Digital Nudges for Encouraging
Developer Behaviors

Chris Brown
dcbrow10@ncsu.edu
April 6, 2021

Committee:

Dr. Chris Parnin (Chair)

Dr. Anne McLaughlin (PSY, GSR)
Dr. Sarah Heckman

Dr. Kathryn Stolee

Final Oral Exam (Defense) NC STATE
Department of Computer Science UNIVERSITY

mailto:dcbrow10@ncsu.edu

Decision-Making in Software Engineering

The New
Kingmakers

eeeeeeeeeeeee

“[Software engineers] have the power to make or break
business...Developers are now the real decision makers in technoloqy.”

“The most important skill in software development is not how good your
coding skills are or how much you know about machine learning and data
Science. [t’s decision-making!” T+ HACKERMOOMN

“Though rarely discussed in the software engineering literature, [our] results 'W'
suggest effective decision-making is critical...as engineers grow in their

careers, they are tasked with making decisions in increasingly more complex]
and ambiguous situations, often with significant ramifications.”]

Problem

Software engineers often make bad decisions!

%

%

| %

B3

n‘
X X

PAIRAGRAPH

Is Technology Actually Making Things Better?

P EO PLE AFFECTED (AT LEAST) John K. Davis @ @‘ Jason Crawford
1 71 5 430 778 50 4 “We face a growing array of problems
that involve technology directly or

LOSSES FROM SOFTWARE FAILURES (USD) indirectly_" The growing gap between
our technological power and our
wisdom is the ultimate cause of all

these problems.”

= ., = Greg Wilson
‘*' @gvwilson

| think the most interesting topic for software
engineering research in the next ten years is

"How do we get working programmers to
actually adopt better practices?"

Psychology An introduction to implementation science for the non-spe...

k The movement of evidence-based practices (EBPs) into routine
clinical usage is not spontaneous, but requires focused efforts.
The field of implementation science has developed to facilitate ...

k bmcpsychology.biomedcentral.com

6:38 PM - 21 Jun 2019

7 Retweets 16 Likes Q ” @ 3 & th e @ &

How can we encourage software engineers to
adopt developer behaviors in their work?

Bad Decision ,l

Good Decision l‘

Outline

Background
Thesis Statement

Exploring Effective Developer Recommendations
Developing a Conceptual Framework

Analyzing Existing Recommendation Systems

Designing New Recommender Bots
Future Work and Conclusion

Background: Human Behavior

Tools and guidelines informed by science can encourage humans
to adopt beneficial behaviors and make better decisions.
However, people often ignore these recommendations.

~ Kentucky Fried Chicks

8/65

®
Background: Developer Behavior

Tools and practices designed by researchers to help
software engineers complete programming tasks.
However, developers ignore these behaviors.

T

Improve code quality Developer Behavior
Prevent errors B r

Reduce developer effort Adoption Problem

9/65

Thesis Statement

By incorporating developer
recommendation choice architectures
iInto recommendations for software
engineers, we can nudge developers to
adopt behaviors useful for improving
code quality and developer productivity.

10/65

Research Contributions

1.

A set of experiments to explore recommendations to
developers and motivate the need for a new approach.

A conceptual framework to design effective developer
recommendations.

A set of experiments to provide evidence supporting the
conceptual framework.

An automated recommender system that incorporates
the framework to nudge programmers toward developer
behaviors.

11/65

Thesis: Effective Recommendations |‘

By incorporating developer recommendation
choice architectures into recommendations for
software engineers, we can nudge developers
to adopt behaviors useful for improving code
quality and developer productivity.

= B
%_ Peer Interactions

Naive Telemarketer Design

12/65

Peer Interactions

The process of discovering tools from colleagues

during normal work activities.

;_

Tool Discovery

Code Comprehension
Security Tool Adoption
Pair Programming
Code Reviews

i

13/65

Methodology Tq’

Study Design
e 13 pairs of participants
e Data Analysis Tasks
e Tool Recommendations

Politeness [Leech, 1983]
Persuasiveness [Shen, 2012]
Receptiveness [Fogg, 2009]

Time Pressure [Andrews, 1996]

Tool Observability [Murphy-Hill, 2015]

abkwh =

m Characteristics
m Effectiveness

Effective User tries recommended tool
Ineffective User ignores recommended tool

[- j ’ / No opportunity to use tool

14 /65

b

Results
Effective | Ineffective | Unknown | Total

n 71 35 36 142
1. Politeness
2. Persuasiveness
3. Receptiveness* Demonstrate Desire Familiarity
4. Time Pressure
5. Tool Observability

15/65

Baseline Automated Approach

Naive telemarketer design: A simple approach for
designing automated recommendations to software
engineers.

- Static Recommendations
- Generic Messages
- Socially Inept

i]
tool-recommender-bot

16 /65

Error Prone Static Analysis Tool #82

jyel--h M cass-green wants to merge 1 commitinto apache:master from cass-green:master [EQ

¢&J Conversation 0 -0- Commits 1 #, Checks 0 @ Files changed 1

cass-green commented on Jan 31 « edited ~)

Looks like you're not using any error-checking in your Java build. This pull requests adds a static analysis tool,
Error Prone, created by Google to find common errors in Java code. For example, running mvn compile on
the following code:

public boolean validate(String s) {

return s == this.username;

}

would identify this error:

[ERROR] src/main/java/HellowWorld.java:[17,17] error: [StringEquality] String compariso

[ERROR] (see https://errorprone.info/bugpattern/StringEquality)

If you think you might want to try out this plugin, you can just merge this pull request. Please feel free to add
any comments below explaining why you did or did not find this recommendation useful.

