128.7155, p < .00001, α = .05)

(Kruskal-Wallis = 391.844102, p < .0001, α = .05)



Suggestions: Results (Phase 2)
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(Kruskal-Wallis, p = .00079, α = .05)



Study Projects
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Study Participants
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Types of Suggested Changes
Non-functional: changes that don’t impact 
code, i.e. rewording or fix spelling and grammar 
issues in documentation and code comments.
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Types of Suggested Changes

Corrective: changes to fix bugs and issues 
found in the code.
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Types of Suggested Changes

Improvement: changes to refactor or optimize 
code.
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Types of Suggested Changes

Formatting: changes that impact the 
presentation of the code without changing 
functionality

86



User Study Email
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User Study Issue
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User Study Pull Request
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User Study Suggested Change
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Suggestions: Usefulness
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Suggestions: Pull Requests
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Recommendations on GitHub

Pull Requests

93

Issues


