| ntegrating Computer Science Into Middle School

M athematics

by
Chris Brown
under the supervision of Dr. Susan Rodger,

Department of Computer Science, Duke University

April 2013

1. Introduction and Background of Project

Computer science education is, as the Association for Computing Machinery (ACM) and
the Computer Science Teachers Association (CSTA) putait;caisis” in K-12 education [21, p.

6]. Since 2000, The NCWIT (National Center for Women and Information Technology) states
that the percentage of students entering college who intend to major in computer science has
decreased over 70% [10]. Even though the exposure to computers and technology in the
classrooms is growing rapidly, very few middle and high schools offer computer science courses.
This results in a lack of interest in the subject, which could be damaging to the United States in
the future. The ACM predicts that America will be able to fill less than a third of the total
technology jobsvith American citizens in 2018 [21, p. 25]. This would result in more jobs going
overseas, if they will even be filled at all.

Since most schools would be haneéssed to create a new computer science class, we
believe that integrating computer science skills and computational thinking into the classes and
curriculum that already exist will be better for exposing the students to computing. Computational
thinking refers to the thought process behind problem solving. Jeannette Wing of Carnegie
Mellon writes about computational thinking, sayifigt] is a fundamental skill for everyone, not
just computer scientists. To reading, writing, and arithmetic, we should add computational
thinking to every child’s analytical ability” [22, p. 33]. Computational thinking is important to
help students thinkhough a problem and asking “What’s the best way to solve it?” [22, p. 33]

Wing also provides many different practical examples of how we tise iton’t involve
programming: from finding a lost pair of mittens or choosing a line at the grocery store to
authorizing humans on the Internet. The tool that we are using to implement computer science
and computational thinking into K-12 education is called Alice. Algen particular allows

students to be creative and build 3D animations to tell stories and play games. The Adventures in

2

Alice Programming Project at Duke has already created many Alice worlds, tutorials, and other
educational materials that can be used in a variety of subjects including Math, English, Science,
History, Foreign Languages, Technology and Computer Applications, Business, and more for
students from elementary to high school. All of these are available for free on the Duke
Adventures in Alice Programming website [11]. We have hosted summer workshops for teachers
to learn how to use Alice, to show them the curriculum materials that we have created, and to
have teachers create Alice lesson plans for their classrooms. Using a program such as Alice to
integrate into K-12 education is one solution to increasing the interest in computer science and
fixing the technology education crisis.

For this project specifically, we are looking at ways to integrate Alice into middle school
math education. We created Alice worlds for middle school math concepts, made Alice tutorials
to build specific math projects in Alice and to teach Alice programming concepts, created Math
Challenges to help students practice math skills and program simultaneously, mapped our Alice
materials to the Common Core Mathematics Standards for grades 5-12, mapped our Alice
materials to the CSTA Computer Science Standards for Level 2 and L@fet 8" and §' -

10" grades), visited a middle school to see how students responded to learning Alice, presented at
the Association for Computing Machinery’s Special Interest Group on Computer Science

Education (SIGCSE) conference, and hosted an Alice Activity Day at Duke University for local

6" grade students.

2. Related Work

2.1 Integrating Computer Scienceinto K-12 Education

There are many other programs and curricula that are also trying to integrate computing
into K-12 education. The National Science Foundation is working on the CS 10K Teachers
Project, where they are trying to get 10,000 computer science teachers into 10,000 high schools

3

by 2015 [10]. Another example is Computer Science Unplugged [8], which strives to integrate
programming techniques and algorithms without actually using computers, but by implgmentin
other activities and concepts such as having students move around to learn a variety of searching
and sorting algorithms. Their activities are very hands-on and interactive. Scratch is another
program that works to integrate computer science into K-12 education. Scratch is similar to Alice
in that it uses a drag-and-drop interface and uses commands to create animations and games, but
different as it is in a 2D environment rather than a 3D space. Scratch was created at MIT to reach
out to younger children from ages 8-16, and its purpose is to introduce programming to those with
no previous experience [16, p. 2]. The Scratch website [18] allows users to share their programs,
view tutorials and examples of other projects, receive and provide feedback on posted projects,
and more. A third example of a program that helps introductory programmers is Greenfoot which
was created by the Programming Education Tools Group at the University of Kent in the UK.
Greenfoof13] is meant to teach children 14 and older how to program and it also uses a visual
and interactive interface like Alice and Scratch. It is more complicated than just dragging and
dropping instructions into a method, but it is still designed to have a simple programming
approach meant for beginners to help them eventually transfer into other programming
environments.

Alice, Scratch, and Greenfoot are all similar in their purposes and goals in allowing
younger students to explore computer programming, focusing on engaging the user and
interactivity, making strides to integrate programming into K-12 education, as well as gaining
interest among minority and female students [20]. The pagése, Greenfoot, and Scratch A
Discussion” gathers the leaders of these three programs together to examine the common themes

and differences between each programming environment.

Robotics has also been used to help integrate computer science into K-12 education to
help students gain interest in programming and computing. Lego Mindstorm has exposed students
to programming through robotics and created curriculum and educational materials to be
integrated with projects in classrooms. The NXT Base software for Lego Mindstorm is
specifically targeted to middle school students to help them learn programming and can be
implemented into a variety of subjects such as math, science, technology, and engineering [15].
The Lego robotics approach allows students to creatively design and build robots and encode
various instructions for the robot to complete.

2.2 Integrating Aliceinto K-12 Education

Alice is a 3D programming environment for beginner programmers to learn the Wasics o
coding. It was created in 1995 at the University of Virginia by Randy Pausch, who moved to
Carnegie Mellon in 1997. Alice was first used for virtual reality and was later adapted with the
drag-and-drop interface to use with novice programmers [17]. This program is easy and fun to use
because it contains a large library of 3D objects and characters. It uses many computer science
programming concepts such as methods, objects, loops, conditional statements, functions,
variables, parameters, and more. It has a drag-and-drop interface so no typing code is involved,
and it is useful for building games, animations, and telling stories. Alice is a virtual programming
world that appeals to younger children and allows them to learn about computer programming.

Several places are working to integrate Alice into pre-college education to help students
get exposure to programming concepts. In the Virginia Beach School District in 2006, Alice was
taught in their introductory computer science class and over the course of 4 years they saw the
number of students taking this class triple [7]. In addition, the number of students taking the AP
Computer Science class also tripled across the school district, including a 25% increase of women

and 20% increase of minorities. For all of the sites, teachers who participated or interacted with

5

Alice enjoyed working with Alice and stated that it met their needs. 90% planned to continue
using Alice in their classrooms with their students.

In San Jose, Alice has been used as a critical thinking model of TPACK (Technology,
Pedagogy, and Content Knowledge) into the 9 core subjects and 4 interdisciplinary themes as
stated by P21 (Partnership foraTentury Skills) for middle school students from grades 5-8
[19]. These subjects are English, reading or language arts; world languages; arts; mathematics;
economics; science; geography; history; and government and civics, and the four interdisciplinary
themes are global awareness; financial, economic, business and entrepreneurial literacy; civic
literacy; and health literacy. Alice can be integrated into these subjects by helping the students
design projects and interactive Alice worlds dealing with these topics and using critical thinking
to come up with possible solutions or applications of them.

The Duke University Alice team has been running one-week and two-week workshops for
teachers in the summer every year since 2008. For these workshops, we have developed many
tutorials and materials to help teachers learn Alice programming concepts. In 2009, Duke
University hosted an Alice Symposium where many teachers from all over the United States came
together to see what others were doing with Alice as well as present and how it could be used in
the education field [1]. There were several presentations, papers, and other materials submitted to
display how Alice could be used in various curricula. We will also be hosting another Alice
Symposium this summer, June 17-21 2013. In summer 2012, we ran two teacher workshops over
the summer. 25 teachers attended the beginner two-week workshop and 9 attended a week long
follow-up workshop. At these workshops we introduced the teachers to Alice, showed them some
of the materials we developed earlier in the summer, demoed other Alice worlds, taught the

teachers how to program and build worlds in Alice by going through tutorials, and gave them an

opportunity to create and present possible lesson plans to show how they would use Alice in their
classes.
2.3 Integrating Computer Scienceinto K-12 Math

There are also many projects working on integrating computing into K-12 mathematics
curriculum. One example of this is Bootstrap. Bootstrap is a curriculum that teaches students how
to write code and program. It usasthematics that students must learn based on their school’s
educational standards, i.e. algebra and geometry, to create animations and video games for them
to play. Bootstrap focuses on integrating computer programming into math and technology
classes around the world and can be applied to a variety of courses from grades 6 - 12. This not
only helps the students learn the mathematic concepts in a fun and interactive way, but teaches
them good coding skills and habits in the process. Most children really enjoy playing video games
and watching animations, so they will be eager to participate in a course that uses the Bootstrap
curriculum. Emmanuel Schanzer, the creator of Bootstrap, also provides various lesson plans and
activities for students on the website and a table that maps these lesson plans to the Common Core
standards as well as math educational standards for various states in the US [4]. This makes it
much easier for teachers to implement this program into their classes without having to rush
through other material or set aside extra time to use it. Most classes use Bootstrap online with the
WeScheme IDE and server, so no downloads are necessary. The purpose of Bootstrap is very
similar to the Alice project at Duke, where we are trying to integrate computational thinking and
programming into middle school and high school curricula in a fun way so that more students will
gain more interest in and exposure to computer science and the United States will avoid a crisis in

computer science education.

Another example is iIMPaCT-Math (Media Propelled Computational Thinking for
Mathematics Classrooms), which is a program that allows students to learn and study math
through graphical programming and computational thinking. This curriculum focuses on using
video game design and project-based learning to help these students engage in mathematics,
specifically algebra [14]. iIMPaCT-Math originated at the University of Texas-El Paso. The group
turned their attention to Algebra 1 because it is an essential class for all STEM (Science,
Technology, Engineering, and Mathematics) subjects. The program is Python-based and brought
great results when they first used it on college students at the university. The failure rates of the
algebra and pre-calculus and the subsequent calculus classes were cut in half and the enroliment
in the intro CS class doubled. In high schools, people who failed Algebra 1 multiple times were
able to pass and 25% more students enrolled in AP Computer Science [12]. The research team at
iIMPaCT-Math is looking to take the feedback from teachers, building a better relationship with

teachers, principals, and school districts, and reach a wider audience with their program.

3. Duke University Alice Math Proj ect

The Adventures in Alice Programming Project is working on using the Alice
programming tool to incorporate computer science into different subjects in K-12 education.
Since 2008 the program has been implemented in various places around the US, including
Durham, NC; Virginia Beach, VA; San Jose, CA; Charleston, SC; and Oxford, MI. It will allow
the students to get a taste of programming and hopefully encourage them to want to learn more
about it. The sites run teacher workshops to encourage K-12 teachers to use Alice in their

classrooms with their students.

For our project at Duke, we are currently working on integrating Alice into middle

school math education. We are doing this in various ways using tutorials, Alice worlds, activities

for students, a teacher survey, and reaching out to middle school students specifically. In this
section, we will describe the teacher survey, where we asked teachers about what classes and
grade level they taught, their opinions on the Common Core and CSTA standards, implementing
Alice in their classes, and we asked for suggestions of any new Alice tools or resources that they
would find useful. Chapter 4 will describe the Alice curriculum materials and resources that we
have created for this project. In Chapter 5, we will discuss outreach events that we have hosted or

presented our Alice project materials this year.

3.1 Teacher Survey

To collect information on how teachers felt about Alice, we sent out a survey to twenty-
two math and science related teachers as well as media teachers who have attended a teacher

workshop hosted at Duke University. The survey asked the teachers:

1. Name:

2. What school do you teach at?

3. What grade do you teach?

4. What is the name of the class that you teach?

5. How do you feel about the new core standards?

6. Are you familiar with the CSTA computer science standards?

7. Have you tried to implement Alice in your curriculum with your students?

8. If Alice could be mapped to requirements in the Common Core standards, would you be more
likely to use it?

9. List all of the subjects that you will be teaching from November to February.

10. Are there any Alice worlds or Alice tools that you feel would be really useful for your class?

We received nine responses to this survey, and the teachers who responded taught grades
6— 12 and taught various subjects including Geometry, Algebra 1, Algebra 2, Finance, Biology,
Chemistry, Physical Science, AP Environment, Computer Programming, AP Statistics, and Pre-
Calculus. The teachers provided us with feedback and ideas for the Alice project at Duke and
different Alice worlds that we could create. None of the teachers surveyed had ever heard of the
CSTA K-12 standards for computer science. They also had very mixed opinions about the new
Common Core standards, the majority of them were negative or skeptical that they would work.
All of the teachers except one replied that they would be more likely to use Alice if it was mapped
to the Common Core standards, since that is what they are required to teach in their classes. The
teacher who was not more likely to use Alice if it was mapped to the Common Core standards
said that he would most likely not be able to use it in his classes because he taught calculus and
advanced high school math that Alice does not support very well. We also had several ideas for
Alice worlds to create that the teachers provided including an Alice world to help students
structure and visualize word problems, more short challenges that help students focus on one
particular topic, more games to help students learn the more difficult math topics, 3D and 2D
shapes that can be manipulated and modified in Alice, and an Alice world to help students learn

the importance of parameters and recursion for programming.

4. Curriculum Materials

4.1 Mapping

We have mapped Alice concepts and Alice worlds developed at Duke since 2008 to the
math Common Core standards and the CSTA standards. The Common Core State Standards
Initiative was designed to provide a clear understanding of topics that students should learn [6].

North Carolina and all but five of the US states have implemented the Common Core standards.

10

Eventually they will be used throughout the U.S. as a whole. Three American territories have also
adopted the Common Core Standards into their curricula [5]. The standards will provide a
benchmark for all students to graduate from high school and be able to succeed in college-level
classes or the work force. We have created a spreadsheet that maps the Common Core standards
for Mathematics from%grade through the high school requirements to different Alice worlds

and materials that have been created by the Duke Alice team as well as teacher lesson plans from
the teacher workshops. These standards have also given us ideas on worlds to create, such as the
Boat Averages, and Fraction World. For example, standard 7.SP.5 says that students should
understand the definition of probability as the chance that an event occurs between 0 and 1, and
the Probability World mentioned earlier deals with this specific idea in statistics and probability.
There are over 100 Alice worlds on the Duke Alice repository site that satisfy at least one of the
math Common Core standards. We do not have a lot of resources available for the higher levels of
math because most of the focus is around middle school students and Alice does not have the
functionality to deal with Calculus, advanced trigonometry, etc. Appendix 1 Exhibit A contains

the mappings of our Alice materials to the Common Core math standards"fgad® through

12" grade.

We also mapped all of our Alice materials to the CSTA Computer Science standards that
describe what students should know about computing and technology at a certain age [9]. These
have been mapped for Level 2 (grades 6-9). The CSTA standards are a little different, because not
only are our Alice materials mapped to certain requirements, but also to overarching Alice
concepts. For example, CSTA standard 2.CPP.5 states that students should know how to
implement programming solutions to problems including techniques such as loops, conditional

statements, variables, logic expressions, and functions. It is possible for students to learn and

11

practice these programming concepts in Alice. Most of our tutorials and educational materials
provide various ways to use all of these in different worlds and projects. Some CSTA standards,
however, were very vague or just couldn’t be completed in Alice because they deal with all of

computer science and not just programming. An example of this is standard 2.CI.3 that requires
students to analyze the positive and negative impacts of computing on human culture, which is a
topic that is way too broad for Alice. The documents of these mappings can be seen in Appendix

1 Exhibit B.

4.2 General Tutorials

Since starting with the Alice project in the summer of 2012, we have created several Alice
worlds and tutorials that deal with teaching students how to program in Alice and using Alice to
practice and program for mathematics. The programming concept tutorialettrztated are
Array Tutorial, Visual Lists, and we modified the Scene Change Tutorial and one of the Getting
Started tutorials. The Array Tutorial teaches the user how to create arrays in Alice and has them
create methods to demonstrate what that can be done with arrays (Appendix 2, Exhibit A). This
tutorial uses a gym setting with various Alice characters in an array and has a coach who narrates

the world.

4.2.1 Array Tutorial

12

The Array Tutorial shows users how to iterate through each element of the array and make
them execute a method in order and in reverse, several ways how to go through the elements of an
array at a specified interval and have the characters perform different actions, how to randomly
select elements from the objects in the array, and how to choose specific elements and make them
swap places within the arrény having Alice prompt the user to enter the two indices of the

characters that he wants to switch, then animates the objects changing places.

4.2.2Visual Lists

The Visual List Tutorial is very similar to the Array Tutorial, in that it shows the
functionality of visual lists in Alice to compare and contrast the uses of arrays and lists tb collec
objects (Appendix 2, Exhibit B). This world has a visual list with various animal objects from the
Local Gallery. In this tutorial, students will learn how to iterate through each of the objects in the
list and give them an action, how to make all of the objects in the list complete an action at the
same time, and how to cycle through each of the objects in the list so that each animal shifts
through each position of the list until they arrive at the original position. When this tutorial is
finished, the user is asked to try out the methods and make the animals do different methods in

order, all together at the same time, and while cycling through the list.

4.2.3 Scene Change 2.0

13

Scene Change 2.0 is a modified and updated version of a tutorial called Scene Change that
shows students how to change scenes in Alice. The newer version of Alice made scene changes
and changing the ground texture for each scene easier because the textures were saved as objects.
We changed this in the tutorial, as well as added how to move a character from scene to scene in
the world and added the use of the “orient to” method (Appendix 2, Exhibit C). In this world
there is a rabbit that starts off in the desert, then moves to an island in the ocean, and finally ends
up on the moon. In each scene the rabbit does a different action, and each time the camera fades
out to black and then back in so it appears that the scenes change seamlessly. At the end, the user
is challenged to add more methods to each of the scenes and create a fourth scene with a different

ground cover to conclude the world.

4.2.4 Shortened Astronaut-Humvee I ntroduction Tutorial

Finally, we created a shorter introductory tutorial modified from the Getting Started Space
Tutorial that tells a story about an astronaut and a humvee. We shortened this tutorial to make it
easier to do in one class period and took out some of the more complicated features such as
moving the camera around. This tutorial shows users how to add objects, move objects around in
the world, use methods, create an object method, create an event, and set an object’s vehicle.

(Appendix 2, Exhibit D). The setting is the Space environment with an astronaut and a humvee.
The tutorial goes over how to create a new method to make the astronaut wave his arm, since
there isn’t one built in. It also goes over how to create a new event, where the user can drive the
humvee around the world using the arrow keys on the keyboard after the astronaut has moved to
the humvee. It also changes the astronaut’s vehicle property from the world to the humvee,

essentially gluing the astronaut to the humvee so that when the humvee is moved, the astronaut

will move with it.

