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Decision-Making in Software Engineering

2

- “[Software engineers] have the power to make or break 
business...Developers are now the real decision makers in technology.” 
[O’Grady, 2013] 

- “The most important skill in software development is not how good your 
coding skills are or how much you know about machine learning and data 
science. It’s decision-making!” [Woo, 2019]

- “Though rarely discussed in the software engineering literature, [our] results 
suggest effective decision-making is critical...as engineers grow in their 
careers, they are tasked with making decisions in increasingly more complex 
and ambiguous situations, often with significant ramifications.” [Li, 2015]



Problem

3[Rahman, 2019] [Johnson, 2013] [Runeson, 2006] [McNamara, 2011]

Software engineers often make bad decisions!



Impact

[Tricentis, 2017]
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“We face a growing array of problems 
that involve technology directly or 
indirectly...The growing gap between 
our technological power and our 
wisdom is the ultimate cause of all 
these problems.”

[Crawford, 2020]
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How can we encourage software engineers to 
adopt developer behaviors in their work?
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Bad Decision Good Decision

Lorem Ipsum

Bad Decision Good Decision
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Background: Human Behavior
Tools and guidelines informed by science can encourage humans 
to adopt beneficial behaviors and make better decisions. 
However, people often ignore these recommendations.
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Background: Developer Behavior
Tools and practices designed by researchers to help 
software engineers complete programming tasks. 
However, developers ignore these behaviors.

Improve code quality [Ayewah, 2010],
Prevent errors [Bessey, 2010],
Reduce developer effort [Singh, 2017],...

 [Johnson, 2013]
Developer Behavior 
Adoption Problem



Thesis Statement

10 / 65

By incorporating developer 
recommendation choice architectures 
into recommendations for software 
engineers, we can nudge developers to 
adopt behaviors useful for improving 
code quality and developer productivity.



Research Contributions
1. A set of experiments to explore recommendations to 

developers and motivate the need for a new approach. 🗹

2. A conceptual framework to design effective developer 
recommendations. 🗹

3. A set of experiments to provide evidence supporting the 
conceptual framework. ☐

4. An automated recommender system that incorporates 
the framework to nudge programmers toward developer 
behaviors. ☐
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By incorporating developer recommendation 
choice architectures into recommendations for 
software engineers, we can nudge developers 
to adopt behaviors useful for improving code 
quality and developer productivity.
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          Peer Interactions

          Naive Telemarketer Design

Thesis: Effective Recommendations



Peer Interactions
The process of discovering tools from colleagues 
during normal work activities. 

13 / 65
[Murphy-Hill, 2011]

● Tool Discovery [Murphy-Hill, 2015]
● Code Comprehension [Maalej, 2014]
● Security Tool Adoption [Xiao, 2014]
● Pair Programming [Cockburn, 2001]
● Code Reviews [Cohen, 2006] ...



Effective    User tries recommended tool
Ineffective User ignores recommended tool
Unknown   No opportunity to use tool

Methodology
1. Politeness [Leech, 1983]
2. Persuasiveness [Shen, 2012]
3. Receptiveness [Fogg, 2009]
4. Time Pressure [Andrews, 1996]
5. Tool Observability [Murphy-Hill, 2015]

● 13 pairs of participants
● Data Analysis Tasks
● Tool Recommendations

Study Design

■ Characteristics
■ Effectiveness
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Results

Effective Ineffective Unknown Total

n 71 35 36 142

* (Wilcoxon, p = 0.0002, OR = 0.2840)

1. Politeness 
2. Persuasiveness
3. Receptiveness* 
4. Time Pressure 
5. Tool Observability

[Fogg, 2009]

FamiliarityDemonstrate Desire
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Baseline Automated Approach
Naive telemarketer design: A simple approach for 
designing automated recommendations to software 
engineers.

tool-recommender-bot

16 / 65

- Static Recommendations
- Generic Messages
- Socially Inept
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Methodology

● Error Prone
● 52 GitHub repositories

○ Java 8+
○ Maven

Study Design

■ Effectiveness
■ Feedback

Effective

Ineffective
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Results

n Percent

Merged 2 4%

Closed 10 19%

No Response 40 77%

Social Context Developer Workflow
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Recap
● Peer interactions are effective because of their ability to foster 

desirable and familiar suggestions, but infrequent among developers. 