17/65

Methodology

Study Design Effective } Merged

e Error Prone
* 52 GitHub repositories Ineffective 11 Closed | 7 Open
o Java 8+
O Maven @ Vest commented on Feb 7, 2019

This PR failed automatic checks, | think it should be closed.

& gastaldi commented on Jan 29, 2019

Ll
m Effectiveness
Thanks for the contribution, but given the number of errors, | think it would cause more harm than good ;)
. Feed baCk ‘ bendem commented on Jan 28, 2019 Contributor @

This introduces a bunch of errors, can you check whether they are worth fixing or configure the plugin so as to ignore the false
positives? https://travis-ci.org/fizzed/rocker/jobs/485416635
Also, you messed up the formatting of the pom.xml pretty bad.

6 gunnarmorling commented on Jan 31, 2019 Member (@) <+

So I'm going to close this one, as it's not mergeable as is. If you'd like to re-open it, please do so by not altering large parts of the
POM. Also it'd be great to see how ErrorProne would actually help us, e.g. you could attach a report with actual findings in our
code base instead of just some generic example. Also it'd be good to analyse the impact in terms of build time. 18 /65

Results

n Percent

Merged 2 4%

Closed 10 19%

No Response 40 77%

Sontext

</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>

+ + + +

<version>3.5.1</version>

Error Prone Static Analysis Tool #269¢

rvema merged 1 commit into Hygieia:master from unknown repository E& onJan 29
Revert "Error Prone Static Analysis Tool"

SISl rvema merged 4 commits into master from revert-2696-master & onJan 30

Error Prone Static Analysis Tool #106%

NN Ll alexo merged 1 commitinto wro4j:1.8.x from unknown repository E& onJan 31

Developer Workflow

All checks have failed

1 errored check

X & continuous-integration/travis-ci/pr — The Travis Cl build

Recap

e Peer interactions are effective because of their ability to foster
desirable and familiar suggestions, but infrequent among developers.

e Simple automated approaches are ineffective because they lack social
context and interrupt developer workflow.

Developer Recommendation Preconditions

Demonstrate Desire

Can automated recommendations
be improved to better encourage

Social Context developer behaviors?
Developer Workflow
20/ 65

Thesis: Conceptual Framework

By incorporating developer
recommendation choice architectures
into recommendations for software
engineers, we can nudge developers to
adopt behaviors useful for improving
code quality and developer productivity.

mﬂb Developer Recommendation Choice Architectures

21/65

Background: Nudge Theory

A behavioral science framework to improve human behavior
without providing incentives or banning alternatives.

e

Improving Decisions about

Health, Wealth, and Happiness

22/65

Background: Nudge Theory (cont.

Background: Digital Nudges ..

The use of nudges to guide user behavior in
digital choice environments.

<[>

24 /65

Background: Choice Architecture B,

The framing and presentation of choices to

decision-makers

[Thaler, 2009]

My cunning
choice architecture
will soon have
- Homer eating

25/65

Tools for Choice Architectures

—_—\ =

~CL0LoONOORLON =

Reduce alternatives
Technology aids

Use defaults

Focus on satisficing
Limited time windows
Decision staging
Partitioning of options
Attribute labelling
Translate for evaluability
Customized information
Focus on experience

Choice Architectures

1. Actionability

2. Feedback
3. Locality
a. Spatial

b. Temporal

A

Developer Recommendation

26/65

Actionability

The ease with which developers can adopt
recommendations

27165

Feedback

Information provided in recommendations

28 /65

Locality: Spatial

The setting (placement) of recommendations

29/65

Locality: Temporal

The setting (timing) of recommendations

30/65

Actionable Recommendations

+ if status is True:

+ if status is True:

+ print 'passed' + print 'passed'
cass-green 33 seconds ago +
cass-green now +@ - 9 g ®
: Hi, the latest version of Python changes print to a built-in function instead of a statement,

Hi, the latest version of Python changes print to a built-in function instead of a statement,

leading to a PEP 3105 warning here [1]. We recommend changing this line to
leading to a PEP 3105 warning here [1]. We recommend changing this line to:

Suggested change @
rint('passed'’
P C'p) - print 'passed’

This change r code. Additionally, Python is officially no + printfi'passed‘f
longer suppt ’lease consider upgrading the code for your Commit suggestion v Add suggestion to batch
project to Py

This change will not impact the functionality of your code. Additionally, Python is officially no

[1] https://wy longer supporting Python 2 as of Jan. 1, 2020 [2]. Please consider upgrading the code for your
j |
[2] https://wy project to Python 3. Thanks!
[1] https://www.python.org/dev/peps/pep-3105/
/) /doc/ ® n/
Reply... [2] https://www.python.org/doc/sunset-python-2/
Reply...

0% 100%

31/65

Thesis: Existing Systems O\

By incorporating developer
recommendation choice architectures
into recommendations for software
engineers, we can nudge developers to
adopt behaviors useful for improving
code quality and developer productivity.
GitHub Suggested Changes
Q Recommendation Styles
Developer Impact

32/65

9+ oint e

« chbrown13 26 days ago Author Owner

Please don't use single character variable names...