14

4.3 Tutorials Involving Math

We have also created several tutorials that deal with Alice programming concepts as well
as topics in math. These tutorials are Nonvisual Arrays, Nonvisual Arrays and Recursion, and

Probability World.

4.3.1 Nonvisual Arrays

Hello, the function is 2x + 1...

The Nonvisual Array tutorial shows users how to create nonvisual arrays in Alice and use
them for their specific world. In this context, it is used to create a quiz for a given function that
helps the user practice plugging numbers into algebraic formulas (Appendix 2, Exhibit E). In the
teacher survey, teachers suggested that we create more quizzes and games for students to use and
practice math skills. This tutorial not only provides students with a quiz to practice algebra, but
they will learn how to create their own using Alice. In this example, the equation is 2x + 1, and
the tutorial shows the user how to fill in an array with the solutions to the equation when x =0 to
when x = 50. To create the equation and produce the numbers, the student enters the equation into
an Alice function, which automatically calculates the answer to their equation, which is 2x + 1 in

this case. This function is called in a loop within the main method that iterates 51 times, starting

15

at x = 0 and incrementing the value of x. Every time a value is calculated, they add it into the
appropriate index of the array. When the loop completes, the array will be filled with the solutions
of the equation that the user chose up to 50. At the end of this tutorial, the student is challenged to
complete the world by creating the quiz that asks them to calculate the solutions by hand, and

then to create their own version that uses the equation of their choice.

4.3.2 Nonvisual Arraysand Recursion

Factorials!

Nonvisual Arrays and Recursion is very similar to the Nonvisual Array Tutorial, but it
also shows the users how to use the advanced computer programming technique of recursion in
Alice and uses recursive mathematical formulas to practice using it (Appendix 2, Exhibit F). This
tutorial goes over nonvisual lists in Alice and how to create them, and then shows the user how to
create a recursive function. The user will also learn how to create a quiz in this tutorial. Here, the
recursive finction is Fibonacci’s Sequence. The user will create an Alice function that makes a
call to itself within the function and automatically computes Fibonacci’s Sequence. The student
will also need to figure out the base case, so that there program will not run forever. Once the
function is completed, a loop in the main method is called to fill in the array with the first 10

16

Fibonacci numbers. They also learn how to create the quiz method in this world. The quiz starts
when the world is run, arttie user will be asked to calculate the Fibonacci number at a certain
index and provide the correct answer. At the end of the tutorial, the student is asked to create

another Alice world with factorials as the recursive function.

4.3.3 Probability World

Probability World, which also has a tutorial to go with it (Appendix 2, Exhibit G), is a
game where certain colored balls are put into a hole and the player must correctly guess the
probability of choosing a random colored ball. After each try, the number of balls is updated and
the user must recalculate a new probability. My version has 4 blue balls, 3 yellow balls, 2 white
balls, and 3 red balls, and the program asks the probability of choosing one of these colors each
time. After the user gets the correct answer, the ball is taken out of the hole and the number of
balls for that color and the total is decremented. There is also a challenge at the end of the tutorial,
for the user to create their own version of the world using different colored balls, a different

number of each colored ball, etc. to allow them to practice programming in Alice. This world

17

maps to the Common Core Math standards 7.SP.5, 7.SP.6, and 7.SP.7A that deal with

understanding probability and chance in they7ade.

4.4 Alice Math Worlds

The Alice worlds that | have created that focus solely on math are Basketball Math,
Fraction World, and Order of Operations. The CSTA Standard 2.CT.14 says that students should
be able to examine the connections between mathematics and computer science. All of these

worlds deal with helping students practice different math concejptg Abce.

4.4.1 Basketball Math

Basketball Math is a world that helps students practice multiplication in a fun game. If
they get the answer to the problem correct, then they make the basket and the score is
incremented. Otherwise, they will miss the shot and have to try again until they provide the
correct answer. There are two versions of this game, one that allows students to practice

multiplying positive and negative integers up to 12 and the other one allows students to practice

18

mixed multiplication by multiplying integers and decimals together. The first version of this
world fulfills standards 5.NBT.5, 6.NS.3, and 7.NS.2A. The version that practices mixed

multiplication satisfies Common Core standard 5.NF.4A.

4.4.2 FractionsWorld

Fraction World is an Alice world where users can practice adding, subtracting,
multiplying, and dividing fractions. The Common Core standards for middle school math have
many different requirements for fractions, so this world will help students practice working with
them in various ways. In this world, the students can choose which arithmetic expressions that
they want to practice by pressing ‘a’ for addition, ‘s’ for subtraction, ‘d’ for division, and ‘m’ for
multiplication. It randomly provides problems for them to figure out after the user decides which
arithmetic operation they want to use, and then asks them, if necessary, to reduce the fraction for
multiplication and division and to find the least common denominator of the fractions for addition
and subtraction. For each type of arithmetic expression, the numerators are a random number
chosen between 1 and 9 and the denominators are random numbers ranging from 2 to 12 using
Alice’s random number generator. These values can be changed within the individual methods to

make problems easier or more difficult. Then, the user must calculate the numerator and

19

denominator of the resulting fractions based on which math operation that they chose to practice.

This world satisfies standards 5.NF.1, 5.NF.4A, 5.NF.5B, and 6.NS.1.

4.4.3 Order of OperationsWorld

g+ B

The Order of Operations World is an interactive program that helps students practice the
order of operations by clicking on the operators that need to be calculated in the correct order, and
then calculating each part to find the final answer. A game to help students with the Order of
Operations was suggested by a specific teacher in our teacher survey, and this world was built for
that. We already had an Alice world that dealt with the order of operations, but this world is a
better, newer, and more interactive version to help students learn the concepts. In this world, the
user should click on the exponent {the expression «7 » 2” (7%). Alice will then ask the user
for the answer to this part of the problem and when they input the correct answer, the problem

will update the expression with the new value.

20

The user continues to click on the appropriate symbol of each expression and enter the answers
until they reach the last expression, and finally calculate the final answer to the numerical

expression.

Great Job! Here is the final answer
to the expression.

This world will help students learn the Order of Operations (parenthesis, exponents,
multiplication/division, and addition/subtraction from left to right) and practice solving functions
with them. There are nine examples to try with three different templates, and the world is

21

designed to get harder as the student goes on. All of the parts of the Order of Operations are
practiced in this world, but addition/subtraction and multiplication/division are the most

prevalent. We wanted to create a good mixture of equations for the students to try to make sure
they understood the conceptfutfills Common Core math standard 5.0A.1on the order of
operations as well as any other standards dealing with simple addition, subtraction, multiplication,

division, and exponents.

4.5 Math Challenges

Challenges are Alice worlds that have been started, but it is the students’ job to fill in a
function or a method to finish it. These were created so that students could use Alice in their
classes to learn about different math skills without teachers having to take the time to teach the
students all about Alice. We have created several different math-related Alice challenges for
students to complete, including the Boat Race Challenges, Calculator Challenge, and Distance

Challenge.

4.5.1 Boat Racing Challenges

22

The Boat Racing Game is an Alice world where the user must play a game where they
drive a boat through 10 arches. In the challenges, we modified this game so that the student
creates their own data from the total time that it takes them to complete the game, and then
calculates the average speed of the boat to finish the game based on that info. This world is an
adjusted version of a boat game tutorial that shows users how to build a boat racing game, and it
has now been applied to mathematics. This game allows the students to create their own data from
playing the game, and then use it in a math context. There are four new forms of this challenge,
each with a separate goal for the user. We have created a version that calculates theragerage
it takes the user to go between each arch, one that calculates the average distance between the
arches, a version to calculate the speed over the entire game (meters/sec), and a version that
calculates the average time it takes the user to win over multiple games. In the first two examples,
the user must fill in a function called average, so that the correct average time or distance is
returned in the problem. In the next example, the student must fill in the function speed to return
the speed of the boat. Finally in the last example, the student must fill in the average function to
calculate the average time for the games as well as the win method so that when one game
finishes, the user has the option to play again or finish the world. In all of these challenges, the
student is also encouraged to change the win method and add any animations they would like to

the world. These challenges can be seen in Appendix 4 Exhiliits A-

23

4.5.2 Distance Challenge

Another challenge that we have created is the Distance Challenge. In this world, we have a
character named Jimmy who is visiting a new city for the first time. It is the student’s job to fill in
the distance function in this challenge (Appendix 3, Exlihiso that Jimmy will know how far
he has to go to reach the different sifidss world was created simply to test students’
knowledge of the distance formula and finding the distance between two points. A coordinate
plane is dropped into the world as a billboard and the objects are placed in front of it to simulate
points on the plane. From this, the distance formula can be derived from Pythagorean’s Theorem
based on the x-y position of the destination. Each object has a saved position in a variable x and y
value, which is passed into the function when the user clicks on a specific place. In this world,
when the user clicks on a location, if the distance to that point is correct, then Jimmy will move to
visit that place and an animation will play. When he makes it to one place, the user then clicks on
another location and Jimmy will continue to move from there if the distances are correct. If it is
wrong, then Jimmy will notify the user by telling them that the answer is incorrect. The correct

answer is provided by a function called solution, which provides the right answer to the problem.

24

4.5.3 Calculator Challenge

The last challenge we created is the Calculator Challenge, where students are given a
calculator object in Alice and they must fill in all of the functions to make the calculator work.
The starting world for this challenge already has the buttons working to enter numbegs, so th
students don’t have to write that part of the code. All they need to do is fill in different Alice
functions so that the calculator operates properly. Before the student begins, the functions pass in

the appropriate number of parameters for the calculation, but they all simply return 1.

world.subtract [122x, - [123]y

Mo variables

(Do Nothing

~ Return 1

In the most basic challenge for this world, the students have to fill in all of the functions
for buttons that are represented on the calculator (addition, subtraction, multiplication, division,
and square root). There are also additional challenges for this world. One example is the

Logarithm challenge, because there is a log button on the calculator, and Alice does have log base
25

10 as one of its built-in math functions, although it does have log base e (In). The goal of this
challenge is to input a formula that changes bases of the logarithm function. There were also more
advanced challenges, such as creating a new button and function to calculate exponents, adding a
button to simulate multiplication just using adding (loops), dropping in images as billboards and
creating buttons for all of the advanced math functions that are Alice already has (cosine, sine,
tangent, etc.), adding a button to calculate the factorial of a number, inserting a special function
button where the user can choose any function to put in and the calculator will calculate the
answer for any value of x that they put in, and more. The handout for this challenge is in

Appendix 3 Exhibit F.

5. Outreach
5.1 School Visit

On November 30, 2012, we were able to visit Oak Grove Middle School in Winston-
Salem, NC. We were invited by Mr. Mendenhall, a teacher who attended an Alice teacher
workshop over the summer and expressed interest in having us visiting his school. While we were
there, we taught thred'@rade math classes. We showed Alice demonstrations and taught the
students how to program in Alice by creating an Alice world with them. The world that they
created was the shortened version of the Astronaut-Humvee introductory tutorial. Each class had
roughly 25-30 students and we presented in three different classrooms where each student was
given a laptop from a mobile lab. The media teacher of Oak Grove Middle School and two other
information technology teachers who rotate around different schools in the district also joined us
and observed our presentations to the classes. There were some problems that we ran into when

showing the students various math demos, but this gave us more feedback and helped to debug

26

these worlds and make them better. Each class went increasingly better as we got used to how the

students would learn the information.

In the first class, we started off by going over the Order of Operations world. After we
spoke about it, we let them try it out for themselves on their individual laptops to help them
practice learning the order of operations. This is where many kids became frustrated because of
the way the text messed up in the world and it was taking up a lot of time, so we decided to move
on to the tutorial. The students were very excited once they began to create their own world, but
eventually we ran out of time and were not able to finish making the world. While they were
packing their things up, we demoed another Alice world called the Princess and the Dragon

world, which the students really enjoyed watching and seeing what could be done with Alice.

In the second class, we started by demoing the Princess-Dragon tutorial and the Fraction
World. Once again, the students enjoyed the animation about the princess and the dragon and
were involved in various problems with the Fraction World. We decided to go through it together
as a class rather than let each child try it because that would be quicker and more efficient. In
between class, the students broke for lunch. After lunch, we began working on the tutorial and we
were able to finish it. The students were really excited about creating their own Alice world, and
they were especially thrilled when they learned how to create a new event and drive the humvee
around the Alice world using the arrow keys, which we didn’t make it to with the first class. The
students definitely became more animated and the volume of the class rose when this happened.
At the end of the period, we showed some more demos of a Halloween Greeting Card world and a

Spin the Bottle game in Alice, which the kids liked a lot.

For the last class, we started by demoing one of the Boat Averages games and the Fraction

World. After this, we went through the Astronaut-Humvee tutorial with the students. Once again,
27

they were excited to drive the humvee. This class also finished the tutorial a lot earlier, so we

gave them the opportunity to play around with the world and add anything they wanted to their
story. We noticed that right away the students wanted to add more characters, objects, and sounds
to their worlds. At the end, we were able to demo the Halloween world, an Alice world that

simulated an Octopus rollercoaster ride, and a simulation of the Frogger game in Alice.

The students were overall very enthusiastic about Alice, with several asking questions
such as “Can I do this at home?”, “Is it free?”, etc., and Mr. Mendenhall emailed us 4 days after
our visit to thank us for coming and let us know that the students were still talking about their
experiences with Alice and thinking of neat ideas. One student already made plans to create a
football world before we left the school on our visit and told his teacher about it. We did not even
show the students how to get any of the other objects of Alice other than what was needed for the
tutorial, which showed that they ventured into the Local Gallery of objects on their own. The
students really enjoyed the demos of different games and animations that we showed them. Some
of them had trouble with the worlds they created because they were playing around with other
things that we did not present such as moving the camera, tumbling objects, and more. The
students were also able to see the errors in the world easily, because they could see if the object

did something incorrectly or differently from how our world worked.

5.2SIGCSE

We presented a poster and ran a workshop at the Association for Computing Machinery
Special Interest Group on Computer Science Education (SIGCSE) conference this year in
Denver, CO. This was a national conference where a large number of computer science
professors, teachers, and students all come together to focus on the state of computer science

education and to learn about different research projects, tools, programs, etc. on the topic. Our

28

posterwith Susan Rodger was entitled “Integrating Computer Science into Middle School
Mathematics”. It consisted of all of our work from the summer and the Alice project at Duke
along with our more recent work on using Alice in middle school math. The poster that we
presented can be seen in Appendix 4. The workshopmigisd “Experimenting With and
Integrating Alice 2.3 Into Many Disciplingslt was taught with Steve Cooper of Stanford
University, Wanda Dann and Jacobo Carrasquel of Carnegie Mellon, and Susan Rodger, who
have all done a lot of work with Alice. Dann presented on some of the changes in the newest
edition of Alice 2.3, Carrasquel presented on the Spanish translation version of Alice 2.3,
Cooper showed a new tutorial format for learning Alice, Rodger gave an overview of the work
done at Duke, and we were able to present our materials that Duke has come up with for
integrating Alice into math. Overall, the conference was a great experience and we were able

to exhibit the research that we have been working on throughout this year.

5.3 Alice Activity Day

On March 23, 2013, we hosted an Alice Activity Day for lod&g6éade students to come
to Duke and learn about Alice. There were two sessions, one in the morning (9:00-12:00) and one
in the afternoon (1:30-12:30). At each of the sessions, we started out by giving the students a pre-
survey, to get their attitudes and views on computer science, test their Alice knowledge, and to
obtain their demographic information (gender, age, race, and ethnicity) and career goals. After all
of the students finished the survey, we showed some general demonstrations of Alice worlds. This
was to introduce the students to Alice, since many of them had never used it before, and to get
them excited about all of the different possible things that can be done in Alice. After showing

demos for about 15-30 minutes, the students were able to try creating their own world. We

29

created another introduction to Alice world very similar to the shortened Astronaut-Humvee

world, except this one featured a person on an island. For this world, the students learned how to:

e add and position 3D objects in an Alice world,

e make a character using the He/She-Builder

e use built-in Alice methods and create new methods in order to teach our characters a new
action, in this case a backflip,

e create events so that they could interact with the world by pressing ‘B’ to make the
character do a backflip and using the arrow keys to drive around a rowboat

e andutilize the “vehicle” property so that the character and the rowboat would move

together.

After we completed this world, we gave the students some free time and a break before
moving onto math Alice worlds. After about 30 minutes of free time, we showed a few more
demos of Alice worlds related to school projects, and then had them run the Fraction world on
their own individual computers to try a few problems. Then, they played the Order of Operations
world and practiced several of those problems. Finally, we had them complete the basic part of
the Calculator Challenge, after showing them one example. They had to fill in the add, subtract,
multiply, divide, and square root functions in order to build a working calculator. After this, we
gave the students some more free time before giving them the post-survey to see if using Alice
changed their opinions at all on computer science, how they think Alice could be useful to them
in their classes, and see if they learned about Alice coding since the pretest we gave them in the
beginning. We noticed that the afternoon session went by much faster than the morning one, so
the kids in the second activity were able to have more free time and play around with the demo

worlds and games that we placed on each of the laptops.

30

At our activity day sessions we had 26 total students, 14 in the morning and 12 in the
afternoon. Of these students, 25 students chose to fill out our survey. We had 13 girls and 12 boys
show up to our activity day. The story-telling aspect and creativity aspect of Alice may have
attracted more females and encouraged them to sign up for the session. The student population
was also diverse racially with 9 Caucasian students, 6 Asian students, 3 African American
students, 1 American Indian student, 1 White/American Indian student, 1 Turkish student, 2
students who selected Multi-Racial, and 2 students who chose not to respond. Also, all of the
students were either 11 or 12 years old. Additionally, in the pre-survey, we asked the students
what their career goals were in the future. 5 students replied that they wanted to be a doctor, 3
responded with veterinarians, 2 lawyers, 1 law enforcement agent, 6 scientists/engineers, 5
respondedOthel” with an equestrian, a video game designer, a robotics [engineer], a graphic
designer, and a crazy cat lady, and 6 students were undecided on their career goals. For the
workshop, we found out that most of the students really enjoyed Alice and it had an overall

positive affect on their views about computer science.

The surveys really showed us that Alice would be a successful tool to use in the middle
school curriculum. Most of the students said that Alice did not really help them learn about math,
because they already knew the math skills that we went over and we didn’t teach them anything
new about math. Many students, however, noted that Alice did help them learn about computer
programming and coding. More than half of the students suggested that Alice would be fun and
valuable to use in their classes for projects, book reports, games, presentations, etc.9n math a
well as in other subjects. One student commented about creating a Civil War or World War Alice
world and several of the students mentioned using Alice to replace PowerPoint presentations.