● Simple automated approaches are ineffective because they lack social 
context and interrupt developer workflow.

   Developer Recommendation Preconditions
Demonstrate Desire

Familiarity

Social Context

Developer Workflow

Can automated recommendations 
be improved to better encourage 
developer behaviors?
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Thesis: Conceptual Framework

Developer Recommendation Choice Architectures
21 / 65

By incorporating developer 
recommendation choice architectures 
into recommendations for software 
engineers, we can nudge developers to 
adopt behaviors useful for improving 
code quality and developer productivity.



Background: Nudge Theory

[Thaler and Sunstein, 2009]

A behavioral science framework to improve human behavior 
without providing incentives or banning alternatives.
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Background: Nudge Theory (cont.)
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Background: Digital Nudges
The use of nudges to guide user behavior in 
digital choice environments. 

[Weinmann, 2016]
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Background: Choice Architecture
The framing and presentation of choices to 
decision-makers

[Thaler, 2009]
25 / 65



Tools for Choice Architectures
1. Reduce alternatives
2. Technology aids
3. Use defaults
4. Focus on satisficing
5. Limited time windows
6. Decision staging
7. Partitioning of options
8. Attribute labelling
9. Translate for evaluability

10. Customized information
11. Focus on experience  

1. Actionability
2. Feedback
3. Locality

a. Spatial
b. Temporal

Developer Recommendation 
Choice Architectures

         

[Johnson, 2012] 26 / 65



Actionability
The ease with which developers can adopt 
recommendations
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Feedback
Information provided in recommendations
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Locality: Spatial
The setting (placement) of recommendations
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Locality: Temporal
The setting (timing) of recommendations

30 / 65



Actionable Recommendations

0% 100%

● Survey
● 15 developers (~7 years experience)
● PEP3105 Recommendations

○ Actionable
○ Static

Formative Evaluation
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GitHub Suggested Changes
Recommendation Styles
Developer Impact

Thesis: Existing Systems

32 / 65

By incorporating developer 
recommendation choice architectures 
into recommendations for software 
engineers, we can nudge developers to 
adopt behaviors useful for improving 
code quality and developer productivity.



GitHub Suggested Changes

Actionability     Feedback
Spatial Locality     Temporal Locality
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Recommendation Styles

34 / 65

Automated approaches to convey recommendations to developers.
- Static Analysis Tool Adoption

1. Email
2. GitHub Issue
3. GitHub Pull Request
4. GitHub Suggested Changes



● 14 professional developers
● Tool Recommendations

● Think-aloud study
● Semi-structured interview

■ Likelihood of Adoption
■ Open-ended

Methodology
Study Design
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Results
Average Median

Suggestions* 4 4

Pull Requests 3.71 4

Issues 2.86 3

Email 2.36 2

* Kruskal-Wallis (H = 16.7527, p = .00079, ɑ = .05)

“Pretty neat integration” (P7) ...“Very good detail...clear” (P10)

“[It's] pretty suspicious” (P4) “I'd immediately delete it” (P6) ...

DesignContent

Examples MarketingIntegration Popularity Reliability
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Observations
DesignContent
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Developer Impact 

An Empirical 
Study on 
GitHub 

Suggested 
Changes

Developer 
Feedback on 
Suggested 
Changes
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Detecting Suggested Changes

Please don't use single character variable names…
```suggestion

int count;
```
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Methodology: Phase 1
An Empirical Study on GitHub Suggested Changes

Study Design

(IRR = 71%, Cohen’s κ= 0.5942)

RQ3. What impact do suggested changes have on pull requests?

RQ2. How effective are recommendation systems on pull requests?

● Recently updated repositories
● 100 suggested changes

● Top-forked repositories (51,250 PRs)
● 17,712 suggested changes
● 134,318 review comments