Suggested change ()

9 - int §;

9 + int count; E

{ Commit suggestion v

Update src/main/java/ShortSet.java

Actionability
Spatial Locality

Feedback

Temporal Locality
Y

®
.3' Commit changes

Add suggestion to batch

4

33/65

Recommendation Styles Q

Automated approaches to convey recommendations to developers.
- Static Analysis Tool Adoption

1. Email

2. GitHub Issue

3. GitHub Pull Request

4. GitHub Suggested Changes

34 /65

Methodology

Stu dv DeSiq n s tool-recommender-bot 29 days ago +@ e

You should try using JKL, a static analysis tool to automatically find common

® 1 4 p rOfeSSIO nal d evelope rS programming errors in Python code. This tool can prevent programming errors in

production and decreases debugging time so developers can focus on more important

P TOOI Re COm m end ations tasks. Running the tool on this pull request reported an instance of Python statement

warning [E711] here in your code and suggests fixing this bug by changing the line to:

@ @ 141 I Suggested change @
- if applied != None:

P Think_aloud Study + if applied is not None:
. . . Commit suggestion v
e Semi-structured interview
- - - JKL can be easily installed locally from the command-line, as a plugin for your IDEs, or
. LI kel | h OOd Of Ado ptl On integrated into the continuous integration build system. If you think you might want to try
this tool, check out the website for more information.
m Open-ended

%L

ii")

35/65

Results

Average | Median

| Suggestions* 4 4 | “Very good detail...clear” (P10) “Pretty neat integration” (P7) ...
Pull Requests 3.71 4
Issues 2.86 3
Email 2.36 2 | “[it's] pretty suspicious” (P4) “I'd immediately delete it” (P6) ...
Integration Popularity Reliability Examples Marketing

__ Design

36 /65

Observations

___ Design

tool-recommender-bot 29 days ago +@ e

You should try using JKL, a static analysis tool to automatically find common
programming errors in Python code. This tool can prevent programming errors in
production and decreases debugging time so developers can focus on more important
tasks. Running the tool on this pull request reported an instance of Python statement
warning [E711] here in your code and suggests fixing this bug by changing the line to:

Suggested change ®

- if applied !'= None:

+ if applied is not None:

I Commit suggestion v I

JKL can be easily installed locally from the command-line, as a plugin for your IDEs, or
integrated into the continuous integration build system. If you think you might want to try
this tool, check out the website for more information.

suggestion to batch

37165

Developer Impact

-

An Empirical
Study on
GitHub

Suggested
Changes

Developer

Feedback on
Suggested
Changes

38/65

Detecting Suggested Changes

chbrown13 on Nov 6, 2019 Author ~ Owner @ -

Please don't use single character variable names...

Suggested change @
int B;

+ int count;

Please don't use single character variable names...
" T suggestion
int count;

39/65

Methodology: Phase 1

An Empirical Study on GitHub Suggested Changes
Study Design

RQ1. What types of recommendations do developers make with suggested changes?

e Recently updated repositories — /
e 100 suggested changes —
> PO

RQ2. How effective are recommendation systems on pull requests?

® Top-forked repOSitorieS (51 ,250 PRS) chbrown13 10 minutes ago ~ Author Owner
® 1 7,71 2 Suggested Changes Please don't use single character variable names...
o 134,318 review comments . ,

" "int count "

RQ3. What impact do suggested changes have on pull requests?

e Top-forked repositories

e
e 4,319 PRs with suggestions @ W .Q
e 46,931 PRs without 4

40/65

Results: Phase 1 (RQ1)

RQ1. Most suggested changes are non-functional.

n Percentage
Non-Functional 36 36%
Improvement 34 34%
Corrective 16 16%
Formatting 14 14%

(a) Non-Functional:
Suggested change G)

When we load the settings, we'll do it in two stages. First, we'll deseriale th'!

When we load the settings, we'll do it in two stages. First, we'll deserialize |

41/65

Results: Phase 1 (RQ2) Q

RQ2. Suggested changes are accepted* more often than review
comments with code.

n Percentage

Suggested Changes (SC)* | 17,712 59.6%

Review Comments (RC) 6,937 0.9%

42 /65

Results: Phase 1 (RQ2 cont.)

RQ2. Pull requests with suggested changes have longer
review time*, but developers can make* and respond* to

recommendations faster.

Time* (days)
Mean | Median
| SC 16.4 5.0 | _
Recommendation Time* (days) Acceptance Time* (days)
Mean | Median RC 04 11 Mean | Median
SC 10.5 0.7| | SC 54 0.3
RC 14.6 1.9 RC 8.0 0.7

43 /65

Results: Phase 1 (RQ3)

RQ3. PRs with suggested changes have longer reviews* but
more coding activity* and collaboration between developers®*.

Mean (diff) | p

lifetime_minutes* +15,805.78 | p < 0.00001

mergetime_minutes*® +13,266.33 | p <0.00001

/ <@

v Mean (diff) | p 2 Mean (diff) | p
num_commits* | +1.9 p <0.00001 commit_comments* | +11.56 p <0.00001
src_churn* +2,345.78 p <0.00001 issue_comments* +3.6 p <0.00001

files_changed +3.83 p = 0.5051 num_participants* +0.88 p <0.00001

44 /65

Methodology: Phase 2 Q

Developer Feedback on Suggested Changes

Study Design

RQ4. How useful are suggested changes for recommendations between developers?
e Suggesters and Suggestees
e 39 responses
e Usefulness

EPY2

45/65

Results: Phase 2 (RQ4)

Very Useful [Suggester
I Suggestee

Moderately Useful

Somewhat Useful

Not at All Useful

(=]
o
—
o
—
(9]
oo
o
[SS]
o

Number of Participants

User-Driven Communication Workflow Integration

46 /65

Observations

“It is very convenient that the reviewer can write what they suggest to change in
code instead of formulating it in words (which will often be longer)” (R6)