Most of the students also found Alice easy to use and did not find any part of it confusing other

31

than the Calculator Challenge that we gave them. While completing this challenge, many of the
students had trouble clicking on the buttons and getting the expected result when they ran their
world. This could have been due to the students clicking too many times, moving ahead and not
paying attention when we showed them how to complete the first example, messing with other
parts of the code, not wanting to try the challenge, etc. The version that we built worked fine

along with several other students in the sessions, and everyone had the same calculatorStart.a2w
file to start with. There were also 11 students who just left their Calculator Challenge world

blank. In the section about the attitudes of computer science, we saw that there was a general
increase in interest in computer science between the pre-test and the post-test. The two statements
that had the most significant increase were “I hope that my future career will require the use of

computer science concepts.” and “I like to use computer science to solve problems.”, that both

went from an average ansmof “Disagree” to “Agree” by the students. Alice is a good tool to

increase students’ interest in and exposure to computer science and would be easy to integrate

into K-12 curricula to help solve the “crisis” in computer science education.

6. Future Plans

To continue this project in the future, the Duke Adventures in Alice Programming project
should continue building new Alice worlds and materials that would be helpful for teachers to
implement in their classrooms and for students to use. The worlds they should create will help to
fill in the holes that we found between our Alice products and the CSTA and Common Core math
standards. The goal is to eventually have an Alice world for each of the standards in both
curricula. In our interactions with students, we found that the children really liked Alice and
enjoyed it because it allowed them to use their creativity to create animations and games. Alice
helps students learn computer programming skills, while having fun at the same time. From our

teacher surveys, it was suggested that it would be goo@ate more Alice worlds that deal with

32

word problems and giving students practice and knowledge on how to solve word problems. Alice
would be a good tool to use to help students visualize problems that they need to solve. The Alice
team should also start switching their tutorial format to the new interactive tutorial system that

Steve Cooper is implementing for learning Alice worlds.

Another way to improve on this project in the future is to create more Math Challenges for
students to use that deal with more subjects. As of right now, the challenges that we have deal
with averages, arithmetic, the distance formula, and Pythagorean’s Theorem. These would also
help to complete the map of the Duke Alice materials to the Common Core math standards, as
well as give teachers more opportunities to use these challenges in their classes and get the
students to complete them. The Alice Team should also create more Alice Math worlds for
students to be able to play to practice developing certain math skills. The students have the ability
to modify the code and change these worlds if they would like to as well. We would like to have
an Alice world or challenge for each standard in the Common Core Math curriculum available for

teachers and students to use on our Duke Alice Repository website.

7. Conclusion

We have concluded that Alice can increase the interest in computer science among middle
school students. From the post-survey of our Alice Activity Day, over half of the students
suggested that Alice should be used in their schools for projects, presentations, and games. This
shows that Alice could be easily integrated into K-12 education, and that students would enjoy
using it their classes. The students at Oak Grove Middle School were also very excited about
using Alice in their classes and learning how to create animations. 7 students in the Alice Activity
Day also noted that Alice helped them understand computers and programmingrbetter.

addition, he number of students who “Strongly Agreed” with liking to use computer science to

33

solve problems increased from 3 to 8 and nobody answered negatively after using Alice compared
to 5 who “Disagreed” before. There was also a significant increase in the interest for using

computer science in a future career. The average responsé@reWisagree” (2.88) to

“Agree” (3.217) after the students spent the session learning about Alice and creating their own
worlds. We also found tha# students “Strongly Agreed” with voluntarily taking additional

computer science classes after using Alice and only 8 did in the pre-survey. Overall, Alice

increased the students’ interest in computer science and their desire to learn more about it.

Computer science must be introduced to students at a younger age in order to help
increase interest and exposure to the topic and help avoid the crisis in computing education. Since
it is very difficult to add new classes for students to take because of standardized testing,
curriculum, and not having enough room, we believe that it is best to integrate programming skills
into the present curriculum that students must learn in order to help them gain interest and see the
applications of computer science. We want to work with teachers as well as media/technology
specialists in schools to encourage them to integrate Alice into their curriculum to introduce the
students to programming at an earlier age. Many other programs and groups are also working on
integrating computing into K-12 education, so that students can learn about computing and be

more likely become interested in computer science when they are older.

34

6. References

[1] 2009 Alice Symposium. website, 2009. Retrieved April 22, 2013 from
http://www.cs.duke.edu/csed/aliceSymposium2009/

[2] 2013 SIGSCE conference. website, 2013. Retrieved April 22, 2013 from
http://www.sigcse.org/sigcse2013/

[3] Alice. website, 1999. Retrieved April 22, 2013 frouitp://www.alice.org/

[4] Bootstrap. website, 2013. Retrieved April 22, 2013 fidtp://www.bootstrapworld.org/

[5] Common Core In the States. website, 2012. Retrieved April 22, 2013 from
http://www.corestandards.org/in-the-states

[6] Common Core State Standard Initiatives. website, 2012. Retrieved April 22, 2013 from
http://www.corestandards.org/

[7]1 S. Cooper, W. Dann, D. Lewis, P. Lawhead, S. Rodger, M. Schep, and R. Stalvey. A pre-
college professional development program. In THeABnual Conference on Innovation
and Technology in Computer Science Education (ITICSE 2011), pages 188-192, 2011.

[8] CS Unplugged. website, 2008. Retrieved April 22, 2013 finttiwt//www.csunplugged.org/

[9] CSTA Computer Science Standards. website, 2011. Retrieved April 22, 2013 from
http://csta.acm.org/Curriculum/sub/K12Standards.html

[10] Cuny, Jan. “Finding 10,000 Teachers: Transforming High School Computer Science”. CSTA
Voice: The Voice of K-12 Computer Science Education and its Educators. Vol. 6, Issue 5,
pages 1-2, January 2010

[11] Duke University Adventures in Alice Programming. website, 2008. Retrieved April 22, 2013
from http://www.cs.duke.edu/csed/alice/alicelnSchools/

[12] Freudenthal, Eric et al. MPCT - Media Propelled Computational Thinking, In
Forty-first SIGCSE Technical Symposium on Computer Science Education, pages
37-41, 2010.

[13] Greenfoot. website, 2013. Retrieved April 22, 2013 fhatp://greenfoot.org/overview

[14] iIMPaCT-Math. website, 2010. Retrieved April 22, 2013 fiditp://www.impactstem.org/

[15] LEGO MINDSTORM NXT Education. website, 2013. Retrieved April 22, 2013 from
http://www.legoeducation.us/eng/cateqories/products/middle-school/lego-mindstorms-
education

35

http://www.cs.duke.edu/csed/aliceSymposium2009/
http://www.sigcse.org/sigcse2013/
http://www.alice.org/
http://www.bootstrapworld.org/
http://www.corestandards.org/in-the-states
http://www.corestandards.org/
http://www.csunplugged.org/
http://csta.acm.org/Curriculum/sub/K12Standards.html
http://www.cs.duke.edu/csed/alice/aliceInSchools/
http://greenfoot.org/overview
http://www.impactstem.org/
http://www.legoeducation.us/eng/categories/products/middle-school/lego-mindstorms-%09education
http://www.legoeducation.us/eng/categories/products/middle-school/lego-mindstorms-%09education

[16] Maloney,John et al. “The Scratch Programming Language and Environment”. In ACM
Transactions on Computing Education, Vol. 10, No. 4, Article 16, pages 1-15,
November 2010.

[17] Pausch, Randy et al. “Alice: A Rapid Prototyping System for Building Virtual
Environments”. University of Virginia: IEEE Computer Graphics and Applications, Vol.
15, Issue 3, pages 8-11, May 1995.

[18] Scratch. website, 2009. Retrieved April 22, 2013 fhdtp://scratch.mit.edu

[19] Sontag, Marie. “Critical Thinking with Alice: A Curriculum Design Model for Middle
School Teachs”. In Alice '09 Proceedings of the 2009 Alice Symposium, Article No. 2,
20009.

[20] Utting, lan et al. “Alice, Greenfoot, and Scratch - A Discussion”. ACM Transactions on
Computing Education, Vol. 10, No. 4, Article 17, pages 1-11, November 2010.

[21] Wilson, Cameron; Sudol, Leigh Ann; Stephensen, ChrisSashlik, Mark. “Running on
Empty: The Failure to Teach K Computer Science in the Digital Age”. Association for
Computing Machinery and Computer Science Teachers Association, 2010.
http://www.acm.org/runningonempty/

[22] Wing, Jeannette. “Computational Thinking”. Communications of the ACM, Vol. 49, Issue 3,
pages 33-35, March 2006.

36

http://scratch.mit.edu/
http://www.acm.org/runningonempty/

7. Appendix

All Appendix items are on http://www.cs.duke.edu/csed/alice/alicel nSchools and
http://www.cs.duke.edu/csed/alicel2/br own/thesis/appendix.php

Appendix 1. Standard Mappings

Exhibit A - Common Core Mathematics
Exhibit B - Computer Science Teachers Association

Appendix 2: Tutorials

Exhibit A - Array Tutorial

Exhibit B - Visual List

Exhibit C - Scene Change 2.0

Exhibit D - Astronaut-Humvee Short

Exhibit E - Nonvisual Arrays

Exhibit F - Nonvisual Arrays With Recursion
Exhibit G - Probability World

Appendix 3. Challenges

Exhibit A - Boat Race Challenge 1
Exhibit B - Boat Race Challenge 2
Exhibit C - Boat Race Challenge 3
Exhibit D - Boat Race Challenge 4
Exhibit E - Calculator Challenge
Exhibit F - Distance Challenge

Appendix 4. SIGCSE poster

SIGCSE poster

37

http://www.cs.duke.edu/csed/alice/aliceInSchools
http://www.cs.duke.edu/csed/alice12/brown/thesis/appendix.php

Appendix 1: Standard Mappings

We have mapped our Alice materials and resources to the mathematics Common Core
State Mathematics Standards (grades 5-12) and the Computer Science Teachers Association
Computer Science standards for Level 2 (grades 6-9). The Common Core standards are in Exhibit
A, while the CSTA standards are in Exhibit B. A majority of the teachers we surveyed
acknowledged that they would be more likely to use Alice in their classes if it was compatible
with the Common Core curriculum that they are required to teach. Alice will also help apply the
CSTA computer science standards, to expose students to certain amounts of computer science and

technology throughout their K-12 education.

38

Grade
5th Grade

Standard

5.0A1

5.0A2

5.0A3

5.NBT 1

5.NBT.2
5.NBT.3A
5.NBT.3B

5.NBT .4

5.NBT.5

5.NBT.6

5.NBT.7

5.NF.1
5.NF.2
5.NF.3
5.NF.4A
5.NF.4B

5.NF.5A
5.NF.5B

5.NF.6
5.NF.7A
5.NF.7B

5.NF.7C
5.MD.1
5.MD.2
5.MD.3A

5.MD.3B
5.MD.4
5.MD.5A

5.MD.5B
5.MD.5C

5.G.1

Alice World

Order of Operations
World

Order of Operations Rap

Distributive Property
Tutorial

Using Pearls to
Understand Variables

Nonvisual arrays

Rounding Game

Scientific Notation

Inequalities

Rounding Game

Basketball Math
Multiplication Table

Sign Me Up

Nemo Learns Math

Fraction World

Fraction World
Reducing Simple
Fractions, Fraction
World

Simplifying Fractions

Volume Formulas

Lesson on the
Coordinate Plane

Description

This world tests students knowledge of the order of operations
(PEMDAS) and this standard requires that students be able to use
parentheses, brackets, or braces in numerical expressions and evaluate
them.

This world is an animation and song to help students learn and
memorize the order of operations in math.

The Distributive Property world shows how to deal with parentheses in
an equation and checks to see if the equations are expanded correctly
with an application to the Distributive Property.

This standard deals with simple algebraic expressions and interpreting
numerical expressions. Even though they do not need to evaluate them
this early in the standards, this Alice world shows how to set up and
solve algebraic equations using bags of pearls as variables.

A simpler version of this game that allows students to practice
calculating mathematical and algebraic patterns rather than making the
list to hold them.

This standard requires that students recognize the different places of a
multi-digit number (ones, tens, hundreds,...) and they know the
corresponding place to the right(/ 10) and left (* 10). The first part of the
questions in this game deals with identifying the given place by clicking
on the number.

In this standard, students must understand patterns in multiplying
numbers by 10 and use exponents to denote powers of 10. This Alice
world goes over how to translate numbers into scientific notation form
which uses exponents to denote powers of 10 and trailing zeros in a
number.

Expanded form of numbers- (EX: 347.392 = 3*100 + 4*10 + 7*1 + 3*
(1/10) + 9*(1/100) + 2*(1/1000)

Can extend the inequalities world to include more examples with
decimals and fractions in the game.

The rest of the rounding game world deals with rounding numbers
which is what this standard is, except the world needs to add decimals.
In this Alice world, students practice finding the products of numbers in
a basketball game. This standard requires students to be able to
multiply multi-digit whole numbers, so the maximum values in the game
can be increased to practice multiplying larger numbers.

This game allows kids to practice their multiplication skills up to 10 x 10.
This world deals with the division of whole numbers (easier examples)
with positive and negative integers. This standard deals with division as
well, but goes up to 4 digit dividends and 2 digit divisors.

A more advanced version of this game that includes decimals would
help students practice this standard of adding, subtracting, multiplying,
and dividing decimals to the hundredths place.

This Alice world allows students to add and subtract fractions and go
through the method of finding the common denominator, then
calculating the numerator and denominator.

- Word problem to add and subtract fractions.

- Recognize 3/4 = 3 divided by 4

This world allows students to practice multiplying and dividing fractions.
- Area of a rectangle with fractional sides

This Alice world delves into the greatest common factor of numbers with
applications in reducing fractions. Fraction World does this with an
application to fraction arithmetic.

This Alice world allows students to practice simplifying fractions and
help them learn fraction equivalence: a/b = (na)/(nb)

- Real world problems and applications of multiplying fractions and
mixed numbers.

- Dividing fractions and whole numbers

- Dividing whole numbers by fractions

- Convert different measurement units in a given measurement system
(5cm=.05m)

- Make a line plot of fractional data.

- Unit cube

- A solid figure that can be packed with n unit cubes has a volume of n
cubic units.

- Measure volumes with unit cubes of cubic cm., cubic in., etc.

- Find volume of rectangular prism using unit cubes.

This Alice world deals with learning the formulas for the volumes of
different shapes, but this standard only requires students to find the
volume of rectangular prisms using V = b*h = I*w*h. It won't help them
practice this standard, just memorize formulas.

- Volume is additive.

An introduction to coordinate planes (Axes, coordinates, lines, ordered
pairs, etc.)

6th Grade

5.G.2
5.G.3
5.G4

6.RP.1
6.RP.2
6.RP.3A
6.RP.3B
6.RP.3C
6.RP.3D
6.NS.1
6.NS.2

6.NS.3

6.NS.4

6.NS.5

6.NS.6A

6.NS.6B

6.NS.6C

6.NS.7A
6.NS.7B
6.NS.7C
6.NS.7D

6.NS.8

6.EE.1

6.EE.2A

6.EE.2B
6.EE.2C

6.EE.3
6.EE.4
6.EE.5

6.EE.6
6.EE.7
6.EE.8

6.EE.9
6.G.1
6.G.2
6.G.3

6.G.4
6.SP.1
6.SP.2

6.SP.3
6.SP.4
6.SP.5A
6.SP.5B

6.SP.5C
6.SP.5D

Plotting Points, Lines,
and Scatter Plots

Fraction World
Sign Me Up

Basketball Math, Nemo
Math, etc.

Simplifying Fractions

Walk the Number Line
Walk the Number Line

apps
Kick the Coordinate

Plane, Lesson on the
Coordinate Plane

Walk the Number Line,
Integer Football

Inequalities

Bike Plot
Scientific Notation*

Using Pearls to
Understand Variables

Distributive Property
Tutorial

Using Pearls to
Understand Variables

ModelinXYZ(Kelly) and
Mike's world

Boat Averages
Bike Plot

Boat Averages

This standard requires students to be able to represent real world data
and mathematical problems by graphing points in the first quadrant and
interpreting those values. The Plotting Points Alice world takes data
created by the student about how far a bicyclist travels and asks them
to plot the points and them interpret the data that they came up with.

- Categories of 2D shapes and their properties.

- Be able to classify 2D objects in a hierarchy based on properties.

- Ratios (2:1)

- Relationship of ratios to fractions.

- Tables of equivalent ratios

- Unit rate problems

- percentages

- ratios to convert measurements

This world deals with arithmetic expressions of fractions.

Extend this world to include the division of multi-digit numbers.

To accomplish this standard, all we need to do is extend the previous
mentioned math Alice worlds to make them harder by adding multi-digit
addition, subtraction, multiplication, and division.

This world allows students to practice finding the greatest common
factor between 2 numbers with applications in simplifying fractions.
This world will help students understand the difference between positive
and negative numbers. Does not go into real-world applications though.

Negatives and positives as opposites, symmetry. (-(-3) = 3)

In this world (Kick the Coordinate Plane), students click a character to
kick a soccer ball to a random position on a graph and must give the
coordinates of the point. This goes over points in all 4 quadrants and
positive/negative numbers.

Walk the Number Line allows students to move a character around to
the correct place on a number line by adding/subtracting positive and
negative integers. Integer Football does the same thing, with an
application to sports and moving down a football field on given plays.
Students should be able to interpret inequalities with negative numbers.
Use this world with more examples with negative numbers.

- Real world applications for the above standard.

- Absolute Value

- Statements of absolute value

This standard that requires that students be able to solve real-world
problems by graphing points, and this world applies that skill to tracking
the speed of a bicycle.

The Scientific Notation world uses exponents, but we'll need an Alice
world that deals with exponents exclusively.

Standard 2a deals with students being able to understand and write
expressions using variables and letters to represent numbers.

- Understand and identify the parts of a mathematical function. (sum,
term, product, difference, quotient, factor, coefficient,...)

- Solving algebraic functions

The distributive property.

- Identify when two equations are equivalent. [Inequalities]

- Finding values that make and equation or inequality true.

Using variables to represent numbers and write expressions from real
life problems. This world is an example but won't help them practice this
skill.

- Writing and solving equations of the form x + p =g and px = q

- Inequalities with variables and applications.

These worlds allow students to use graphs to represent equations and
also go into more advanced functions. Also, these worlds to not deal
with tables which are also mentioned in this standard.

- Areas of triangles and special quadrilaterals.

- Find the volume of a rectangular prism

- Draw polygons in a coordinate plane

- Represent 3D figures with rectangles and triangles to find the surface
area.