● Top-forked repositories
● 4,319 PRs with suggestions
● 46,931 PRs without [Gousios, 2014]

```int count```

RQ1. What types of recommendations do developers make with suggested changes?
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Results: Phase 1 (RQ1)
RQ1. Most suggested changes are non-functional.

n Percentage

Non-Functional 36 36%

Improvement 34 34%

Corrective 16 16%

Formatting 14 14%
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Results: Phase 1 (RQ2)
RQ2. Suggested changes are accepted* more often than review 
comments with code.

n Percentage

Suggested Changes (SC)* 17,712 59.6%

Review Comments (RC) 6,937 0.9%

* (χ2= 6961.3765, p < 0.00001, α = .05)

* Statistically significant 42 / 65



Results: Phase 1 (RQ2 cont.)
RQ2. Pull requests with suggested changes have longer 
review time*, but developers can make* and respond* to 
recommendations faster.

Mean Median

SC 10.5 0.7

RC 14.6 1.9

Mean Median

SC 5.4 0.3

RC 8.0 0.7

Recommendation Time* (days) Acceptance Time* (days)

* (W = 49186174, p < 0.00001, α = .05) * (W = 256013, p = 0.0001, α = .05)

Mean Median

SC 16.4 5.0

RC 6.4 1.1

Time* (days)

* (Wilcoxon, W = 87857043, p < 0.00001, α = .05)

* Statistically significant 43 / 65



Results: Phase 1 (RQ3)
RQ3. PRs with suggested changes have longer reviews* but 
more coding activity* and collaboration between developers*.

* Statistically significant (Wilcoxon, α = .05)

Mean (diff) p

lifetime_minutes* +15,805.78 p < 0.00001

mergetime_minutes* +13,266.33 p < 0.00001

Mean (diff) p

num_commits* +1.9 p < 0.00001

src_churn* +2,345.78 p < 0.00001

files_changed +3.83 p = 0.5051

Mean (diff) p

commit_comments* +11.56 p < 0.00001

issue_comments* +3.6 p < 0.00001

num_participants* +0.88 p < 0.00001
44 / 65



Methodology: Phase 2

RQ4. How useful are suggested changes for recommendations between developers?
● Suggesters and Suggestees
● 39 responses
● Usefulness

■ Likert Scale
■ Open-ended

Developer Feedback on Suggested Changes
Study Design

(IRR = 72%,Cohen’s κ= 0.682)
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Results: Phase 2 (RQ4)

Communication Code Conciseness

Actionability Ease of Use Location Scalability Timing

User-Driven Communication Workflow Integration
46 / 65



Observations

“Small changes can be applied immediately, and the fact that they can be 
described by the reviewer in a way that a button fixes it instead of going to 
your code.” (C3)

“It is very convenient that the reviewer can write what they suggest to change in 
code instead of formulating it in words (which will often be longer)” (R6)

User-Driven Communication

Workflow Integration

47 / 65



Contribution
3. A set of experiments to provide evidence supporting 
the conceptual framework.

• Systems incorporating developer recommendation 
choice architectures are:

▪ preferred by developers

▪ effective for improving development practices
User-Driven Communication Workflow Integration

DesignContent
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Thesis: Developing New Tools

By incorporating developer 
recommendation choice architectures 
into recommendations for software 
engineers, we can nudge developers to 
adopt behaviors useful for improving 
code quality and developer productivity.

class-bot
49 / 65



● Poor programming behaviors lead to high attrition in CS [Beaubouef, 2005]
● Effective and Ineffective Behaviors of Students Impact Performance 

[Edwards, 2009]
● Translates to newly hired CS graduates in industry [Charrette, 2005]

Background: Student Behavior

50 / 65

Can developer recommendation choice architectures 
improve behavior on programming assignments?
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Methodology

● Introduction to Java (CSC116)

RQ1. How do class-bot nudges impact the quality of student projects?
● Project Grade
● Points Deducted

Software Process Phases
 1. Requirements
 2. Design
 3. Implementation
 4. Testing
 5. Deployment

RQ2. How do class-bot nudges influence student productivity?
● Commits
● Code Churn
● Commit Timing

● 35 Students; 151 repositories
○ Projects 3-5 (Control)
○ Project 6 and CE (Treatment)

● Software Engineering Process
         [Beaubouef, 2005] [Boehm, 1984]

52 / 65

✘

Study Design



Results

class-bot Mean Median

Grade* Without
With

74.29
76.89

87.66
95

Points 
Deducted

Without
With

-20.71
-9.43

-5
0

class-bot Mean Median

Commits Without
With

9.84
12.64

7
9

Code Churn* Without
With

205.03
1101.57

4
11

First Commit 
(days)**

Without
With

8.32
1.99

7.41
5.94

Last Commit
(hours)

Without
With

-21.72
-9.67

-1.60
-2.47

RQ1. Quality RQ2. Productivity

* (Wilcoxon, p < 0.0097, α = .05)

* (Wilcoxon, p = 0.0348, α = .05)
** (Wilcoxon, p < 0.0001, α = .05) 53 / 65



Feedback

"The class bot didn't update 
frequently enough" (P4)

"I checked it once at the end to make sure 
everything was correct but thats it" (P7)