Suggested change @)

int ¢;

int count;

Workflow Integration

“‘Small changes can be applied immediately, and the fact that they can be
described by the reviewer in a way that a button fixes it instead of going to
your code.” (C3)

Commit suggestion »

47 /65

Contribution Q

3. A set of experiments to provide evidence supporting
the conceptual framework.

28 00

« Systems incorporating developer recommendation
choice architectures are:
= preferred by developers

 Content Jiil Design _

= effective for improving development practices

User-Driven Communication Workflow Integration

48 /65

Thesis: Developing New Tools

> §
/%
By incorporating developer

recommendation choice architectures
Into recommendations for software
engineers, we can nudge developers to
adopt behaviors useful for improving
code quality and developer productivity.

%% class-bot

49 /65

Background: Student Behavior

"l”

e Poor programming behaviors lead to high attrition in CS
e [Effective and Ineffective Behaviors of Students Impact Performance
e Translates to newly hired CS graduates in industry

Can developer recommendation choice architectures
improve behavior on programming assignments?

50/65

class-bot commented on Jul 16, 2020 « edited by dcbrow10 -~ © -

Hil This bot provides daily updates tracking your progress on the software process requirements for this assignment. If you have any
questions or problems, feel free to leave a comment below or email the instructor.

ProjectSpecification.pdf: X

Updated README: E

Compilation and execution steps: X

[class-bot] Comprehensive Exercise Software Process #1
class-bot opened this issue on Jul 16, 2020 - 1 comment

Project structure: X

Im

Added source code:
51/65

Methodology %c!?

Study Design Software Process Phases
e Introduction to Java (CSC116) 1. Requirements @
e 35 Students; 151 repositories 2. Design [8
o Projects 3-5 (Control) 3. Implementation m|
o Project 6 and CE (Treatment) 4. Testing MIEY
e Software Engineering Process 5. Deployment

RQ1. How do class-bot nudges impact the quality of student projects?

e Project Grade)
e Points Deducted x
RQ2. How do class-bot nudges influence student productivity?

e Commits
e Code Churn
e Commit Timing

Initial commit :
f37eec3 onJul 23,2020) 39 commits

{3} dcbrow10 committed on Jul 16, 2020

52 /65

1 r 4

RQ1. Quality RQ2. Productivity
class-bot A Mean | Median class-bot | Mean Median
Grade* Without 74.29 | 87.66 Commits Without 9.84 7
With 76.89 | 95 With 12.64 9
Points Without -20.71 | -5 Code Churn* | Without 205.03 4
Deducted | With -9.43 0 With 1101.57 | 11
" (Wilcoxon, p < 0.0097, a = .05) First Commit | Without 8.32 7.41
(days)** With 1.99 5.94
Last Commit | Without -21.72 -1.60
(hours) With -9.67 -2.47

* (Wilcoxon, p = 0.0348, a =.05)
** (Wilcoxon, p < 0.0001, a =.05)

53 /65

0 D

Feedback %8

Very Useful
Useful
Moderately Useful
Somewhat Useful
Not at All Useful

0 2 4 6 8

Number of Participants

3

"The class bot didn't update "I checked it once at the end to make sure

frequently enough" (P4) everything was correct but thats it" (P7)
54 /65

0 N

Contribution %c;?

4. An automated recommender system that
incorporates the framework to nudge programmers
toward developer behaviors.

« Automated recommendations from class-bot were useful for
encouraging students to adhere to software engineering
Processes.

= Higher grades
= |[ncreased code churn
= Prevented procrastination

2800

55/65

Revisiting Research Contributions

1. A set of experiments to explore recommendations to developers
and motivate the need for a new aEiroach.]

= _h
2.
recommendations. o E
3.
conceptual framework. 0
4.

.
A conceptual framework to design eftective developer

9O

A set of experiments to provide evidence supporting the

@@\
HHH

An automated recommender system that incorporates the
framework to nudge programmers toward developer behaviors. 0

/65

Conclusion and Future Work

57165

Future Work

Future directions of this research can continue
exploring ways to improve the productivity, behavior,
and decision-making of programmers.

%
(/ HHH
Analyze behavior Develop new tools

58 /65

Interdisciplinary Methods

Dark Patterns: deceptive user interface design created to
influence the decision-making and behavior of users online.

-

T

tool-recommender-bot commented 1 minute ago

This pull request cannot be merged until all static analysis errors are fixed.

% tool-recommender-bot closed this 1 minute ago

All Sales Final - No Refunds or Exchanges

Can dark patterns be used to observe programmer behavior
and improve the decision-making of developers?

59/65

Nudge-Bots e

Develop systems that utilize various interventions in
different online programming communities to nudge
developers toward adopting better behaviors.

1. Cannot provide incentives
2. Must allow alternative behaviors

Behaviors Interventions Communities

1. Requirements
ST003 2. Design +
%8%0 3. Implementation UL
0101
110

o 4. Testing
5. Deployment

& [ae & WS ©

60 /65

Summary

Decision-making is a vital part of software engineering.

By incorporating developer recommendation choice
architectures into recommendations for software
engineers, we can nudge developers to adopt behaviors
useful for improving code quality and developer productivity.

|‘ Effective Developer Recommendations /)‘,..