- Recognize statistical questions.

- Statistical distributions

Measures of center (average/median) summarize a group of data with
just one value.

- Display numerical data using dot plots, histograms, and box plots.

- Reporting the number of observations

- Describing the nature of observation

This standard deals with calculating the measures of center (median
and mean) of data and the boat averages worlds allow users to practice
finding the average speed, distance, and time a boat travels.

- Relating measures of center to variability

7th Grade

8th Grade

7.RP.1
7.RP.2A
7.RP.2B
7.RP.2C
7.RP.2D
7.RP.3

7.NS.1A
7.NS.1B

7.NS.1C
7.NS.1D

7.NS.2A
7.NS.2B

7.NS.2C
7.NS.2D

7.EEA
7.EE.2

7.EE.3
7.EE.4A
7.EE.4B
7.GA1

7.G.2
7.G.3
7.G4
7.G.5

7.G.6

7.SPA1

7.SP.2
7.SP.3

7.SP.4

7.SP.5
7.SP.6

7.SP.7TA
7.SP.7B
7.SP.8A
7.SP.8B

7.SP.8C

8.NS.1
8.NS.2

8.EE.1
8.EE.2

8.EE.3
8.EE4
8.EE.5

8.EE.6
8.EE.7A
8.EE.7B

Walk the Number Line
Walk the Number Line

Walk the Number Line

Basketball Math, etc

Sign Me Up, etc.

Geometry Game

1 Ball, 2 Ball, Red Ball,
Blue Ball

1 Ball, 2 Ball, Red Ball,

Blue Ball

Probability World

Probability World

Probability World

Exponent Laws

Scientific Notation

- Ratios and averages of measurements

- Decide whether two quantities are proportional by table or graphing

- Constant of proportionality

- Represent proportional relationships with equations

- Proportional relationship between points on a graph

- Multistep ratio and percent problems

This standard deals with describing situations where opposite quantities
combine to make 0 such as -4 + 4, but this standard gives the example
of hydrogen atoms.

This standard wants students to understand that p + q is a distance of
the abs(q) from p in either direction.

In this standard, students should understand that subtraction is just
adding the inverse: p-q=p + (-q)

- Properties of operations to add and subtract rational numbers
Understanding multiplication and distributive property with positive and
negative integers (-1)(-1)=1

Understand that integers can be divided if the divisor is non-zero. With
negative values, know that -(p/q) = (-p)/q = (p)/(-q)

- Use properties of operations as strategies to multiply and divide
rational numbers

- Convert a rational number to a decimal using long division

- Apply properties of operations as strategies to add, subtract, factor,
and expand linear expressions.

- Rewriting expressions in different forms: a + .05 = 1.05(a)

- Solve multistep real life problems with positive and negative rational
numbers in any form and apply the properties of operations to them...
- Word problems of the form px +g=rorp(x+q)=r

- Word problems with inequalities of the form px+ q>rorpx+q<r

- Solve problems using scale drawings of geometric figures

- Draw geometric shapes with given conditions using rulers, protractors,
etc.

- Describe two-dimensional figures by slicing 3D figures.

In this standard, students should know the formulas for the area and
circumference of a circle which is practiced in this world along with
squares and rectangles.

- Supplementary, complementary, vertical, and adjacent angles

- Solve real world and math problems involving area, volume, and
surface area.

This Alice world deals with random sampling from a group of red and
blue balls, and in this standard students must learn about gaining
information about populations by examining a sample of the population
and understand random sampling.

This standard has students use the random sample to draw inferences
about the population from the data, and in this world students will
predict the number of red and blue balls and see how the samples are
simulated.

- Comparing two different numerical distributions

- Use measures of center and measures of variability from numerical
data from random samples

Understanding the definition of probability (the chance an event occurs
is between 0 and 1, the likelihood that an event occurs...)
Approximating the probability of a chance event by collecting data.
Students should develop a uniform probability model and use it to
determine the probability of different events. In the game, the user must
enter the probability of choosing a random colored ball from a hole.

- Develop a probability model that may not be uniform.

- Probability of compound events

- Represent sample spaces for compound events.

- Design and use a simulation to generate frequencies of compound
events. (simulate Alice?)

- Irrational Numbers

- Rational Approximations of irrational numbers

This world explains the laws and properties of exponents which
students are required to know based on this standard.

- Square root and cube root

Students should be able to know how to use and understand scientific
notation.

- Perform operations with numbers in scientific notation

- Graph proportional relationships

- Use similar triangles to calculate why the slope is the same between
two points.

- Linear equations with one variable and one solution

- Solve linear equations

High School

8.EE.8A

8.EE.8B
8.EE.8C
8.F.1

8.F.2
8.F.3
8.F.4
8.F.5
8.G.1A
8.G.1B
8.G.1C

8.G.2
8.G.3
8.G4
8.G.5
8.G.6
8.G.7
8.G.8
8.G.9
8.SP.1
8.SP.2

8.SP.3
8.SP.4

N-RN.1
N-RN.2

N-RN.3

N-Q.1
N-Q.2

N-Q.3
N-CN.1

N-CN.2
N-CN.3

N-CN.4

N-CN.5
N-CN.6

N-CN.7
N-CN.8

N-CN.9
N-VM.1

N-VM.2
N-VM.3
N-VM.4A

N-VM.4B
N-VM.4C
N-VM.5A
N-VM.5B
N-VM.6
N-VM.7

Systems of Equations

Move in XYZ and Mike's
world

(Slope Quiz)

Pythagorean Prom (2D),
Pythagorean Theorem in
a 3D Problem

Pythagorean Prom

Volume Quiz
Bike Plot

Bike Plot
(Using Pearls to
Understand Variables)

- Students should be able to understand a system of equations and the
corresponding point is their intersection. (Graphically)

Students should be able to solve systems of 2 linear equations which is
what this world helps them practice.

- Same as the above with real world applications.

- Definition of a function

Students should be able to compare different functions GRAPHICALLY,
also algebraically, numerically in tables, description, etc.

- Linear functions

- Construct a function to create a linear relationship between two points
- Sketch graphs and describe relationship between two functions

- Lines and line segments

- Angles

- Parallel Lines

- Congruency between 2D figures with reflections, translations, and
rotations

- Dilations, translations, rotations, and reflections on coordinates

- Similar 2D figures

- Angle sum of triangles

- Prove and explain the Pythagorean Thereom

"Apply the Pythagorean Theorem to determine the unknown side
lengths in right triangles in real-world and mathematical problems in two
and three dimensions."

This standard requires students to be able to use Pythagorean's
Theorem to calculate the distance between 2 points.

This world quizzes students on the volume formulas of different shapes
including cones, cylinders, and spheres which are specified in this
standard.

Construct and interpret scatter plots.

Students should know about the line of best fit for a scatter plot data
and the end of this Alice world gives an example of finding the line of
best fit for the data created by the user.

- Use linear equations to solve problems
- Bivariate categorical data

- Rational exponents and their properties.

- Rewrite expressions involving radicals and rational exponents.

- Explain why the sum or product of two rational numbers is rational, the
sum of a rational number and irrational number is irrational, and the
product of a nonzero rational number and an irrational number is
irrational.

- Use units as a way to understand problems and to guide the solution
for multi-step problems.

- Define appropriate quantities for the purpose of descriptive modeling.
- Choose a level of accuracy appropriate to limitations on measurement
when reporting quantities.

- Complex number i such that i*2 = -1.

- Use i*2 and the commutative, associative, and distributive properties
to add, subtract, and multiply complex numbers.

- Find the conjugate of a complex number

- Represent complex numbers on the complex plane in rectangular and
polar form.

- Represent addition, subtraction, multiplication, and conjugation of
complex numbers geometrically.

- Calculate the distance between numbers in the complex plane.

- Solve quadratic equations with real coefficients that have complex
solutions.

- Extend polynomial identities to complex numbers.

- The Fundamental Theorem of Algebra is true for quadratic
polynomials.

- Recognize vector quantities as having both magnitude and direction.
- Find the components of a vector by subtracting the coordinates of an
initial point from a terminal point.

- Solve problems involving velocity and other quantities represented by
vectors.

- Add vectors end-to-end, component-wise, and by the parallelogram
rule.

- Given 2 vectors in magnitude and direction form, determine the
magnitude and direction of their sum.

- Understand vector subtraction.

- Represent scalar multiplication graphically

- Compute the magnitude of a scalar multiple

- Use matrices to represent and manipulate data.

- Multiply matrices by a scalar.

N-VM.8

N-VM.9

N-VM.10
N-VM.11
N-VM.12
A-SSE.1A

A-SSE.1B
A-SSE.2

A-SSE.3A
A-SSE.3B

A-SSE.3C
A-SSE .4

A-APR1
A-APR.2
A-APR.3
A-APR.4
A-APR.5
A-APR.6

A-APR.7

A-CED.1
A-CED.2
A-CED.3
A-CED.4

A-REI1
A-REI.2

A-REI.3

A-REIL4A

A-REI.4B

A-RELS5

A-REI.6

A-REL7
A-REL8

A-REL9
A-REL10

A-REIL.11
A-REI.12

F-1F.1

F-IF.2

F-IF.3

The Matrix

The Matrix

Exponent Laws

System of Equations
(2008), System of
Equations (2011)

*Word problem
challenges

Using Pearls To
Understand Variables

Using Pearls To
Understand Variables

System of Equations

Nonvisual Arrays,
Nonvisual Arrays and
Recursion in Alice

Add, subtract, and multiply* matrices. This standard requires that
students be able to multiply matrices of appropriate dimensions. In this
Alice world, users are able to practice multiplying 2x2 matrices and
learn the method for multiplying matrices.

Students should know that matrix multiplication for square matrices is
not commutative. In this world, they are able to input the numbers they
want into the matrices that will be multiplied and can switch the values
to see that they aren't commutative.

- Understand that the zero and identity matrix play a role in matrix
addition and multiplication.

- Multiply a vector by a matrix of suitable dimensions.

- Work with 2x2 matrices as transformations in a plane.

- Interpret parts of an expression. (terms, factors, and coefficients)

- Interpret complicated expressions by viewing one or more of their
parts as a single entity.

- Use the structure of an expression and identify ways to rewrite it.

- Factor a quadratic expression to reveal zeros of the function it defines.
- Complete the square in a quadratic expression.

In this standard, students should be able to use the properties of
exponents to transform expressions for exponential functions. This Alice
world goes over all of the exponent laws with variables, which can be
translated into functions and hold the same properties.

- Derive the formula for the sum of a finite geometric series.
Understand that polynomials form a system analogous to the integers.
Polynomials can be added, subtracted, and multiplied, and this Alice
world quizzes students on how to add and subtract polynomials using a
system of equations.

- Know and apply the Remainder Theorem.

- Identify zeros in polynomials.

- Prove polynomial identities and describe numerical relationships.

- The Binomial Theorem

- Rewrite simple rational expressions

- Understand that rational expressions form a system analogous to the
rational numbers

Create equations and inequalities in one variable and use them to solve
problems.

- Create equations in two or more variables.

- Represent constraints by equations or inequalities.

- Rearrange formulas to highlight a quantity of interest.

This standard requires students to explain each step in solving a simple
equation. The "Using Pearls to Understand Variables" Alice world
explains variables using pearls and at the end it provides an example
and shows how to solve an equation.

- Solve simple rational and radical equations in one variable.

Students should be able to solve linear equations and inequalities and
this Alice world deals with solving linear equations.

- Use the method of completing the square to transform any quadratic
equation.

- Solve quadratic equations by inspection.

- Prove that, given a system of two equations in two variables, replacing
one equation by the sum of that equation and a multiple of the other
produces a system with the same solutions.

This standard deals with solving systems of equations exactly and
approximately, and the exact method is practiced in this Alice world.

- Solve a system of linear equations consisting of a linear equation and
a quadratic equation.

- Represent a system of linear equations as a single matrix equation.

- Find the inverse of a matrix if it exists and use it to solve systems of
equations.

- Understand that the graph of an equation with two variables is the set
of all its solutions plotted in the coordinate plane.

- Explain why the x-coordinates of the points where 2 graphs intersect
are solutions of the equations.

- Graph the solutions to a linear inequality.

- Understand that a function from one set (domain) connects to another
set (range).

- Use function notation, evaluate functions for inputs in their domains,
and interpret statements that use function notation.

Students should recognize that sequences are functions, and also
defined recursive functions. Both of these Alice worlds use arrays to let
students build functions and examine the sequences that they produce,
and the second one focuses specifically on recursive functions such as
Fibonacci's sequence and factorials.

F-IF.4

F-IF.5
F-IF.6

F-IF.7A

F-IF.7B

F-IF.7C

F-IF.7D

F-IF.7E
F-IF.8A
F-IF.8B
F-IF.9

F-BF.1A
F-BF.1B
F-BF.1C

F-BF.2

F-BF.3

F-BF.4A
F-BF.4B
F-BF.4C

F-BF.4D

F-BF.5

F-LE.1A

F-LE.1B

F-LE.1C

F-LE.2

F-LE.3

F-LE.4

F-LE.5
F-TF.1

F-TF.2
F-TF.3
F-TF.4

F-TF.5

MoveinXYZ, Bird
Graphing

MoveinXYZ, Bird
Graphing

MoveinXYZ, Bird
Graphing

Bird Graphing

MovelnXYZ

Bird Graphing

Bird Graphing

Bird Graphing

Nonvisual Arrays in
Alice

Bird Graphing,
MovelnXYZ

This standard says that for a function that models a relationship
between two quantities, interpret key features of graphs and tables
(intercepts, intervals of increasing/decreasing, max and min, symmetry,
etc.) Both of these Alice worlds deal with graphing functions that the
user can examine and compare with other functions. MovelnXYZ uses
polynomial functions while Bird Graphing can use all of the math
functions built into Alice.

Students need to be able to relate the domain of a function to its graph
and the quantitative relationship it describes. In these Alice world,
students can view the graphs of a variety of functions and use the
graphs to analyze the domains of the functions.

- Calculate and interpret the average rate of change of a function over a
specified interval.

Graph linear and quadratic functions and show intercepts, maxima, and
minima.

Graph square root, cube root, and piecewise-defined functions including
step and absolute value functions. The Bird Graphing Alice world is able
to graph the square and cube root functions.

Graph polynomial functions, identifying zeros and factorizations when
available. This Alice world allows users to create the functions that they
want to graph up to the x*4 degree.

Graph rational functions, identifying zeros and asymptotes. This world
allows users to create rational functions if they can create them using
the built-in Alice functions.

Graph exponential and logarithmic functions showing intercepts and
end behavior and trigonometric functions. Alice world functions contain
these mathematical functions in the advanced math section that can be
graphed in this world.

- Use the process of factoring and completing the square in a quadratic
function to show zeros, extreme values, and symmetry.

- Use the properties of exponents to interpret expressions for
exponential functions.

- Compare properties of two functions each represented in a different
way.

- Determine an explicit expression, a recursive process, or steps for
calculation from a context.

- Combine standard function types using arithmetic operations

- Compose functions [T(h(y))]

- Write arithmetic and geometric sequences both recursively and with
an explicit formula.

Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), and f
(kx) for specific values of k. In this Alice world, the user can choose a
function in Alice and then modify it by making the changes above and
choosing a value of k to see how the graph changes for each one.

- Solve an equation of the form f(x) = ¢ and write an expression for the
inverse.

- Verify by composition that one function is the inverse of another

- Read values of an inverse function from a graph or table

- Produce an invertible function from a non-invertible function by
restricting the domain.

- Understand the inverse relationship between exponents and
logarithms.

In this standard, students should be able to prove that linear functions
grow by equal differences over equal differences. This Alice world
shows how functions grow at an equal rate and helps them practice with
a quiz to calculate these values.

- Recognize situations in which one quantity changes at a constant rate
per unit interval

- Recognize situations in which a quantity grows or decays by a
constant percent rate

- Construct linear and exponential functions including arithmetic and
geometric sequences

This standard wants students to observe quantities increasing
exponentially, linearly, quadratically, polynomially, etc. in graph and
table form. These Alice worlds present these values in graphical form.

- For exponential models, express as a logarithm of the solution.

- Interpret the parameters in a linear or exponential function in terms of
a context

- Understand radian measure of an angle

- Explain how the unit circle in the coordinate plane enables the
extension of trigonometric functions to real numbers

- Use special triangles to determine geometrically the values of sin, cos,
and tan for pi/3, pi/4, and pi/6

- Use the unit circle to explain symmetry and periodicity of trigonometric
functions

- Choose trig functions to model periodic phenomena with specified
amplitude, frequency, and midline

F-TF.6
F-TF.7
F-TF.8
F-TF.9

G-CO.1
G-CO.2

G-CO.3
G-CO.4
G-CO.5

G-CO.6
G-COo.7

G-CO.8
G-CO0.9
G-C0.10
G-CO.11
G-C0.12

G-CO.13
G-SRT.1A
G-SRT.1B
G-SRT.2

G-SRT.3
G-SRT.4
G-SRT.5

G-SRT.6

G-SRT.7

G-SRT.8
G-SRT.9
G-SRT.10
G-SRT.11
G-C.1

G-C.2

G-C3
G-C4

G-C.5

G-GPE.1
G-GPE.2
G-GPE.3
G-GPE.4
G-GPE.5
G-GPE.6
G-GPE.7

G-GMD.1
G-GMD.2
G-GMD.3
G-GMD.4

G-MG.1
G-MG.2
G-MG.3
S-ID.1

S-1D.2

Volume Formulas

Bike Plot

- Understand that restricting a trig function to a domain which is always
increasing/decreasing allows its inverse to be constructed.

- Use inverse functions to solve trig equations

- Prove the Pythagorean identity sin*2 + cos"2 =1

- Prove the addition and subtraction formulas for sin, cos, and tan

- Know the precise definitions of angle, circle, perpendicular and parallel
lines, line segments, point, line, distance, arc, etc.

- Represent transformations in the plane using transparencies and
geometry software

- Given a rectangle, parallelogram, trapezoid, or regular polygon,
describe the rotations and reflections

- Develop definitions of rotations, reflections, and transformations

- Given a geometric figure, draw the transformed figure

- Use geometric descriptions of rigid motions to transform figures and to
predict the effect of a given rigid motion on a given figure

- Use the definition of congruence in terms in terms of rigid motions

- Explain how the criteria for triangle congruence follow from the
definition of congruence

- Prove theorems about lines and angles

- Prove theorems about triangles

- Prove theorems about parallelograms

- Make formal geometric constructions with a variety of tools

- Construct an equilateral triangle, a square, and a regular hexagon
inscribed in a circle

- A dilation takes a line not passing through the center of the dilation to
a parallel line

- The dilation of a line segment is longer or shorter in the ratio given by
the scale factor

- Given two figures, use the definition of similarity and decide if they are
similar

- Use properties of similarity transformation to establish the AA criterion
for 2 triangles to be similar

- Prove theorems about triangles.