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Contribution

• Automated recommendations from class-bot were useful for 
encouraging students to adhere to software engineering 
processes.

▪ Higher grades
▪ Increased code churn
▪ Prevented procrastination

55 / 65

4. An automated recommender system that 
incorporates the framework to nudge programmers 
toward developer behaviors.



Revisiting Research Contributions
1. A set of experiments to explore recommendations to developers 

and motivate the need for a new approach. 🗹

2. A conceptual framework to design effective developer 
recommendations. 🗹

3. A set of experiments to provide evidence supporting the 
conceptual framework. 🗹

4. An automated recommender system that incorporates the 
framework to nudge programmers toward developer behaviors. 🗹
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Conclusion and Future Work
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Future Work
Future directions of this research can continue 
exploring ways to improve the productivity, behavior, 
and decision-making of programmers.

Analyze behavior Develop new tools
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Interdisciplinary Methods
Behavioral Science: the study of human behavior
• "Why do people do what they do?" [Whitley, 2013]

59 / 65

Can dark patterns be used to observe programmer behavior 
and improve the decision-making of developers?

Dark Patterns: deceptive user interface design created to   
influence the decision-making and behavior of users online.       
[Gray, 2018]



Nudge-Bots
Develop systems that utilize various interventions in 
different online programming communities to nudge 
developers toward adopting better behaviors.
1. Cannot provide incentives
2. Must allow alternative behaviors

Behaviors CommunitiesInterventions
 1. Requirements
 2. Design
 3. Implementation
 4. Testing
 5. Deployment

60 / 65



By incorporating developer recommendation choice 
architectures into recommendations for software 
engineers, we can nudge developers to adopt behaviors 
useful for improving code quality and developer productivity.

Summary

Effective Developer Recommendations

Developer Recommendation Choice Architectures

Analyzing Existing Systems
Developing New Tools

61 / 65

Decision-making is a vital part of software engineering.

Analyze behavior

Develop new tools
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Developer Recommendation 
Choice Architectures

         Actionability
        Feedback
        Locality

By incorporating developer recommendation 
choice architectures into recommendations for 
software engineers, we can nudge developers to 
adopt behaviors useful for improving code quality 
and developer productivity.
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Developer Recommendation Choice 
Architectures
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Actionability
The ease with which users can act on 
recommendations

71

Default Rule
Automatic Enrollment
[Madrian, 2001]

Static Analysis
Splint (Secure Programming Lint)
[Evans, 2002]



Feedback
Information provided to users in 
recommendations to encourage adoption

72

Compiler Error Messages
Argument structure
[Barik, 2018]

Customized Information
Daily caloric intake
[Wisdom, 2010]



Locality: Spatial
The setting of recommendations to improve 
user behavior
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Flower
In situ navigation
[Smith, 2017]

Decision Staging
Healthy Convenience Lines
[Hanks, 2012]



Locality: Temporal
The setting of recommendations to improve 
user behavior
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Scaling Static Analyses at Facebook
“diff time”
[Distefano, 2019]

Time-limited windows
Present-biased farmers
[Duflo, 2011]



Future Work



Limitations

76

To improve developer decision-making, I plan to explore developing 
customized nudges and making individualized recommendations.



Limitations

77

To improve developer decision-making, I plan to explore using machine 
learning techniques to predict poor developer behaviors and generate 
proactive recommendations for useful tools and practices.



Research-Practice Gap
Tools and practices developed by software engineering 
researchers often don't fit the needs of software practitioners 
[Norman, 2010]
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Increase the awareness of software engineering 
research tools, techniques, and findings in industry



Background: Developer Behavior Adoption Problem
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Physical Isolation

[Turkle, 2011]

Researchers

[Norman, 2010]

Decision Fatigue

  [Makabee, 2011]

Global SE

[Herbsleb, 2007]

ManagersDeveloper Inertia

[Murphy-Hill, 2015]

Companies



Peer Interactions



Recommendation Model
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1. Task Analysis

Peers analyze goal and define operations to 