Q Analyze behavior
O\ Developer Recommendation Choice Architectures (/

}/ Analyzin_g Existing Systems [0]O) Develop new tools
¢ Developing New Tools HHH

61/65

Publication List

1. Chris Brown, Emerson Murphy-Hill, Justin Middleton, and Esha Sharma. "How Software Users = b
Recommend Tools to Each Other”. In the Visual Languages and Human Centric Computing #
(VL/HCC 2017).

3. Chris Brown and Chris Parnin. "Sorry to Bother You: Designing Bots for Effective
Recommendations”. In the International Workshop on Bots in Software Engineering in
conjunction with ICSE (BotSE 2019).

4. Chris Brown. "Digital nudges for encouraging developer actions”. In the Proceedings of the
International Conference on Software Engineering (ICSE 2019) doctoral symposium.

6. Chris Brown and Chris Parnin. "Sorry to Bother You Again: Developer Recommendation Choice o
Architectures for Designing Effective Bots". In the International Workshop on Bots in Software ?

Engineering in conjunction with ICSE (BotSE 2020).
62 /65

Publication List (cont.)

7.

10.

11.

Chris Brown and Chris Parnin. "Comparing Different Developer Behavior Recommendation
Styles". In the International Workshop on Cooperative and Human Aspects of Software O
Engineering in conjunction with ICSE (CHASE 2020).

Chris Brown and Chris Parnin. "Understanding the Impact of GitHub Suggested Changes on
Recommendations Between Developers". In the Joint European Software Engineering Conferenc@
and Symposium on the Foundations of Software Engineering (ESEC/FSE 2020).

Chris Brown and Chris Parnin. "Nudging Students Toward Better Software Engineering .« 2
Behaviors". To appear in the International Workshop on Bots in Software Engineering in
conjunction with ICSE (BotSE 2021).

Chris Brown and Chris Parnin. "Dark Patterns for Influencing Developer Behavior". To appear as
a Position Paper at the Workshop "What Can CHI Do About Dark Patterns?" at the CHI -
Conference on Human Factors in Computing Systems (Dark Patterns Workshop 2021).

Acknowledgements

e Dr. Chris Parnin

* Thesis Advisory Committee
* alt-code

e EB2 3228 & 3229

* Friends and Family
* NSF #1714538

64 /65

Thanks

-

By incorporating developer recommendation
choice architectures into recommendations for

and developer productivity.

software engineers, we can nudge developers to
adopt behaviors useful for improving code quality

J

Chris Brown g

% dcbrow10@ncsu.edu
Sohttps://chbrown13.github.io

O)https://github.com/chbrown13 m
YW @d chrisbrown?2

Developer Recommendation
Choice Architectures

2 Actionability
B\ Feedback
Q O Locality

alt-code

A NC STATE

UNIVERSITY

mailto:dcbrow10@ncsu.edu
https://chbrown13.github.io
https://github.com/chbrown13
https://twitter.com/d_chrisbrown2

Citations

Alés-Ferrer, C., Hugelschéfer, S., and Li, J.:. "Inertia and decision making." Frontiers in psychology 7 (2016)

Ayewah, N., Pugh, W.: The google findbugs fixit. In: Proceedings of the 19th International symposium on Software testing and analysis.
pp. 241-252. ACM (2010)

Barik, T., Ford, D., Murphy-Hill, E., Parnin, C.: How should compilers explain problems to developers? In: Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. pp.
633-643. ACM (2018)

Beaubouef, T., Mason, J.: Why the high attrition rate for computer science students: some thoughts and observations. ACM SIGCSE
Bulletin 37(2), pp. 103—106 (2005)

Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C., Kamsky, A., McPeak, S., Engler, D.: A few billion lines of
code later: using static analysis to find bugs in the real world. Communications of the ACM 53(2), 66—75 (2010)

Bissyandé T. F., Lo D., Jiang L., Réveillere L., Klein J., and Traon, Y. T. Got issues? who cares about it? a large scale investigation of issue
trackers from github. In 2013 IEEE 24th international symposium on software reliability engineering (ISSRE). IEEE Press (2013)

Brown, C., Middleton, J., Sharma, E., Murphy-Hill, E.: How software users recommend tools to each other. In: Visual Languages and
Human-Centric Computing (2017)

Brown, C., Parnin, C.: Sorry to bother you: designing bots for effective recommendations. In: Proceedings of the 1st International
Workshop on Bots in Software Engineering. pp. 54-58. IEEE Press (2019)

Charette, R.N.: Why software fails [software failure]. IEEE spectrum 42(9), pp. 42—49 (2005)

Chin, C.: For JavaScript Developers, More Choices Mean Hard Choices. Wired (2018)
https://www.wired.com/story/javascript-developers-more-choices-mean-hard-choices/

Cockburn, A. & Williams, L. “Extreme Programming Examined”. Ed. by Succi, G. & Marchesi, M. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2001.Chap. The Costs and Benefits of Pair Programming, pp. 223-243.

Cohen, J. et al.Best kept secrets of peer code review. Smart Bear Somerville, 2006.

Distefano, D., Fahndrich, M., Logozzo, F., O’Hearn, P.W.: Scaling static analyses at facebook. Commun. ACM 62(8), pp. 62—70 (2019)
Duflo, E., Kremer, M., Robinson, J.: Nudging farmers to use fertilizer: Theory and experimental evidence from kenya. American economic
review 101(6), pp. 2350-90 (2011)

66

https://www.wired.com/story/javascript-developers-more-choices-mean-hard-choices/

Citations (cont.)