- Use congruence and similarity for triangles to solve problems

- Understand that by similarity, side ratios in right triangles are
properties of the angles in the triangle

- Explain and use the relationship between sin and cos of
complementary angles

- Use trigonometric ratios and Pythagorean Theorem to solve right
triangle in applied problems

- Derive the formula A = 1/2ab sin(c) for the area of a triangle

- Prove the Law of Sines and Cosines

- Understand and apply the Law of Sines and the Law of Cosines

- Prove that all circles are similar

- Identify and describe relationships among inscribed angles, radii, and
chords

- Construct the inscribed and circumscribed circles of a triangle and
prove properties of angles and for a quadrilateral inscribed in a circle.

- Construct a tangent line from a point outside a given circle to the circle
- Derive using similarity the fact that the length of the arc intercepted by
an angle is proportional to the radius

- Derive the equation of a circle of given center and radius using the
Pythagorean Theorem

- Derive the equation of a parabola given a focus and directrix

- Derive the equations on ellipses and hyperbolas

- Use coordinates to prove simple geometric theorems algebraically

- Prove the slope criteria for perpendicular and parallel lines

- Find the point on a directed line segment between two given points

- Use coordinates to computer perimeters and areas of polygons

- Give an informal limit argument for the formulas for the circumference
of a circle, area of a circle, volume of a cylinder, pyramid, and cone.

- Give an informal argument using Cavalieri's principle

Use volume formulas for cylinders, pyramids, cones, and spheres to
solve problems. This world will help students learn the formulas of the
volumes for different 3D shapes.

- Identify the shapes of 2D cross sections of 3D shapes

- Use geometric shapes, their measures, and their properties to
describe objects

- Apply concepts of density based on area and volume in modeling

- Apply geometric methods to solve design problems

This standard wants students to represent data with plots on a real
number line, dot plots, histograms, and box plots. This Alice world has
the user create data and then plot the points on a graph.

- Use statistics appropriate to the shape of the data distribution to
compare center and spread

S-ID.3
S-1D.4

S-ID.5

S-ID.6A Bike Plot

S-ID.6B
S-1D.6C
S-ID.7
S-ID.8
S-ID.9

S-IC.1
S-IC.2
S-IC.3

S-IC.4
S-IC.5
S-IC.6

Can | Get Your

Number?, 1 Ball, 2 Ball,
S-CP1 Red Ball, Blue Ball
S-CP.2

S-CP.3
S-CP.4
S-CP.5
S-CP.6
S-CP.7
S-CP.8

S-CP.9 Line Up
S-MD.1

S-MD.2
S-MD.3

S-MD.4
S-MD.5A
S-MD.5B

Ready, SET, Go!, War,

Choosing Random
S-MD.6 People From a Class
S-MD.7

- Interpret differences in shape, center, and spread in the context of
data sets

- Use the mean and sd of a data set to fit it to a normal distribution and
to estimate the population percentages

- Summarize categorical data for two categories in two-way frequency
tables

This standard has students find a function to the data and use functions
fitted to data to solve a problem. In this Alice world, after the user plots
the points from the data that they create, the best-fit line is drawn and
predicts a future value.

- Informally asses the fir of a function by plotting and analyzing
residuals

- Fit a linear function for a scatter plot that suggests linear association
- Interpret the slope and the intercept of a linear model.

- Compute and interpret the correlation coefficient of a linear fit.

- Distinguish between correlation and causation

- Understand statistics as a process for making inferences about
population parameters

- Decide if a specified model is consistent with results from a given
data-generation process

- Recognize the purposes of and differences among sample surveys,
experiments, and observational studies

- Use data from a sample survey to estimate a population mean or
proportion

- Use data from a randomized experiment to compare two treatments
- Evaluate reports based on data

This standard wants the students to describe events of subsets of a
sample space. Both of these worlds deal with random sampling and
creating subsets. The first creates a random set of numbers to form a
phone number and the second is randomly sampling from a group of
balls.

- Definition of independent events

- Understand the conditional probability of A given B and interpret their
independence

- Construct and interpret two-way frequency tables

- Recognize and explain the concept of conditional probability

- Find the conditional probability of A given B

- Apply the Addition Rule of probabilities

- Apply the Multiplication Rule of uniform probabilities

This standard requires students to use permutations and combinations
to compute probabilities, and this Alice world shows the user how to use
permutations to find the number of possible ways to order a group of
people in a line.

- Define a random variable for a quantity of interest

- Calculate the expected value of a random variable and interpret it as
the mean of the probability distribution

- Develop a probability distribution and find the expected value for a
random variable defined for a sample space that can be calculated

- Develop a probability distribution for a random variable defined for a
sample space assigned empiracally

- Find the expected payoff for a game of chance

- Evaluate and compare strategies of expected values

This standard wants students to use probabilities to make fair decisions.
Both of these worlds use probabilities to make decisions within them.
The first two use probability in a card game and the last one selects a
random student from a class.

- Analyze decisions and strategies using probability concepts

Standard

Level 1 (K-6)
Level 2 (6-9)
Level 3A (9-10)
Level 3B (10-11)
Level 3C (11-
12/AP)

Level 2

CTA

CT.2

CT.3

CT.4

CT5

CT.6

CT.7

CT.8

CT.9

Alice World/Concept

A lot of our Alice tutorials have problems to solve at
the end such as the recursion and nonvisual array
tutorial, which shows the user how to build an Alice
world that calculates Fibonacci's sequence and
asks them to use the same algorithm that creates a
world that calculates factorials. We will also have
different challenges created for students, where a
problem will be given to them and they must come
up with the algorithm to solve it in Alice.
Trigonometry Prom is an example where the prince
needs to find out how far he needs to go to meet
the princess under the disco ball.

In Alice, users are allowed to use the commands
"Do Together" and "For all Together" with lists to
run multiple instructions at the same time.

Alice allows problems to be solved in different
ways. For example, you are able to use lists or
arrays to hold a collection of information to use in
the program.

In addition to acting out the searching and sorting
algorithms, students could watch Alice animations
of different algorithms to sort a group of people by
heights or find a specific character in a list, while
pausing it and asking questions about what will
happen next to help them learn the algorithms.
Actually programming these is more for level 3.
The tutorials provide detailed instructions on how to
complete Alice worlds so students should be able
to follow them and create a final project based on
the tutorial that they complete.

Alice is great for this because data can be
represented in graph form (Bike Plot, MoveinXYZ,
etc.), as text (Challenges, eventual word problem
world), numbers (Fractions, Rounding Game, most
math worlds), pictures (billboards), and many other
objects (for example, bunnies in Fibonacci
sequence and balls in probability world, pearls in
Using Pearls to Understand Variables, etc.)
Students can generate the data when the world
runs, and then store it in lists or arrays to analyze it.
Examples of this are the Boat Averages worlds
where the world itself collects the times it takes the
boat to go through each hoop and the distance or
time per hoop, and uses it to calculate the average
speed of the boat.

These Alice worlds take data or functions input by
students and displays them in graphical form-
MoveinXYZ, Bike Plot, Mike's graph world, a
modified Bar Chart object. Bike plot world
physically presents the speed of a bicycle based on
when the user clicks and plots the data.

Most of our Alice project and educational tutorials
deal with having students interact with content-
specific models. For example, in the Science
category, students can interact with a model of the
lac operon, a helium molecule, a model of the solar
system and planets, and many more.

Description

This standard requires that the
students be able to figure out the
basic steps in algorithmic problem
solving.

Process of parallelization to solve
problems

- Define an algorithm as a
sequence of instructions.

In this standard, students should
be able to evaluate ways that
different algorithms can be used to
solve the same problem.

Act out searching and sorting
algorithms

Describe and analyze a sequence
of instructions being followed.

This standard requires that
students be able to represent data
in various ways (text, sounds,
pictures, numbers,...).

Students must use visual
representations to display problem
states, structures, and data with
this standard.

Students have to interact with
content specific models in this
standard.

CT.10

CT.11

CT.12

CT.13

CT.14

CT.15

CL.1

CL.2

CL.3

CLA4

CPP.1

CPP.2

CPP.3

CPP.4

CPP.5

Alice can be used to simulate problems that need
to be modeled or simulated. We will be adding
Alice worlds dealing with word problems for
students to practice solving and it will help them
visualize and model the problem in their mind to
help them solve it.

In the Challenges section, there is a problem that

the student must solve by filling in smaller functions

and methods to achieve the desired results. More
advanced challenges will have more sections of
code for the student to fill in and find the
subproblems to solve.

Alice allows for computer science concepts such as
hierarchy and abstraction in the use of parameters,
local/global variables, inheritance, object methods,

etc.

The Alice materials we have made in Mathematics
show connections between math and programming
and how they overlap. Alice also has many built-in

math based functions such as <, >, =, arithmetic,
sin, cos, etc that can be implemented into your
programs. Alice can be used to help students

practice math concepts such as in Basketball Math,

or it can be used to make their own math projects
and explore a math subject in Alice such as
probability world.

The teacher lesson plans page on the Duke

Adventures in Alice site provides many examples of

how programming in Alice can relate to other

disciplines. Examples of this include using Alice for

a book report, a history project, math quizzes, or
foreign language quizzes.
Alice itself is a productive multimedia tool that

supports learning through a new medium. Students

can use Alice for projects, presentations, quizzes,
games, etc.

The tutorials on our page have instructions on how

to build the worlds that we have. It is possible to

have students collaborate on a project to make an

Alice world in a group setting by following the
instructions given in the tutorials.

Alice is an example of a multimedia tool that can be

used in the classroom to help students engage in
their learning. It is also a beginning programming
tool that can help students move on to other
programming and multimedia tools.

Students can use Alice to design and present
products and it is a technology resource. The
teacher can have the students be creative and
create a story or game using Alice, then present
their ideas and final product to the class.

Our Alice tutorials page has many examples of
tutorials on how to use these program solutions
such as loops, conditional statements, variables,
logic, etc. in an Alice world to solve a problem.

Evaluate what kinds of problems
can be solved with modeling and
simulation.

- Analyze the degree to which a
computer model represents the
real world.

Decompose a problem into
several subproblems

Understand the notion of hierarchy
and abstraction.

Examine connections between
mathematics and computer
science

Interdisciplinary examples of
computational thinking.

Apply productivity/multimedia tools
to support learning through
curriculum.

Students must collaboratively
design, develop, publish, and
present products using
technology.

- Collaborate with peers, experts,
and others using collaborative
practices such as peer
programming, team projects, and
group active learning.

- Exhibit dispositions necessary
for collaboration.

- Select appropriate tools and
technology resources to solve
problems

Use a variety of multimedia tools.

Design, develop, publish, and
present products using technology
resources.

Students will have to demonstrate
an understanding of algorithms
and their practical application.
Implement problem solutions
using a programming language
(loops, conditional statements,
logic, expressions, variables, and
functions)

CPP.6

CPP.7

CPP.8

CPP.9
CDA1

CD.2

CD.3

CD.4

CD.5

CD.6

CD.7

CD.8

Cl.1

Cl.2

CL3

Cl4

CL5

Cl.6

There is an annual competition that students can
enter where they must create Alice worlds that
teach about computer and internet safety in it's
animation. Students can build worlds for that and at
the same time learn about good practices in
information security.

Several teachers have come up with Alice worlds to
help students learn about different jobs and
occupations such as "Career Day", "Business
Careers", and "Career Decisions". This type of idea
can also be applied to animate how specific jobs
use computing and technology.

Alice worlds can take data created by the user and
implement it into the world for them to analyze.
Examples of this are Boat World Averages and
Bike Plot, where the user takes data that he
creates in the world to calculate the average boat
speeds or plot the speed of the bicycle.

Demonstrate good practices in
personal information security

Identify interdisciplinary careers
that are enhanced by computer
science

- Demonstrate dispositions
amenable to open-ended problem
solving and programming

In this standard, students should
collect and analyze data that is
collected from multiple runs of a
computer program.

- Recognize that computers are
devices that execute programs

- Identify electronic devices that
contain computational processors
- Demonstrate an understanding
of the relationship between
hardware and software

- Use accurate, appropriate
terminology when communicating
about technology.

- Apply strategies for identifying
and solving routine hardware
problems that occur during
everyday computer use.

- Describe major functions and
components of computer systems
and networks.

- Describe what distinguishes
humans from machines.

- Describe ways in which
computers use models of
intelligent behavior.

- Exhibit legal and ethical
behaviors when using information
and technology and discuss
consequences of misuse.

- Demonstrate knowledge of
changes in information
technologies over time and the
effects of those changes

- Analyze the positive and
negative impacts of computing on
human culture

- Evaluate the accuracy,
relevance, appropriateness,
comprehensiveness, and bias of
electronic information sources in
real world problems.

- Describe ethical issues that
relate to computers and networks
- Discuss how the unequal
distribution of computing
resources in global economy
raises issues of equity, access
and power.

Grade
5th Grade

Standard

5.0A1

5.0A2

5.0A3

5.NBT 1

5.NBT.2
5.NBT.3A
5.NBT.3B

5.NBT .4

5.NBT.5

5.NBT.6

5.NBT.7

5.NF.1
5.NF.2
5.NF.3
5.NF.4A
5.NF.4B

5.NF.5A
5.NF.5B

5.NF.6
5.NF.7A
5.NF.7B

5.NF.7C
5.MD.1
5.MD.2
5.MD.3A

5.MD.3B
5.MD.4
5.MD.5A

5.MD.5B
5.MD.5C

5.G.1

Alice World

Order of Operations
World

Order of Operations Rap

Distributive Property
Tutorial

Using Pearls to
Understand Variables

Nonvisual arrays

Rounding Game

Scientific Notation

Inequalities

Rounding Game

Basketball Math
Multiplication Table

Sign Me Up

Nemo Learns Math

Fraction World

Fraction World
Reducing Simple
Fractions, Fraction
World

Simplifying Fractions

Volume Formulas

Lesson on the
Coordinate Plane

Description

This world tests students knowledge of the order of operations
(PEMDAS) and this standard requires that students be able to use
parentheses, brackets, or braces in numerical expressions and evaluate
them.

This world is an animation and song to help students learn and
memorize the order of operations in math.

The Distributive Property world shows how to deal with parentheses in
an equation and checks to see if the equations are expanded correctly
with an application to the Distributive Property.

This standard deals with simple algebraic expressions and interpreting
numerical expressions. Even though they do not need to evaluate them
this early in the standards, this Alice world shows how to set up and
solve algebraic equations using bags of pearls as variables.

A simpler version of this game that allows students to practice
calculating mathematical and algebraic patterns rather than making the
list to hold them.

This standard requires that students recognize the different places of a
multi-digit number (ones, tens, hundreds,...) and they know the
corresponding place to the right(/ 10) and left (* 10). The first part of the
questions in this game deals with identifying the given place by clicking
on the number.

In this standard, students must understand patterns in multiplying
numbers by 10 and use exponents to denote powers of 10. This Alice
world goes over how to translate numbers into scientific notation form
which uses exponents to denote powers of 10 and trailing zeros in a
number.

Expanded form of numbers- (EX: 347.392 = 3*100 + 4*10 + 7*1 + 3*
(1/10) + 9*(1/100) + 2*(1/1000)

Can extend the inequalities world to include more examples with
decimals and fractions in the game.

The rest of the rounding game world deals with rounding numbers
which is what this standard is, except the world needs to add decimals.
In this Alice world, students practice finding the products of numbers in
a basketball game. This standard requires students to be able to
multiply multi-digit whole numbers, so the maximum values in the game
can be increased to practice multiplying larger numbers.

This game allows kids to practice their multiplication skills up to 10 x 10.
This world deals with the division of whole numbers (easier examples)
with positive and negative integers. This standard deals with division as
well, but goes up to 4 digit dividends and 2 digit divisors.

A more advanced version of this game that includes decimals would
help students practice this standard of adding, subtracting, multiplying,
and dividing decimals to the hundredths place.

This Alice world allows students to add and subtract fractions and go
through the method of finding the common denominator, then
calculating the numerator and denominator.

- Word problem to add and subtract fractions.

- Recognize 3/4 = 3 divided by 4

This world allows students to practice multiplying and dividing fractions.
- Area of a rectangle with fractional sides

This Alice world delves into the greatest common factor of numbers with
applications in reducing fractions. Fraction World does this with an
application to fraction arithmetic.

This Alice world allows students to practice simplifying fractions and
help them learn fraction equivalence: a/b = (na)/(nb)

- Real world problems and applications of multiplying fractions and
mixed numbers.

- Dividing fractions and whole numbers

- Dividing whole numbers by fractions

- Convert different measurement units in a given measurement system
(5cm=.05m)

- Make a line plot of fractional data.

- Unit cube

- A solid figure that can be packed with n unit cubes has a volume of n
cubic units.

- Measure volumes with unit cubes of cubic cm., cubic in., etc.

- Find volume of rectangular prism using unit cubes.

This Alice world deals with learning the formulas for the volumes of
different shapes, but this standard only requires students to find the
volume of rectangular prisms using V = b*h = I*w*h. It won't help them
practice this standard, just memorize formulas.

- Volume is additive.

An introduction to coordinate planes (Axes, coordinates, lines, ordered
pairs, etc.)

6th Grade

5.G.2
5.G.3
5.G4

6.RP.1
6.RP.2
6.RP.3A
6.RP.3B
6.RP.3C
6.RP.3D
6.NS.1
6.NS.2

6.NS.3

6.NS.4

6.NS.5

6.NS.6A

6.NS.6B

6.NS.6C

6.NS.7A
6.NS.7B
6.NS.7C
6.NS.7D

6.NS.8

6.EE.1

6.EE.2A

6.EE.2B
6.EE.2C

6.EE.3
6.EE.4
6.EE.5

6.EE.6
6.EE.7
6.EE.8

6.EE.9
6.G.1
6.G.2
6.G.3

6.G.4
6.SP.1
6.SP.2

6.SP.3
6.SP.4
6.SP.5A
6.SP.5B

6.SP.5C
6.SP.5D

Plotting Points, Lines,
and Scatter Plots

Fraction World
Sign Me Up

Basketball Math, Nemo
Math, etc.