reach desired state.
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2. Task Execution

Driver applies selection rule and begins 
executing their method.
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3. Dialogue

- Unexpected Recommendation: Navigator 
interrupts to ask about unexpected tool.

- Expected Recommendation: Driver asks for 
help from navigator.

- Unexpected Observation: Driver explains 
actions and navigator reacts.

- Expected Observation: Navigator asks question 
concerning tool used.
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4. Reaction

The recommendee decides whether or not to 
adopt the new tool.
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Data Analysis

Cohen’s 
Kappa

Pol. 0.50

Per. 0.28

Rec. 0.51
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Characteristics of Interactions

1. Politeness [Leech, 1983]

2. Persuasiveness [Shen, 2012]

3. Receptiveness [Fogg, 2009]

4. Time Pressure [Andrews, 1996]

5. Tool Observability [Murphy-Hill, 2015]

87
[Murphy-Hill, 2015]



Politeness

Criteria Definition

Tact Minimize cost and maximize benefit to peer

Generosity Minimize benefit and maximize cost to self

Approbation Minimize dispraise and maximize praise of peer

Modesty Minimize praise and maximize dispraise of self

Agreement Minimize disagreement and maximize agreement between peers

Sympathy Minimize antipathy and maximize sympathy between peers

88[Leech, 1983]



Persuasiveness

Criteria Definition

Content Recommender provides credible sources to verify use of the tool

Structure Messages are organized by climax-anticlimax order of arguments 
and conclusion explicitness

Style Messages should avoid hedging, hesitating, questioning 
intonations, and powerless language

89[Shen, 2012]



Receptiveness

Criteria Definition

Demonstrate Desire User showed interest in discovering, using, or learning more 
information about the suggested tool

Familiarity User explicitly expresses familiarity with the environment

90[Fogg, 2009]



Time Pressure

Criteria Definition

Time Pressure Driver or navigator makes a statement about time before, during, or 
after a recommendation

91[Andrews, 1996]



Types of Tools

1. Observable

2. Non-Observable

92[Murphy-Hill, 2015]



Methodology: Scoring

Effectiveness
3 Recommendee always or mostly uses recommended tool
2 There were no opportunities to use the tool later in
the study after it was recommended
1 Recommendee mostly ignores or never uses 
recommended tool

Politeness, Persuasiveness, Receptiveness
+1 Participant obeyed a specific criteria
0 Participant neither obeyed nor violated a criteria
-1 Participant violated a specific criteria

Time Pressure
Yes Time mentioned during or before peer interaction
No No mention of time during or before peer interaction
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Types of Tools
Observable Proposed tool has user interface
Non-Observable Proposed tool does not have a user 
interface



Results: Interaction Characteristics

(p = 0.4936) W

W = Wilcoxon rank sum, C = Pearson’s chi-squared, * = significant

(p = 0.4556) W

(p = 0.0002)* W (p = 0.1470) C

Polite Neutral Impolite

n 27 104 11

Receptive Neutral Unreceptive

n 64 56 22
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Persuasive Unpersuasive

n 14 128

Time Pressure? Yes No

n 19 123



Results: Tool Observability

W = Wilcoxon rank sum, C = Pearson’s chi-squared, * = significant

(p = 0.4928) C

Observable Non-Observable

n 115 27
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Sorry to Bother 
You



Developer Feedback

● 24 comments on 17 projects
○ 6 bot comments for first-time contributors, 

Contributing License Agreement signatures, test 
coverage

○ 18 developer comments (non-automated)
■ Positive: 5
■ Pom.xml format: 5
■ Breaking builds: 8
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Suggested 
Changes



Recommendation Style
Study Participants
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Types of Suggested Changes
Non-functional: changes that don’t impact 
code, i.e. rewording or fix spelling and grammar 
issues in documentation and code comments.

100



Types of Suggested Changes

Corrective: changes to fix bugs and issues 
found in the code.
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Types of Suggested Changes

Improvement: changes to refactor or optimize 
code.
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Types of Suggested Changes

Formatting: changes that impact the 
presentation of the code without changing 
functionality
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User Study Email
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User Study Issue
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User Study Pull Request
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User Study Suggested Change
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