Evans, D. and Larochelle, D., 2002. Improving security using extensible lightweight static analysis. IEEE software, 19(1), pp.42-51.
Fogg, B.: Creating persuasive technologies: An eight-step design process. In: Proceedings of the 4th International Conference on
Persuasive Technology. pp. 44:1-44:6. Persuasive '09, ACM, New York, NY, USA (2009)

Gousios, G., Pinzger, M., Deursen, A.v.: An exploratory study of the pull-based software development model. In: Proceedings of the 36th
International Conference on Software Engineering. pp. 345-355. ACM (2014)

Gray, Colin M., Yubo Kou, Bryan Battles, Joseph Hoggatt, and Austin L. Toombs. "The dark (patterns) side of UX design." In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1-14. 2018.

Hanks, A.S., Just, D.R., Smith, L.E., Wansink, B.: Healthy convenience: nudging students toward healthier choices in the lunchroom.
Journal of Public Health 34 (3), pp. 370-376 (2012)

Herbsleb, J. D. “Global Software Engineering: The Future of Socio-technical Coordination”. Future of Software Engineering (FOSE ’07).
IEEE, 2007, pp. 188-198.

Johnson, B., Song, Y., Murphy-Hill, E., Bowdidge, R.: Why Don’t Software Developers Use Static Analysis Tools to Find Bugs? In:
Proceedings of the 2013 International Conference on Software Engineering (ICSE). pp. 672—-681. ICSE ’13, IEEE Press, Piscataway, NJ,
USA (2013)

Johnson, E.J., Shu, S.B., Dellaert, B.G., Fox, C., Goldstein, D.G., Haubl, G., Larrick, R.P., Payne, J.W., Peters, E., Schkade, D. and
Wansink, B.: Beyond nudges: Tools of a choice architecture. Marketing Letters, 23(2), pp.487-504 (2012)

Layman, L., Williams, L., Amant, R.S.: Toward reducing fault fix time: Understanding developer behavior for the design of automated fault
detection tools. In: Empirical Software Engineering and Measurement, 2007. ESEM 2007. pp. 176-185. IEEE (2007)

Leech, G.: Principles of Pragmatics. Longman linguistics library ; title no. 30, Longman (1983)

Li, P.L., Ko, A.J., Zhu, J.: What makes a great software engineer? In: Proceedings of the 37th International Conference on Software
Engineering-Volume 1. pp. 700-710. IEEE Press (2015)

Maalej, W. et al. “On the Comprehension of Program Comprehension”. ACM Trans. Softw. Eng. Methodol.23.4 (2014).

Madrian, B.C., Shea, D.F.: The power of suggestion: Inertia in 401 (k) participation and savings behavior. The Quarterly journal of
economics 116(4), 1149-1187 (2001)

Makabee, H.: How Decision Fatigue Affects the Efficacy of Programmers. Effective Software Design (2011) 67
https://effectivesoftwaredesign.com/2011/08/23/how-decision-fatigue-affects-the-efficacy-of-programmers/

https://effectivesoftwaredesign.com/2011/08/23/how-decision-fatigue-affects-the-efficacy-of-programmers/

Citations (cont.)

° Murphy-Hill, E., Murphy, G.C. and McGrenere, J.:How Do Users Discover New Tools in Software Development and Beyond?. Computer
Supported Cooperative Work (CSCW), 24(5), pp.389-422 (2015)

° Norman, D. A.: The research-Practice Gap: The need for translational developers. Interactions, 17(4), (2010).

e (O’Grady, S.: The New Kingmakers: How Developers Conquered the World. “O’Reilly Media, Inc.” (2013)

° Robillard, M., Walker, R., Zimmermann, T.: Recommendation systems for software engineering. IEEE software 27(4), 80-86 (2010)

° Singh, D., Sekar, V.R., Stolee, K.T., Johnson, B.: Evaluating how static analysis tools can reduce code review effort. In: 2017 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). pp. 101-105. IEEE (2017)

° Smith, J., Brown, C., Murphy-Hill, E.: Flower: Navigating program flow in the ide. In: 2017 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). pp. 19-23 (2017)

e Thaler, R.H., Sunstein, C.R.: Nudge: Improving decisions about health, wealth,and happiness. Penguin (2009)

° Tricentis.: Software Fail Watch: 5th edition. Tricentis (2017) https://www.tricentis.com/resources/software-fail-watch-5th-edition/

° Turkle, S. "Alone together: Why we expect more from technology and less from each other". Hachette UK, 2017

e Weinmann, M., Schneider, C., vom Brocke, J.: Digital nudging. Business & Information Systems Engineering 58(6), 433—436 (2016)

° Whitley, B. E., and Kite, M. E.. "Principles of research in behavioral science." Psychology Press (2013).

° Wisdom, J., Downs, J.S., Loewenstein, G.: Promoting healthy choices: Information versus convenience. American Economic Journal:

Applied Economics 2(2), 164—78 (2010)
° Woo, A. Decision-making: The most undervalued skill in software engineering. HackerNoon (2019)
https://hackernoon.com/decision-making-the-most-undervalued-skill-in-software-engineering-fob8e5835ca6

68

https://www.tricentis.com/resources/software-fail-watch-5th-edition/
https://hackernoon.com/decision-making-the-most-undervalued-skill-in-software-engineering-f9b8e5835ca6