Simplifying Fractions

Walk the Number Line
Walk the Number Line

apps
Kick the Coordinate

Plane, Lesson on the
Coordinate Plane

Walk the Number Line,
Integer Football

Inequalities

Bike Plot
Scientific Notation*

Using Pearls to
Understand Variables

Distributive Property
Tutorial

Using Pearls to
Understand Variables

ModelinXYZ(Kelly) and
Mike's world

Boat Averages
Bike Plot

Boat Averages

This standard requires students to be able to represent real world data
and mathematical problems by graphing points in the first quadrant and
interpreting those values. The Plotting Points Alice world takes data
created by the student about how far a bicyclist travels and asks them
to plot the points and them interpret the data that they came up with.

- Categories of 2D shapes and their properties.

- Be able to classify 2D objects in a hierarchy based on properties.

- Ratios (2:1)

- Relationship of ratios to fractions.

- Tables of equivalent ratios

- Unit rate problems

- percentages

- ratios to convert measurements

This world deals with arithmetic expressions of fractions.

Extend this world to include the division of multi-digit numbers.

To accomplish this standard, all we need to do is extend the previous
mentioned math Alice worlds to make them harder by adding multi-digit
addition, subtraction, multiplication, and division.

This world allows students to practice finding the greatest common
factor between 2 numbers with applications in simplifying fractions.
This world will help students understand the difference between positive
and negative numbers. Does not go into real-world applications though.

Negatives and positives as opposites, symmetry. (-(-3) = 3)

In this world (Kick the Coordinate Plane), students click a character to
kick a soccer ball to a random position on a graph and must give the
coordinates of the point. This goes over points in all 4 quadrants and
positive/negative numbers.

Walk the Number Line allows students to move a character around to
the correct place on a number line by adding/subtracting positive and
negative integers. Integer Football does the same thing, with an
application to sports and moving down a football field on given plays.
Students should be able to interpret inequalities with negative numbers.
Use this world with more examples with negative numbers.

- Real world applications for the above standard.

- Absolute Value

- Statements of absolute value

This standard that requires that students be able to solve real-world
problems by graphing points, and this world applies that skill to tracking
the speed of a bicycle.

The Scientific Notation world uses exponents, but we'll need an Alice
world that deals with exponents exclusively.

Standard 2a deals with students being able to understand and write
expressions using variables and letters to represent numbers.

- Understand and identify the parts of a mathematical function. (sum,
term, product, difference, quotient, factor, coefficient,...)

- Solving algebraic functions

The distributive property.

- Identify when two equations are equivalent. [Inequalities]

- Finding values that make and equation or inequality true.

Using variables to represent numbers and write expressions from real
life problems. This world is an example but won't help them practice this
skill.

- Writing and solving equations of the form x + p =g and px = q

- Inequalities with variables and applications.

These worlds allow students to use graphs to represent equations and
also go into more advanced functions. Also, these worlds to not deal
with tables which are also mentioned in this standard.

- Areas of triangles and special quadrilaterals.

- Find the volume of a rectangular prism

- Draw polygons in a coordinate plane

- Represent 3D figures with rectangles and triangles to find the surface
area.

- Recognize statistical questions.

- Statistical distributions

Measures of center (average/median) summarize a group of data with
just one value.

- Display numerical data using dot plots, histograms, and box plots.

- Reporting the number of observations

- Describing the nature of observation

This standard deals with calculating the measures of center (median
and mean) of data and the boat averages worlds allow users to practice
finding the average speed, distance, and time a boat travels.

- Relating measures of center to variability

7th Grade

8th Grade

7.RP.1
7.RP.2A
7.RP.2B
7.RP.2C
7.RP.2D
7.RP.3

7.NS.1A
7.NS.1B

7.NS.1C
7.NS.1D

7.NS.2A
7.NS.2B

7.NS.2C
7.NS.2D

7.EEA
7.EE.2

7.EE.3
7.EE.4A
7.EE.4B
7.GA1

7.G.2
7.G.3
7.G4
7.G.5

7.G.6

7.SPA1

7.SP.2
7.SP.3

7.SP.4

7.SP.5
7.SP.6

7.SP.7TA
7.SP.7B
7.SP.8A
7.SP.8B

7.SP.8C

8.NS.1
8.NS.2

8.EE.1
8.EE.2

8.EE.3
8.EE4
8.EE.5

8.EE.6
8.EE.7A
8.EE.7B

Walk the Number Line
Walk the Number Line

Walk the Number Line

Basketball Math, etc

Sign Me Up, etc.

Geometry Game

1 Ball, 2 Ball, Red Ball,
Blue Ball

1 Ball, 2 Ball, Red Ball,

Blue Ball

Probability World

Probability World

Probability World

Exponent Laws

Scientific Notation

- Ratios and averages of measurements

- Decide whether two quantities are proportional by table or graphing

- Constant of proportionality

- Represent proportional relationships with equations

- Proportional relationship between points on a graph

- Multistep ratio and percent problems

This standard deals with describing situations where opposite quantities
combine to make 0 such as -4 + 4, but this standard gives the example
of hydrogen atoms.

This standard wants students to understand that p + q is a distance of
the abs(q) from p in either direction.

In this standard, students should understand that subtraction is just
adding the inverse: p-q=p + (-q)

- Properties of operations to add and subtract rational numbers
Understanding multiplication and distributive property with positive and
negative integers (-1)(-1)=1

Understand that integers can be divided if the divisor is non-zero. With
negative values, know that -(p/q) = (-p)/q = (p)/(-q)

- Use properties of operations as strategies to multiply and divide
rational numbers

- Convert a rational number to a decimal using long division

- Apply properties of operations as strategies to add, subtract, factor,
and expand linear expressions.

- Rewriting expressions in different forms: a + .05 = 1.05(a)

- Solve multistep real life problems with positive and negative rational
numbers in any form and apply the properties of operations to them...
- Word problems of the form px +g=rorp(x+q)=r

- Word problems with inequalities of the form px+ q>rorpx+q<r

- Solve problems using scale drawings of geometric figures

- Draw geometric shapes with given conditions using rulers, protractors,
etc.

- Describe two-dimensional figures by slicing 3D figures.

In this standard, students should know the formulas for the area and
circumference of a circle which is practiced in this world along with
squares and rectangles.

- Supplementary, complementary, vertical, and adjacent angles

- Solve real world and math problems involving area, volume, and
surface area.

This Alice world deals with random sampling from a group of red and
blue balls, and in this standard students must learn about gaining
information about populations by examining a sample of the population
and understand random sampling.

This standard has students use the random sample to draw inferences
about the population from the data, and in this world students will
predict the number of red and blue balls and see how the samples are
simulated.

- Comparing two different numerical distributions

- Use measures of center and measures of variability from numerical
data from random samples

Understanding the definition of probability (the chance an event occurs
is between 0 and 1, the likelihood that an event occurs...)
Approximating the probability of a chance event by collecting data.
Students should develop a uniform probability model and use it to
determine the probability of different events. In the game, the user must
enter the probability of choosing a random colored ball from a hole.

- Develop a probability model that may not be uniform.

- Probability of compound events

- Represent sample spaces for compound events.

- Design and use a simulation to generate frequencies of compound
events. (simulate Alice?)

- Irrational Numbers

- Rational Approximations of irrational numbers

This world explains the laws and properties of exponents which
students are required to know based on this standard.

- Square root and cube root

Students should be able to know how to use and understand scientific
notation.

- Perform operations with numbers in scientific notation

- Graph proportional relationships

- Use similar triangles to calculate why the slope is the same between
two points.

- Linear equations with one variable and one solution

- Solve linear equations

High School

8.EE.8A

8.EE.8B
8.EE.8C
8.F.1

8.F.2
8.F.3
8.F.4
8.F.5
8.G.1A
8.G.1B
8.G.1C

8.G.2
8.G.3
8.G4
8.G.5
8.G.6
8.G.7
8.G.8
8.G.9
8.SP.1
8.SP.2

8.SP.3
8.SP.4

N-RN.1
N-RN.2

N-RN.3

N-Q.1
N-Q.2

N-Q.3
N-CN.1

N-CN.2
N-CN.3

N-CN.4

N-CN.5
N-CN.6

N-CN.7
N-CN.8

N-CN.9
N-VM.1

N-VM.2
N-VM.3
N-VM.4A

N-VM.4B
N-VM.4C
N-VM.5A
N-VM.5B
N-VM.6
N-VM.7

Systems of Equations

Move in XYZ and Mike's
world

(Slope Quiz)

Pythagorean Prom (2D),
Pythagorean Theorem in
a 3D Problem

Pythagorean Prom

Volume Quiz
Bike Plot

Bike Plot
(Using Pearls to
Understand Variables)

- Students should be able to understand a system of equations and the
corresponding point is their intersection. (Graphically)

Students should be able to solve systems of 2 linear equations which is
what this world helps them practice.

- Same as the above with real world applications.

- Definition of a function

Students should be able to compare different functions GRAPHICALLY,
also algebraically, numerically in tables, description, etc.

- Linear functions

- Construct a function to create a linear relationship between two points
- Sketch graphs and describe relationship between two functions

- Lines and line segments

- Angles

- Parallel Lines

- Congruency between 2D figures with reflections, translations, and
rotations

- Dilations, translations, rotations, and reflections on coordinates

- Similar 2D figures

- Angle sum of triangles

- Prove and explain the Pythagorean Thereom

"Apply the Pythagorean Theorem to determine the unknown side
lengths in right triangles in real-world and mathematical problems in two
and three dimensions."

This standard requires students to be able to use Pythagorean's
Theorem to calculate the distance between 2 points.

This world quizzes students on the volume formulas of different shapes
including cones, cylinders, and spheres which are specified in this
standard.

Construct and interpret scatter plots.

Students should know about the line of best fit for a scatter plot data
and the end of this Alice world gives an example of finding the line of
best fit for the data created by the user.

- Use linear equations to solve problems
- Bivariate categorical data

- Rational exponents and their properties.

- Rewrite expressions involving radicals and rational exponents.

- Explain why the sum or product of two rational numbers is rational, the
sum of a rational number and irrational number is irrational, and the
product of a nonzero rational number and an irrational number is
irrational.

- Use units as a way to understand problems and to guide the solution
for multi-step problems.

- Define appropriate quantities for the purpose of descriptive modeling.
- Choose a level of accuracy appropriate to limitations on measurement
when reporting quantities.

- Complex number i such that i*2 = -1.

- Use i*2 and the commutative, associative, and distributive properties
to add, subtract, and multiply complex numbers.

- Find the conjugate of a complex number

- Represent complex numbers on the complex plane in rectangular and
polar form.

- Represent addition, subtraction, multiplication, and conjugation of
complex numbers geometrically.

- Calculate the distance between numbers in the complex plane.

- Solve quadratic equations with real coefficients that have complex
solutions.

- Extend polynomial identities to complex numbers.

- The Fundamental Theorem of Algebra is true for quadratic
polynomials.

- Recognize vector quantities as having both magnitude and direction.
- Find the components of a vector by subtracting the coordinates of an
initial point from a terminal point.

- Solve problems involving velocity and other quantities represented by
vectors.

- Add vectors end-to-end, component-wise, and by the parallelogram
rule.

- Given 2 vectors in magnitude and direction form, determine the
magnitude and direction of their sum.

- Understand vector subtraction.

- Represent scalar multiplication graphically

- Compute the magnitude of a scalar multiple

- Use matrices to represent and manipulate data.

- Multiply matrices by a scalar.

N-VM.8

N-VM.9

N-VM.10
N-VM.11
N-VM.12
A-SSE.1A

A-SSE.1B
A-SSE.2

A-SSE.3A
A-SSE.3B

A-SSE.3C
A-SSE .4

A-APR1
A-APR.2
A-APR.3
A-APR.4
A-APR.5
A-APR.6

A-APR.7

A-CED.1
A-CED.2
A-CED.3
A-CED.4

A-REI1
A-REI.2

A-REI.3

A-REIL4A

A-REI.4B

A-RELS5

A-REI.6

A-REL7
A-REL8

A-REL9
A-REL10

A-REIL.11
A-REI.12

F-1F.1

F-IF.2

F-IF.3

The Matrix

The Matrix

Exponent Laws

System of Equations
(2008), System of
Equations (2011)

*Word problem
challenges

Using Pearls To
Understand Variables

Using Pearls To
Understand Variables

System of Equations

Nonvisual Arrays,
Nonvisual Arrays and
Recursion in Alice

Add, subtract, and multiply* matrices. This standard requires that
students be able to multiply matrices of appropriate dimensions. In this
Alice world, users are able to practice multiplying 2x2 matrices and
learn the method for multiplying matrices.

Students should know that matrix multiplication for square matrices is
not commutative. In this world, they are able to input the numbers they
want into the matrices that will be multiplied and can switch the values
to see that they aren't commutative.

- Understand that the zero and identity matrix play a role in matrix
addition and multiplication.

- Multiply a vector by a matrix of suitable dimensions.

- Work with 2x2 matrices as transformations in a plane.

- Interpret parts of an expression. (terms, factors, and coefficients)

- Interpret complicated expressions by viewing one or more of their
parts as a single entity.

- Use the structure of an expression and identify ways to rewrite it.

- Factor a quadratic expression to reveal zeros of the function it defines.
- Complete the square in a quadratic expression.

In this standard, students should be able to use the properties of
exponents to transform expressions for exponential functions. This Alice
world goes over all of the exponent laws with variables, which can be
translated into functions and hold the same properties.

- Derive the formula for the sum of a finite geometric series.
Understand that polynomials form a system analogous to the integers.
Polynomials can be added, subtracted, and multiplied, and this Alice
world quizzes students on how to add and subtract polynomials using a
system of equations.

- Know and apply the Remainder Theorem.

- Identify zeros in polynomials.

- Prove polynomial identities and describe numerical relationships.

- The Binomial Theorem

- Rewrite simple rational expressions

- Understand that rational expressions form a system analogous to the
rational numbers

Create equations and inequalities in one variable and use them to solve
problems.

- Create equations in two or more variables.

- Represent constraints by equations or inequalities.

- Rearrange formulas to highlight a quantity of interest.

This standard requires students to explain each step in solving a simple
equation. The "Using Pearls to Understand Variables" Alice world
explains variables using pearls and at the end it provides an example
and shows how to solve an equation.

- Solve simple rational and radical equations in one variable.

Students should be able to solve linear equations and inequalities and
this Alice world deals with solving linear equations.

- Use the method of completing the square to transform any quadratic
equation.

- Solve quadratic equations by inspection.

- Prove that, given a system of two equations in two variables, replacing
one equation by the sum of that equation and a multiple of the other
produces a system with the same solutions.

This standard deals with solving systems of equations exactly and
approximately, and the exact method is practiced in this Alice world.

- Solve a system of linear equations consisting of a linear equation and
a quadratic equation.

- Represent a system of linear equations as a single matrix equation.

- Find the inverse of a matrix if it exists and use it to solve systems of
equations.

- Understand that the graph of an equation with two variables is the set
of all its solutions plotted in the coordinate plane.

- Explain why the x-coordinates of the points where 2 graphs intersect
are solutions of the equations.

- Graph the solutions to a linear inequality.

- Understand that a function from one set (domain) connects to another
set (range).

- Use function notation, evaluate functions for inputs in their domains,
and interpret statements that use function notation.

Students should recognize that sequences are functions, and also
defined recursive functions. Both of these Alice worlds use arrays to let
students build functions and examine the sequences that they produce,
and the second one focuses specifically on recursive functions such as
Fibonacci's sequence and factorials.

F-IF.4

F-IF.5
F-IF.6

F-IF.7A

F-IF.7B

F-IF.7C

F-IF.7D

F-IF.7E
F-IF.8A
F-IF.8B
F-IF.9

F-BF.1A
F-BF.1B
F-BF.1C

F-BF.2

F-BF.3

F-BF.4A
F-BF.4B
F-BF.4C

F-BF.4D

F-BF.5

F-LE.1A

F-LE.1B

F-LE.1C

F-LE.2

F-LE.3

F-LE.4

F-LE.5
F-TF.1

F-TF.2
F-TF.3
F-TF.4

F-TF.5

MoveinXYZ, Bird
Graphing

MoveinXYZ, Bird
Graphing

MoveinXYZ, Bird
Graphing

Bird Graphing

MovelnXYZ

Bird Graphing

Bird Graphing

Bird Graphing

Nonvisual Arrays in
Alice

Bird Graphing,
MovelnXYZ

This standard says that for a function that models a relationship
between two quantities, interpret key features of graphs and tables
(intercepts, intervals of increasing/decreasing, max and min, symmetry,
etc.) Both of these Alice worlds deal with graphing functions that the
user can examine and compare with other functions. MovelnXYZ uses
polynomial functions while Bird Graphing can use all of the math
functions built into Alice.

Students need to be able to relate the domain of a function to its graph
and the quantitative relationship it describes. In these Alice world,
students can view the graphs of a variety of functions and use the
graphs to analyze the domains of the functions.

- Calculate and interpret the average rate of change of a function over a
specified interval.

Graph linear and quadratic functions and show intercepts, maxima, and
minima.

Graph square root, cube root, and piecewise-defined functions including
step and absolute value functions. The Bird Graphing Alice world is able
to graph the square and cube root functions.

Graph polynomial functions, identifying zeros and factorizations when
available. This Alice world allows users to create the functions that they
want to graph up to the x*4 degree.

Graph rational functions, identifying zeros and asymptotes. This world
allows users to create rational functions if they can create them using
the built-in Alice functions.

Graph exponential and logarithmic functions showing intercepts and
end behavior and trigonometric functions. Alice world functions contain
these mathematical functions in the advanced math section that can be
graphed in this world.

- Use the process of factoring and completing the square in a quadratic
function to show zeros, extreme values, and symmetry.

- Use the properties of exponents to interpret expressions for
exponential functions.

- Compare properties of two functions each represented in a different
way.

- Determine an explicit expression, a recursive process, or steps for
calculation from a context.

- Combine standard function types using arithmetic operations

- Compose functions [T(h(y))]

- Write arithmetic and geometric sequences both recursively and with
an explicit formula.

Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), and f
(kx) for specific values of k. In this Alice world, the user can choose a
function in Alice and then modify it by making the changes above and
choosing a value of k to see how the graph changes for each one.

- Solve an equation of the form f(x) = ¢ and write an expression for the
inverse.

- Verify by composition that one function is the inverse of another

- Read values of an inverse function from a graph or table

- Produce an invertible function from a non-invertible function by
restricting the domain.

- Understand the inverse relationship between exponents and
logarithms.

In this standard, students should be able to prove that linear functions
grow by equal differences over equal differences. This Alice world
shows how functions grow at an equal rate and helps them practice with
a quiz to calculate these values.

- Recognize situations in which one quantity changes at a constant rate
per unit interval

- Recognize situations in which a quantity grows or decays by a
constant percent rate

- Construct linear and exponential functions including arithmetic and
geometric sequences

This standard wants students to observe quantities increasing
exponentially, linearly, quadratically, polynomially, etc. in graph and
table form. These Alice worlds present these values in graphical form.