Developer Recommendation Choice
Architectures

DRCA Tool [16] Definition
. i Technology and decision aids Introducing technology to aid decision makers in choice tasks
Actionability — — :
Use defaults The way decision makers initially encounter choice tasks
Reduce number of alternatives Limiting the number of choice options presented to decision makers
Focus on satisficing Helping users consider outcomes that lead to higher choice satisfaction
Attribute parsimony and labeling Limiting the number of characteristics presented with options
Feedback o : . - - -
Translate and rescale for better evaluability | Presenting attributes to increase impact and clarity
Customized information Personalization to account for individual differences between decision-makers
Focus on experience Considering the background and knowledge of decision-makers
Limited time windows Providing time restrictions for users to make decisions
Locality Partitioning of options Groups or categories of options or attributes

Decision staging

Dividing decisions into multiple stages

70

Actionability

The ease with which users can act on
recommendations

Default Rule

Static Analysis
Automatic Enrollment Splint (Secure Programming Lint)

2

71

Feedback

Information provided to users in
recommendations to encourage adoption

Customized Information

Daily caloric intake

Open]DK

Jikes

Compiler Error Messages

5 Argument structure

cannot find symbol
symbol: variable varnam
location: class Foo

No field named "varnam" was found
in type "Foo". However, there
is an accessible field "varname"
whose name closely matches the name
"varnam".

®

72

Locality: Spatial

The setting of recommendations to improve
user behavior

Decision Staging o Flower
Healthy Convenience Lines In situ navigation
J] SQLFileCache.java
createTables createProcedures uteSOLFile dropTables
S i ! fileName String path to SQL file*
: pub11c List<String> JuLQUwLL s (String flleName)
throws Exception {
List<String> queries = cache.get (f1leName) ;

73

Locality: Temporal

The setting of recommendations to improve
user behavior

Time-limited windows Scaling Static Analyses at Facebook
Present-biased farmers m “diff time” 'i
m

eeeeeeeeeeeee

Developer CI System Code Review ~ CISystem Product

74

Future Work

Limitations &

To improve developer decision-making, | plan to explore developing
customized nudges and making individualized recommendations.

76

Limitations

To improve developer decision-making, | plan to explore using machine
learning techniques to predict poor developer behaviors and generate
proactive recommendations for useful tools and practices.

77

o
Research-Practice Gap 5):5

Tools and practices developed by software engineering
researchers often don't fit the needs of software practitioners

s g

Increase the awareness of software engineering
research tools, techniques, and findings in industry

HoOOHRO
RROOR
corro
or oo

@
BaCkg round: Developer Behavior Adoption Problem H

Developer Inertia Managers Companies Researchers
Decision Fatigue Physical Isolation Global SE

& C

79

Peer Interactions

Recommendation Model

[Task AnalySiS]-)[Task Execution}{DialOgue})(Reaction]

81

1. Task Analysis

Peers analyze goal and define operations to
reach desired state.

82

2. Task Execution

Driver applies selection rule and begins
executing their method.

83

3. Dialogue

- Unexpected Recommendation: Navigator
interrupts to ask about unexpected tool.

- Expected Recommendation: Driver asks for
help from navigator.

- Unexpected Observation: Driver explains
actions and navigator reacts.

- Expected Observation: Navigator asks question
concerning tool used.

84

4. Reaction

The recommendee decides whether or not to
adopt the new tool.

85

Data Analysis

Ko
Ko =

Pol.
Per.
Rec.

Cohen’s
Kappa

0.50
0.28

0.51

86

Characteristics of Interactions

A WN -

. Politeness [Leech, 1983

Persuasiveness [shen, 2012

. Receptiveness [rogg, 2009]
. Time Pressure [andrews, 1996]
. Tool Observability vurphy-Hill, 2015]

[Murphy-Hill, 2015]

87

Politeness

Criteria Definition

Tact Minimize cost and maximize benefit to peer

Generosity Minimize benefit and maximize cost to self

Approbation Minimize dispraise and maximize praise of peer

Modesty Minimize praise and maximize dispraise of self

Agreement Minimize disagreement and maximize agreement between peers
Sympathy Minimize antipathy and maximize sympathy between peers

[Leech, 1983]

88

Persuasiveness

Criteria Definition

Content Recommender provides credible sources to verify use of the tool

Structure Messages are organized by climax-anticlimax order of arguments
and conclusion explicitness

Style Messages should avoid hedging, hesitating, questioning
intonations, and powerless language

[Shen, 2012]

89

Receptiveness

Criteria

Definition

Demonstrate Desire

User showed interest in discovering, using, or learning more
information about the suggested tool

Familiarity

User explicitly expresses familiarity with the environment

[Fogg, 2009]

90

Time Pressure

Criteria

Definition

Time Pressure

Driver or navigator makes a statement about time before, during, or
after a recommendation

[Andrews, 19906]

91

Types of Tools

1. Observable

2. Non-Observable

nnnnnnnnn

eeeeeeeeeeeeeeeeeeeeeeee

2o | [88 i 08 108 i
|2¢ tine Clustere d Column

4

o Uit Ll
e[l

eeeeeeee

Funnel

Combo

[Murphy-Hill,

92

Methodology: Scoring

1 Recommendee mostly ignores or never uses
recommended tool

93

Results: Interaction Characteristics

Persuasive Unpersuasive
14 128
(p = 0.4556) W
Time Pressure? Yes No
n 19 123

Polite Neutral Impolite
n 27 104 11
(p = 0.4936) W
Receptive Neutral Unreceptive
n 64 56 22
(p = 0.0002)* W

(p = 0.1470) ©

W = Wilcoxon rank sum, C = Pearson’s chi-squared, * = significant

94

Results: Tool Observability

Observable | Non-Observable

n 115 27

(p = 0.4928) €

W = Wilcoxon rank sum, C = Pearson’s chi-squared, * = significant

Sorry to Bother
You

Developer Feedback

o 24 comments on 17 projects

o ©6 bot comments for first-time contributors,
Contributing License Agreement signatures, test
coverage

o 18 developer comments (non-automated)
m Positive: 5
m Pom.xml format: 5
m Breaking builds: 8

97

Suggested
Changes

Recommendation Style
Study Participants

Participant Experience (years) GitHub Familiarity OSS Contribution Frequency Tool Usage Frequency
P1 30 Very Familiar Occasionally Very Frequently

P2 Less than 1 Moderately Familiar =~ Never Never

P3 Less than 1 Very Familiar Rarely Moderately Frequent
P4 8 Very Familiar Very Frequently Very Frequently

P5 10 Familiar Rarely Moderately Frequent
P6 5 Moderately Familiar ~ Occasionally Very Frequently

P7 6 Familiar Frequently Very Frequently

P8 6 Familiar Very Frequently Very Frequently

P9 Less than 1 Moderately Familiar ~ Occasionally Very Frequently

P10 i Moderately Familiar ~ Occasionally Very Frequently

P11 3 Familiar Very Frequently Very Frequently

P12 3 Familiar Rarely Very Frequently

P13 1 Moderately Familiar =~ Never Never

P14 1 Moderately Familiar =~ Never Frequently

99

Types of Suggested Changes

Non-functional: changes that don’t impact

code, i.e. rewording or fix spelling and grammar
Issues In documentation and code comments.

(a) Non-Functional:

Suggested change ()

When we load the settings, we'll do it in two stages. First, we'll deseriale th

When we load the settings, we'll do it in two stages. First, we'll deserialize

1uv

Types of Suggested Changes

Corrective: changes to fix bugs and issues
found in the code.

(b) Corrective:

Suggested change ()

unction(){__ fu = .parse clientManifi
*(function(){__BUILD_MANIFEST = JSON ('${clientManif

+ “(function(){self.__BUILD_MANIFEST = JSON.parse('${clientl

101

Types of Suggested Changes

Improvement: changes to refactor or optimize
code.

(c) Improvement:

Suggested change)

await Promise.all(manifests.map(X => makeManifest(reporter, X)))

awalt Promise.all(manifests.map(manifest => makeManifest(reporter, manifest)))

102

Types of Suggested Changes

Formatting: changes that impact the

presentation of the code without changing
functionality

(d) Formatting:
Suggested change ()

for 1 , jJ in product(range(-10,10), (0,20)):

+ for 1 , j in product(range(-10, 10), (0, 20)):

103

User Study Email

Automatically Find Errors in Your Code - X X

To Cc Bcece

Automatically Find Errors in Your Code

Hi {participant}!

Have you tried using ABC, a static analysis tool to automatically find common programming errors in your JavaScript code? This tool can prevent programming errors
in production and decreases debugging time so you can focus on more important tasks. Running the tool on your project can find numerous errors in your code and it's
currently used by over 65,000 GitHub repositories!

ABC can be installed from the command-line, as a plugin for most popular IDEs, or integrated in to your preferred continuous integration build system. If you think you
might want to try this tool, check out the website for more information.

Thanks!

7 —
Z w— .
3 —

1
4

]
il
M
¢
b<|

™ ~ SansSerif v v+ B I U A~

User Study Issue

Add static analysis tool to check for errors #2

tool-recommender-bot opened this issue on Jul 16 - 0 comments

tool-recommender-bot commented on Jul 16 +@

This project should try using DEF, a static analysis tool to automatically find common programming errors
in Python code. This tool can prevent programming errors in production and decreases debugging time
so developers can focus on more important tasks. Running the tool on this project currently reports 56
errors for this repository.

DEF can be easily installed locally from the command-line, as a plugin for most IDEs, or integrated into
the continuous integration build system for this project. If you think you might want to try this tool, check
out the website for more information.

Assignees o3

No one—assign yourself

Labels o3
enhancement

Projects o
None yet

105

Adding static analysis tool to check for errors #115

Lol Ul tool-recommend... wants to merge 1 commit into master from tool-rec-bot13 [

t&J Conversation 0 - Commits 1 & Checks 0 Files changed 1

tool-recommender-bot commented on Jul 15 First-ime contributor ~ +(@&) =

You should try using GHI, a static analysis tool to automatically find common programming errors in Java
code. This tool can prevent programming errors in production and decreases debugging time so
contributors can focus on more important tasks. Running the tool on this project reported the following
error at line 8 in src/main/java/ShortList.java:

[CollectionIncompatibleType] Argument 'i - 1' should not be passed to this method; its t\
.}

GHI can be easily installed locally from the command-line, as a plugin for most IDEs, or integrated into
the project's continuous integration build system. If you think you might want to try this tool, check out the

website for more information.
106

tool-recommender-bot 29 days ago +@

You should try using JKL, a static analysis tool to automatically find common
programming errors in Python code. This tool can prevent programming errors in
production and decreases debugging time so developers can focus on more important
tasks. Running the tool on this pull request reported an instance of Python statement
warning [E711] here in your code and suggests fixing this bug by changing the line to:

Suggested change &)
- if applied != None:

+ if applied is not None:

Commit suggestion = Add suggestion to batch

JKL can be easily installed locally from the command-line, as a plugin for your IDEs, or
integrated into the continuous integration build system. If you think you might want to try
this tool, check out the website for more information.