- For exponential models, express as a logarithm of the solution.

- Interpret the parameters in a linear or exponential function in terms of
a context

- Understand radian measure of an angle

- Explain how the unit circle in the coordinate plane enables the
extension of trigonometric functions to real numbers

- Use special triangles to determine geometrically the values of sin, cos,
and tan for pi/3, pi/4, and pi/6

- Use the unit circle to explain symmetry and periodicity of trigonometric
functions

- Choose trig functions to model periodic phenomena with specified
amplitude, frequency, and midline

F-TF.6
F-TF.7
F-TF.8
F-TF.9

G-CO.1
G-CO.2

G-CO.3
G-CO.4
G-CO.5

G-CO.6
G-COo.7

G-CO.8
G-CO0.9
G-C0.10
G-CO.11
G-C0.12

G-CO.13
G-SRT.1A
G-SRT.1B
G-SRT.2

G-SRT.3
G-SRT.4
G-SRT.5

G-SRT.6

G-SRT.7

G-SRT.8
G-SRT.9
G-SRT.10
G-SRT.11
G-C.1

G-C.2

G-C3
G-C4

G-C.5

G-GPE.1
G-GPE.2
G-GPE.3
G-GPE.4
G-GPE.5
G-GPE.6
G-GPE.7

G-GMD.1
G-GMD.2
G-GMD.3
G-GMD.4

G-MG.1
G-MG.2
G-MG.3
S-ID.1

S-1D.2

Volume Formulas

Bike Plot

- Understand that restricting a trig function to a domain which is always
increasing/decreasing allows its inverse to be constructed.

- Use inverse functions to solve trig equations

- Prove the Pythagorean identity sin*2 + cos"2 =1

- Prove the addition and subtraction formulas for sin, cos, and tan

- Know the precise definitions of angle, circle, perpendicular and parallel
lines, line segments, point, line, distance, arc, etc.

- Represent transformations in the plane using transparencies and
geometry software

- Given a rectangle, parallelogram, trapezoid, or regular polygon,
describe the rotations and reflections

- Develop definitions of rotations, reflections, and transformations

- Given a geometric figure, draw the transformed figure

- Use geometric descriptions of rigid motions to transform figures and to
predict the effect of a given rigid motion on a given figure

- Use the definition of congruence in terms in terms of rigid motions

- Explain how the criteria for triangle congruence follow from the
definition of congruence

- Prove theorems about lines and angles

- Prove theorems about triangles

- Prove theorems about parallelograms

- Make formal geometric constructions with a variety of tools

- Construct an equilateral triangle, a square, and a regular hexagon
inscribed in a circle

- A dilation takes a line not passing through the center of the dilation to
a parallel line

- The dilation of a line segment is longer or shorter in the ratio given by
the scale factor

- Given two figures, use the definition of similarity and decide if they are
similar

- Use properties of similarity transformation to establish the AA criterion
for 2 triangles to be similar

- Prove theorems about triangles.

- Use congruence and similarity for triangles to solve problems

- Understand that by similarity, side ratios in right triangles are
properties of the angles in the triangle

- Explain and use the relationship between sin and cos of
complementary angles

- Use trigonometric ratios and Pythagorean Theorem to solve right
triangle in applied problems

- Derive the formula A = 1/2ab sin(c) for the area of a triangle

- Prove the Law of Sines and Cosines

- Understand and apply the Law of Sines and the Law of Cosines

- Prove that all circles are similar

- Identify and describe relationships among inscribed angles, radii, and
chords

- Construct the inscribed and circumscribed circles of a triangle and
prove properties of angles and for a quadrilateral inscribed in a circle.

- Construct a tangent line from a point outside a given circle to the circle
- Derive using similarity the fact that the length of the arc intercepted by
an angle is proportional to the radius

- Derive the equation of a circle of given center and radius using the
Pythagorean Theorem

- Derive the equation of a parabola given a focus and directrix

- Derive the equations on ellipses and hyperbolas

- Use coordinates to prove simple geometric theorems algebraically

- Prove the slope criteria for perpendicular and parallel lines

- Find the point on a directed line segment between two given points

- Use coordinates to computer perimeters and areas of polygons

- Give an informal limit argument for the formulas for the circumference
of a circle, area of a circle, volume of a cylinder, pyramid, and cone.

- Give an informal argument using Cavalieri's principle

Use volume formulas for cylinders, pyramids, cones, and spheres to
solve problems. This world will help students learn the formulas of the
volumes for different 3D shapes.

- Identify the shapes of 2D cross sections of 3D shapes

- Use geometric shapes, their measures, and their properties to
describe objects

- Apply concepts of density based on area and volume in modeling

- Apply geometric methods to solve design problems

This standard wants students to represent data with plots on a real
number line, dot plots, histograms, and box plots. This Alice world has
the user create data and then plot the points on a graph.

- Use statistics appropriate to the shape of the data distribution to
compare center and spread

S-ID.3
S-1D.4

S-ID.5

S-ID.6A Bike Plot

S-ID.6B
S-1D.6C
S-ID.7
S-ID.8
S-ID.9

S-IC.1
S-IC.2
S-IC.3

S-IC.4
S-IC.5
S-IC.6

Can | Get Your

Number?, 1 Ball, 2 Ball,
S-CP1 Red Ball, Blue Ball
S-CP.2

S-CP.3
S-CP.4
S-CP.5
S-CP.6
S-CP.7
S-CP.8

S-CP.9 Line Up
S-MD.1

S-MD.2
S-MD.3

S-MD.4
S-MD.5A
S-MD.5B

Ready, SET, Go!, War,

Choosing Random
S-MD.6 People From a Class
S-MD.7

- Interpret differences in shape, center, and spread in the context of
data sets

- Use the mean and sd of a data set to fit it to a normal distribution and
to estimate the population percentages

- Summarize categorical data for two categories in two-way frequency
tables

This standard has students find a function to the data and use functions
fitted to data to solve a problem. In this Alice world, after the user plots
the points from the data that they create, the best-fit line is drawn and
predicts a future value.

- Informally asses the fir of a function by plotting and analyzing
residuals

- Fit a linear function for a scatter plot that suggests linear association
- Interpret the slope and the intercept of a linear model.

- Compute and interpret the correlation coefficient of a linear fit.

- Distinguish between correlation and causation

- Understand statistics as a process for making inferences about
population parameters

- Decide if a specified model is consistent with results from a given
data-generation process

- Recognize the purposes of and differences among sample surveys,
experiments, and observational studies

- Use data from a sample survey to estimate a population mean or
proportion

- Use data from a randomized experiment to compare two treatments
- Evaluate reports based on data

This standard wants the students to describe events of subsets of a
sample space. Both of these worlds deal with random sampling and
creating subsets. The first creates a random set of numbers to form a
phone number and the second is randomly sampling from a group of
balls.

- Definition of independent events

- Understand the conditional probability of A given B and interpret their
independence

- Construct and interpret two-way frequency tables

- Recognize and explain the concept of conditional probability

- Find the conditional probability of A given B

- Apply the Addition Rule of probabilities

- Apply the Multiplication Rule of uniform probabilities

This standard requires students to use permutations and combinations
to compute probabilities, and this Alice world shows the user how to use
permutations to find the number of possible ways to order a group of
people in a line.

- Define a random variable for a quantity of interest

- Calculate the expected value of a random variable and interpret it as
the mean of the probability distribution

- Develop a probability distribution and find the expected value for a
random variable defined for a sample space that can be calculated

- Develop a probability distribution for a random variable defined for a
sample space assigned empiracally

- Find the expected payoff for a game of chance

- Evaluate and compare strategies of expected values

This standard wants students to use probabilities to make fair decisions.
Both of these worlds use probabilities to make decisions within them.
The first two use probability in a card game and the last one selects a
random student from a class.

- Analyze decisions and strategies using probability concepts

Standard

Level 1 (K-6)
Level 2 (6-9)
Level 3A (9-10)
Level 3B (10-11)
Level 3C (11-
12/AP)

Level 2

CTA

CT.2

CT.3

CT.4

CT5

CT.6

CT.7

CT.8

CT.9

Alice World/Concept

A lot of our Alice tutorials have problems to solve at
the end such as the recursion and nonvisual array
tutorial, which shows the user how to build an Alice
world that calculates Fibonacci's sequence and
asks them to use the same algorithm that creates a
world that calculates factorials. We will also have
different challenges created for students, where a
problem will be given to them and they must come
up with the algorithm to solve it in Alice.
Trigonometry Prom is an example where the prince
needs to find out how far he needs to go to meet
the princess under the disco ball.

In Alice, users are allowed to use the commands
"Do Together" and "For all Together" with lists to
run multiple instructions at the same time.

Alice allows problems to be solved in different
ways. For example, you are able to use lists or
arrays to hold a collection of information to use in
the program.

In addition to acting out the searching and sorting
algorithms, students could watch Alice animations
of different algorithms to sort a group of people by
heights or find a specific character in a list, while
pausing it and asking questions about what will
happen next to help them learn the algorithms.
Actually programming these is more for level 3.
The tutorials provide detailed instructions on how to
complete Alice worlds so students should be able
to follow them and create a final project based on
the tutorial that they complete.

Alice is great for this because data can be
represented in graph form (Bike Plot, MoveinXYZ,
etc.), as text (Challenges, eventual word problem
world), numbers (Fractions, Rounding Game, most
math worlds), pictures (billboards), and many other
objects (for example, bunnies in Fibonacci
sequence and balls in probability world, pearls in
Using Pearls to Understand Variables, etc.)
Students can generate the data when the world
runs, and then store it in lists or arrays to analyze it.
Examples of this are the Boat Averages worlds
where the world itself collects the times it takes the
boat to go through each hoop and the distance or
time per hoop, and uses it to calculate the average
speed of the boat.

These Alice worlds take data or functions input by
students and displays them in graphical form-
MoveinXYZ, Bike Plot, Mike's graph world, a
modified Bar Chart object. Bike plot world
physically presents the speed of a bicycle based on
when the user clicks and plots the data.

Most of our Alice project and educational tutorials
deal with having students interact with content-
specific models. For example, in the Science
category, students can interact with a model of the
lac operon, a helium molecule, a model of the solar
system and planets, and many more.

Description

This standard requires that the
students be able to figure out the
basic steps in algorithmic problem
solving.

Process of parallelization to solve
problems

- Define an algorithm as a
sequence of instructions.

In this standard, students should
be able to evaluate ways that
different algorithms can be used to
solve the same problem.

Act out searching and sorting
algorithms

Describe and analyze a sequence
of instructions being followed.

This standard requires that
students be able to represent data
in various ways (text, sounds,
pictures, numbers,...).

Students must use visual
representations to display problem
states, structures, and data with
this standard.

Students have to interact with
content specific models in this
standard.

CT.10

CT.11

CT.12

CT.13

CT.14

CT.15

CL.1

CL.2

CL.3

CLA4

CPP.1

CPP.2

CPP.3

CPP.4

CPP.5

Alice can be used to simulate problems that need
to be modeled or simulated. We will be adding
Alice worlds dealing with word problems for
students to practice solving and it will help them
visualize and model the problem in their mind to
help them solve it.

In the Challenges section, there is a problem that

the student must solve by filling in smaller functions

and methods to achieve the desired results. More
advanced challenges will have more sections of
code for the student to fill in and find the
subproblems to solve.

Alice allows for computer science concepts such as
hierarchy and abstraction in the use of parameters,
local/global variables, inheritance, object methods,

etc.

The Alice materials we have made in Mathematics
show connections between math and programming
and how they overlap. Alice also has many built-in

math based functions such as <, >, =, arithmetic,
sin, cos, etc that can be implemented into your
programs. Alice can be used to help students

practice math concepts such as in Basketball Math,

or it can be used to make their own math projects
and explore a math subject in Alice such as
probability world.

The teacher lesson plans page on the Duke

Adventures in Alice site provides many examples of

how programming in Alice can relate to other

disciplines. Examples of this include using Alice for

a book report, a history project, math quizzes, or
foreign language quizzes.
Alice itself is a productive multimedia tool that

supports learning through a new medium. Students

can use Alice for projects, presentations, quizzes,
games, etc.

The tutorials on our page have instructions on how

to build the worlds that we have. It is possible to

have students collaborate on a project to make an

Alice world in a group setting by following the
instructions given in the tutorials.

Alice is an example of a multimedia tool that can be

used in the classroom to help students engage in
their learning. It is also a beginning programming
tool that can help students move on to other
programming and multimedia tools.

Students can use Alice to design and present
products and it is a technology resource. The
teacher can have the students be creative and
create a story or game using Alice, then present
their ideas and final product to the class.

Our Alice tutorials page has many examples of
tutorials on how to use these program solutions
such as loops, conditional statements, variables,
logic, etc. in an Alice world to solve a problem.

Evaluate what kinds of problems
can be solved with modeling and
simulation.

- Analyze the degree to which a
computer model represents the
real world.

Decompose a problem into
several subproblems

Understand the notion of hierarchy
and abstraction.

Examine connections between
mathematics and computer
science

Interdisciplinary examples of
computational thinking.

Apply productivity/multimedia tools
to support learning through
curriculum.

Students must collaboratively
design, develop, publish, and
present products using
technology.

- Collaborate with peers, experts,
and others using collaborative
practices such as peer
programming, team projects, and
group active learning.

- Exhibit dispositions necessary
for collaboration.

- Select appropriate tools and
technology resources to solve
problems

Use a variety of multimedia tools.

Design, develop, publish, and
present products using technology
resources.

Students will have to demonstrate
an understanding of algorithms
and their practical application.
Implement problem solutions
using a programming language
(loops, conditional statements,
logic, expressions, variables, and
functions)

CPP.6

CPP.7

CPP.8

CPP.9
CDA1

CD.2

CD.3

CD.4

CD.5

CD.6

CD.7

CD.8

Cl.1

Cl.2

CL3

Cl4

CL5

Cl.6

There is an annual competition that students can
enter where they must create Alice worlds that
teach about computer and internet safety in it's
animation. Students can build worlds for that and at
the same time learn about good practices in
information security.

Several teachers have come up with Alice worlds to
help students learn about different jobs and
occupations such as "Career Day", "Business
Careers", and "Career Decisions". This type of idea
can also be applied to animate how specific jobs
use computing and technology.

Alice worlds can take data created by the user and
implement it into the world for them to analyze.
Examples of this are Boat World Averages and
Bike Plot, where the user takes data that he
creates in the world to calculate the average boat
speeds or plot the speed of the bicycle.

Demonstrate good practices in
personal information security

Identify interdisciplinary careers
that are enhanced by computer
science

- Demonstrate dispositions
amenable to open-ended problem
solving and programming

In this standard, students should
collect and analyze data that is
collected from multiple runs of a
computer program.

- Recognize that computers are
devices that execute programs

- Identify electronic devices that
contain computational processors
- Demonstrate an understanding
of the relationship between
hardware and software

- Use accurate, appropriate
terminology when communicating
about technology.

- Apply strategies for identifying
and solving routine hardware
problems that occur during
everyday computer use.

- Describe major functions and
components of computer systems
and networks.

- Describe what distinguishes
humans from machines.

- Describe ways in which
computers use models of
intelligent behavior.

- Exhibit legal and ethical
behaviors when using information
and technology and discuss
consequences of misuse.

- Demonstrate knowledge of
changes in information
technologies over time and the
effects of those changes

- Analyze the positive and
negative impacts of computing on
human culture

- Evaluate the accuracy,
relevance, appropriateness,
comprehensiveness, and bias of
electronic information sources in
real world problems.

- Describe ethical issues that
relate to computers and networks
- Discuss how the unequal
distribution of computing
resources in global economy
raises issues of equity, access
and power.

Appendix 2: Tutorials

This appendix contains all of our tutorials fardnts to build an entire Alice world as a
project from start to finish. Some of these examglee math-related, but the focus is mainly
on programming in Alice and computer science cotscdfhese tutorials give the students
step-by-step instructions on how to complete aage/lice world and several of them also
have small challenges for the students to tryeethid to modify or add new ideas to the Alice

world that they just created.

50

by .mem-wwoés

Arrays vs. Lists

 Arrays are similar to lists, but elements in
arrays are ordered and elements in a list are
unordered. When traversing an array, one uses
a loop (complicated version) to step through
indexing particular items. Not all elements
need to be processed. One could access every
other element. When traversing a list, the order
does not matter and the user wants to handle

every element. Use “For all in order” or “For
under Prof. Susan Rodger v i X
Duke University all together” to process the elements in a list.
June 2012
Arrays Standards

* The purpose of this tutorial is to demonstrate how
to use arrays in Alice worlds. An array is an
ordered collection of objects stored by an index.
Alice has two types of arrays: visual and
nonvisual. Visual arrays put the items on the array
index number to show their location in the array.
This is useful for objects that need to stand in a
line. In nonvisual arrays, however, the items can
be put anywhere in the Alice world and still
function as an array or they can be used for an
array of numbers, strings, objects, etc.

CSTA Standard 5.3.B- Computer Science
Concepts and Practices (CT):

Students will be able to..

“6. Compare and contrast simple data structures
and their uses (e.g., arrays and lists).”

Getting Started

You want to add in different people to put into this world. You
can find them under the “People” tag or use the students under
the “High School” tag. [used 8 people in my world to form the
array as well as the coach to describe what’s going on (9
people total). Now we’re ready to build the array!

TN j

Visual Arrays

* After adding the
ArrayVisualization, a menu
will pop up for you to add
elements to the array. Select
“new item” to add objects

Values:

item 0 = kelly
-item 1 = merd —

item 2 = girlProm
“item 3 = randomGuy2 —

.___mq_.:. - n._oono!m!

into the array and choose the
items that you would like to
add at the specified index. T - L
Make sure to add “the entire o <one>

”.You should add 8 camera

light
people and have one person ground

left over. gym

item 5 = randomGuy1
item 6 = aliceLiddell -

nerd
girlProm
aliceLiddell

cheerleader
.INZNS_-&,E\”.,O
L L L b a1) PR T A N A R LR A TR 2wy o pe

Visual Arrays

To use a visual array, go to the “Visualizations” folder
in the Alice Local Gallery and add an
ArrayVisualization to your world.

i W

e

m— .
size: 82 kb)

paris: 3

/Add instance 1o world

> IR > visuaizations [

ArrayVisualization
Class

ArrayVisualization ObjectVisualization

@

L on your computer - onyour computer - On your compuler

Visual Arrays

* And here is your visual array! Click and drag the
ArrayVisualization object to turn it and move it around to get the
entire array to fit the screen and facing the camera. Note that the
people in the array will move with it. Don’t click on the people
and move them or this will cause problems accessing the array
later on. Click “Undo” if you accidentally move a person.

Using the Array

* Now we will go over several uses for the visual
array including modifying each element of the
array, every other element of the array, choosing
random elements in the array, accessing specified
indices of the array, and swapping elements in the
array

(Note that for arrays with n objects, the first
element is at index 0 and the last element has the
position n-1)!

* Loops are very important for
iterating through the objects
of an array. In this method,

. @ world.my first method
drag in a Loop from the worid sachiiement Nopanr
bottom of the screen into the |
“Do Nothing”. Have the loop | e
go from 0 to the number of
elements in the array, in this
case we want to choose 8.
When the menu comes up,
go down to “other...” and
enter 8 into the calculator.

29

Doin order . Do together INEL ‘While For allin order | For all together

Using the Array

File Edit Jools Help

giaﬁn

Create a new world method
by clicking on “world” in the

object tree on the left and then : %,H_“aa
. . 3 lig

under “world’s details” click Dorowd
on the methods tab and then & | @oym
“create new method”. Name @ cheerleater
this method eachElement. 5 { Rpjock

sl .6_53

[..an_auq_o:._

+ ([aliceLiaden

+

properiies [methods [functions
my first method [edit]

(st new memoa D

Each Element
[@ woridmyfirstmethod | @ world.eachElement |

world.eachElement No parameters

MNo variables

- Loop 8fimes times show complicated version

nerd move up 0.5 meters maore...

nerd move down 0.5 meters more...

* To get each element to do something in order, click on any element
of the array in the object tree and go to the methods tab. The will be
your “default person” that you will use for all of the characters’
methods that you want the elements of the array to perform. Have
your object move up 72 meter then move back down.

IFSu’aa 0 wptolbut notincluding) &limes — incrementing by 1

Loops

* If you click on “show complicated version”
you will see more information about how
loops work. The index variable is used to
traverse the array and its value will increase
from 0 to 7 each time you go through the loop.

nerd — move up 0.5 melers

nerd — move down 05 meters — more...

show simple version _

Each Element

* And that concludes how to modify each element in an array in
Alice! Make sure to test this method by changing the Events
panel at top right corner select “When the world starts, do =2
world.eachElement” to run this when the world starts.

Events

create new event

When the world starts, do :E:_EO
| my first method

m eachElement _

Each Element

Next, click on
array Visualization in the

object tree and go to the e

roperties [methods [functions |

properties panel. Under =
properties, drag the |4 -
reate mew varia
elements property over
[13 29
your “default person p—
that you used before to
get the instructions and **'~
select “ith item from §n” " 1009
. vehicle = world
array” => “expressions”
>“index” to access the oo
filingStyle = solid

object at position index ——-—
in the array.

@ world.my first method

ariables

~ILoop n\w” index from 0

world.my first method No parameters

up to (but not includi

—_saonn_un—_1) matare — mope.

index
| more..

Each Element (Reverse)

* Now, we want to go through the elements of the array
backwards. Unfortunately, the complicated loop will
not let you increment by negative numbers, so we
will have to use the formula 7 — index to process the
correct position in the array. Note that as index
increases, 7 — index will decrease.

index — index (current position of the array)
0 7
1 6
2 5
3 4
4 3
5 2
6 1
7 0

Each Element (Reverse)

* To go through the array in reverse, you only need to change
one thing. When you select the ith item from array, select the
highest index of the array, in this case, 7. Then, click on the
down-arrow next to the number and select “math” = “7 - 2>
“expressions” =2 “index”.

item NO_,_.uE arrayvisualization.elements

move up
0 _ b
fem L Lt 0.25 E move do
B 0.5
3 1
. o7 2
. expressions bk f
g—— r u+_..mx§.mwmn.=mv -_me
. ather... i F.J2 r_ ather... .
7%

Every Other Element

* Next, we will discover how to change every other element in
an array. Start by creating a new world method called
everyOtherElement, and adding a loop into the method from 0
to 8. Make sure to hit the “show complicated version” button
of the loop, and your loop should be a longer structure like
this:

Shonw simple yer

Loap “E index from 0~ upto but notincheting) & tmas
(Do Nathing

incrementing by 1

Each Element (Reverse)

* If you create a method called reverse to try this out, the
two lines inside of the loop should look like this (Have
the object move up and down again):

.: -index) o from arrayVisualization.glements move up 0.5 meters

(7~ -index~ | — from arrayVisualization.elements move down — 0.5 maters

* Now, add a line at the comEEsm of the method to have
the coach say, “Now in reverse”, under the coach’s
methods before the loop starts and you are done with the
reverse method. Test this method out by changing “When
the world starts, do = world.reverse” in the Events editor.

Every Other Element

* There are a couple of ways to modify the elements of an array at a
particular interval. The simplest way is to change the “incrementing
by” portion of the loop to 2 or whatever interval you want. Add the
methods that you would like done in the loop and only every other
element will act out the method. We chose to have them turn left
and then right 1 revolution each direction. Remember, when asked
for the ith item from array after dragging the elements property into
the method, go to ox@nommﬂocm: - “index”.

anEp w Sy @ E— Prw s g T

MO varalves

“[Loop ' |14 index from @~ up fo (bul pot including] 8 times ~ Qacrementing by 2

index from arrayVisuskrntion siements fum bef 1 revlubon

Index from arrayViseskzabon skements fum mght — 1 rewdiug

Every Other Element

* On your own, try creating a method that has
every third element in the array do the action
of your choice. Name this method
everyThirdElement. Don’t forget to test your
new method to see if it works by changing the
event “When the world starts, do —...

Every Other Element Different

* To do this, you first need to drag an If/Else
block inside of your loop from the bottom of
the window and select true for now.

FlLoop _m_ index from 0 | upto (but not including) 8times — incrementing by 1

Il true

Do Nothing
El

Do Nothing

Do in order Do togethe @ -Loop | While - Forallin order For all together

Every Other Element Different

* Another way to modify every other element in an array is to
check if the index is even or odd, or is divisible by some number.
This is better if you want every object to do an action, then every
other object to do a different action. Create a new world method
called everyOtherElementDiff.

e

properties H\Emﬁzonm ?_._:Q_anm _

my first method [edit]
eachElement | edit |
reverse [edi]
everyOtherElement | edit |
everyThirdElement | edit]

everyOtherElementDiff | [edit|

create new method _

Every Other Element Different

—?va ies T:wﬁ ods ﬂ-: nctions ..

No vanables

_ create new functions _

[=lLoop mm_m_amx from 0 — upto (bu

[~ boolean logic
025— =10
not a
. (Do Nothing
both a and D
Else
gither a or b ,orboth (Do Nothing

[~ math

* Next, go to the world’s functions tab and select
“a==b". Let a be any arbitrary number (I chose
0.25 but this value will be replaced) and let b = 0.
Remember that you may need to select “other...”

and type in 0.

Every Other Element Different

* Scroll down in the functions
Novarates tab, select “IEEERemainder of
a/b” and drag it over the

...I
rlies
i

mtiads [funcons |
s

arctan a = i v
=ILoop 12 index, from 0 upto fbut motincluding) &7 .
— = ¥_ arbitrary value that you used
= - [EEERemai 251 2 =1 %‘

_ s ‘ - =" for a before. When asked for
1 raisedtothe b power e o5 H_H NP %; a ﬂ
naturallog of & m._g 05 . cv s@. 0 s Wv:ﬁ.v dex” OR

. . “expressions index
eraisplioln L Do ething A X k
1

S T | | just drag the index variable
o 3 ; from the loop, and let b = 2.

| This will check to see if the

& conveted rom radians o deqre E

= remainder of the index divided
by 2 returns a remainder of
zero or not, determining if the
index is odd or even.

—a_ronyarted freem daaraos fa radiz

Random Elements

* Now, we’ll go over how to choose random elements from an
array. First, create a new world method called
randomElements and add a loop from 0 to the number of
random positions that you want in this method (I chose 5). You
will also want to create a new number variable and call it
random that will be used to calculate the random indices to be
modified. You should see your variable show up to the left.

world.random No paramefers

m random = 1 A

=Loop Stimes times _ show complicated version _
(Do Nothing

_ create new parameter _

create new variable

Every Other Element Different

coach ~ say Everyother element different. -~ more...

[=lLoop | [123)index from 0 — upto (but notincluding) 8iimes — incrementing by 1 _ show simple version

=[] IEEERemainder of index — [2]

item index from arrayVisualization.elements turn backward 0.25 revolutions more...

- item index from arrayVisualization.elements turn forward — 0.25revolulions — more..

Eise

" ftem index — from arrayVisualization.elements turn left — 1 revolution — | more..

* Now, have the objects at the even indices turn backward then forward
Ya revolution, and the objects at odd indices just turn left one
revolution. (Remember to use the “default person”, then replace them
with the elements property of the array). And that concludes
modifying every other element in an array! Have your extra person
say “Every other element different.” and test this method by changing
the event when the world starts.

Random Elements

123] random = 1

* Now drag the random &

variable into the loop and
when prompted, set the
value of random to any
value for now. In the
example below I set the
value to 1.

NAoop __W* index from 0 upto (but notincluding)

(Do M Satvaiie
| increment world.randomElement.random by 1
| decrement world.randomEiement.random by 1

* Then you want to go to the

akb =|Loop @ index from 0~ up to {but not inchuding gOﬂ_Qum ?HHO;QOEM Hmp_u NSQ
ash 1 random ~ set value to {1 | more... I 99
——) e find H.r@ random number
function under the random
ach] .
heading. Drag that over
a<=h

the number that you
originally set as the value
for random.

random

choose true E%
random numbe

Random Elements

‘ * Click on “more...” next to the
dsnormnbbolnes ,@ random item that you just
minimum #

dragged into the method. We
only need integer values from
0 to 7 to get the positions in
the array, so set the minimum
value to 0, the maximum
value to 8, and integerOnly to
be true.

n

maximum »
integerOnly »

random | st valpe tp random number minimum =0 -~ maximum =§ -~ inegerOnly = true

Random Elements

* And that concludes the portion on random elements in an
array. The code below has the coach say “5 random elements”,
then selects 5 random objects from the array that move
forward, turn and say their position number, then move back.
Make sure you don’t forget to change the event “When the
world starts do” = randomElements and run your world.

122| random = 1

coach say 5 random elements. MOoTe...

show simple version

[<ILoop _m_ index from 0 up to (but not including) 5 times incrementing by 1 _

random ~ set value to | random number minimum =0 maximum=8 integerOnly = true more...

item random from armrayVisualization.elements move forward 1 meter more...

[~ Do together
. item random from arrayVisualization.elements 1 left 1 revolufi P
* Note: This statement generates random numbers up to but not __— %
wSO_Cnﬁsm the maximum value A%V“ BmWwbm 7 the ﬂmﬁ.m@mﬁ ﬁOmmﬂuHO item random from arrayVisualization.elements say = Random= joined with ~ random asa string
integer produced.
item random from arrayVisualization.elements move backward 1 meter more...

* This finishes creating the
random number generator.
Now, fill in the code with the [“iLoop 2% index from 0 up to (but not including)
instructions that you want,
using your “default person”
and then replacing him with { ith item from array » | index more...
the elements of the array seck = [0S Back =
from arrayVisualization’s £ m
properties. But this time,
instead of choosing “index”
as the ith element from array,
go to “expressions” 2>
“random”. Our random
person moves forward 1
meter, turns and says the 5
value of random, and then —— _

. . | expressions » P
moves back to their position. LELpresions ¥ index
Doin order | Do together "I giher...

123 random = 1

random set value to random number mini

= @ U & W N

Specific Elements

* Now we will see how to modify certain elements
of an array. For example, if you only want the
certain positions in the array to do something.
We want the user to choose 2 objects and then
have them switch places. To accomplish this,
you will first need to create a new world method
we will call specificElements and then create a
second method to swap the two elements chosen.

Specific Elements

* Now we need to create a variable to obtain the
user input. Click on “create new variable” in
the top right corner of the method. Make this a
number variable and call it num.

.@ Create New Local Variable E

[- r

|| Name: ?:3

| TYPE ® Number
_' Boolean

create new parameter
_ Object
) Other... D create new variable
= [
Value: 1 | Imakea |List

Specific Elements

* Then, go to the world
functions tab and drag the
“ask user for a number”
function over the “1” that
we previously put for the
value of num. This will
create a pop-up box to ask
the user for a number while
the world is running. When
prompted for a question to
enter, type in a string to ask
the user for a number
between 0 and 7.

rid's details world.specificElement Mo parameters

erfizs [metho } i
pert etfiods [functions | | 22 um'= 1
|- gt

random

choose true. probabiityDTrue of num -~ set value MTE...

ask user for a number
random number

string i
a joined with b l=
what as a string

ask user
ask user for a number
ask user for yes or no
ask user for a string

TEntera string — o

Enter a string: _
|[Enter a number between 0 and 7

|

Specific Elements

_... @ world SH__?mm method ﬁﬁ world.specificElement

world.specificElement Noparameters
method .oa:ow. Drag the ﬁm_ s §
num variable into the
method, and set the value é&iﬁmq
to 1 for now. SEtwe

¢ The new variable should
appear at the top of the

increment world.specificElement.aum by 1
decrement world,specificElement.num by 1

0.5

R

2
7

8
. expressions b |

“ other...

Specific Elements

* Now, add whatever

instructions that you want into

the method by using the

methods of the “default object” ropertes [metracs [funcions |
in the array. When dragging

the elements of the array from
array Visualization’s properties

irrayVisualization's details worna.speciniceien

i _.W.w_ num = 1
| % | elementg =| kelly, nerd, giriProm, — il —
num - set valut

create new varable
You

Aum st value to ask user for a number guestion = Enter a number between 0 and 7.

EE..@ from arrayVisualization.elements

over the object name this time, — * | elements
e ranhira nnca
select num under “ith element

from array” = “expressions”.

more.

say Youchoseme! more..

world.specificElement Mo parameters

_:M__E_._._ =1

Specific Elements

* Have the character move forward and say “You chose me” at
the same time, then have them move back to their position.
Now, create a new number variable called first. This variable
will save the number that the user enters, because we will need
it later on. Drag first into the method and set this variable to
“expressions” = num.

_ credle new parameter w

create new variable

to — askuserforanumber question =Enter a number betweenOand 7. — more... more..,

from arrayVisualization.elements say You chose me! more...

from arrayVisualization.elements move forward ~ 1meter - more...

num — from arrayVisualization.elements move backward — 1 meter — | more..

t set value to num more...

Wi num=1-, 7m firsti= 1% |, _mA second = 1

num set value to ~ ask user for a number guestion =Enter a number betweenOand 7.~ more...

(=1Do together
item num — from arrayVisualization.elements say 'You chose me! — duration =2 seconds
item num from arrayVisualization.elements move forward = 1 meter =~ more...
item num from arrayVisualization.elements move backward — 1 meter = more...

first set value to num more...

num -~ set value to ~ ask userforanumber question =Enter another number between 0 and 7. — more...

(=] Do together
item num -~ from arrayVisualization.elements say 'Youchose me! — duration =2 seconds
item num from arrayVisualization.elements move forward — 1 meter = more...
item num — from arrayVisualization.¢lements move backward — 1 meter = more...

second set value to num — more...

item =_==\=§ arrayVisualization.elements
ama value to num — more...

Specific Element

Next, you are going to want to copy all of the instructions that we
just added and move them all to the bottom and replace all of the
<None> subjects with num as they are in the first half. Create a
new number variable called second to store the second value the
user will enter and put it where first was in the top part to save

the second value. The entire method code can be seen on the next
slide.

num - set value to ~ askuserforanumber question=Enter another number betweenOand7. more,
[~/ Do together
ittem num — from arrayVisualization.elements say Youchoseme! ~ duration =2 seconds
item num ~ from arrayVisualization.elements move forward — 1 meter = more...

move backward — 1 meter — more...

Specific Elements

* That concludes how to access a specific element of an array.
Make sure to test this method by changing the Event. Below is a
picture of the pop-up box to ask the user for an index at

runtime. _
T) =

PR prow [o ey e

[—
Question -

2 7 Enter a number between 0 and 7.

il

* Note: Entering a number that does not exist in the array (anything less that ()
or greater than 7) will cause the program to crash and you will see an
“index out of bounds exception” error.

Swapping Elements

* Now, we want two elements in the array to swap
places. To do this, we’ll need to add another
visualization object. Click on Add Objects and go to
Visualizations in the Local Gallery. Import an

ObjectVisualization.

e, S =

size: 63 kb
parts: 1

|

Add instance to world E

Swapping Elements

* In this example, the
positions that will be
swapping places are 0
and 7.

* The algorithm for swapping
elements in an array has 3
steps: The first is to move the
object from the first index to
the ObjectVisualization.

¥

Swapping Elements

Back in the method editor, create a new world method called swap. In
this method create two number parameters that will pass in the indices
that will switch places from specificElements. To create a new
parameter, click on the “create new parameter” button to the right of
the editor. Name the first parameter index! and the second one index?.
The next two slides provide an example of how we will swap two
elements in the array using these parameters and the
objectVisualization.

f £3 Create New Parameter o

Name: |ingex)|

W Type: @ Number

I ©) Boolean @ world randomElement
) 1 world.swap world backwar
) Objec @ world @ world backward
| Other... _ (| create new parameter
| ' makea —Emn E _ create new variable
olem=] |

Swapping Elements

* Next, move the object at
the second index of the
array to the space at the
first index.

* Then, move the object on
the objectVisualization to
the second index in the
array.

Swapping Elements

* To move the object from the ¥ tozetVisuliaton = tem
first index of the array to the ghjactisuslization move

Swapping Elements

Vg vaniadies

= — = WOra.my nrst metnoa WOInu.spe
ObjectVisualization, gotothe _~ R et obiectVisuaizabon — = bbb - | M =
. . : : 123 j (123 j

methods of objectVisualization _ E—— world.swap [+ndext, % index2
NSQ QH.N ﬁ_Oﬁ M_mwamq__mn R p—— W WOna.my Trst memnoa _ .feate new vanabie 5

. gt e world.swap {122 indext | 122 index2 6
objectVisualization = item”™ crestenew warate - :
. . .apture pose . ;
into the editor. For now H_e = let objectVisualiza¥Mugz ~ item index1 ~ from wésw_a__s:,lghsﬁ

13 i ivafi expressions

choose your “default person”. unyor] et ahectisiazaton . . ———— -
Th ¢ Visualizati | elemerts color = let arrayVisualization ~ [index1 ¢ g e nde2 |

en, go to arrayVisualization _ ,

. _ ith item from array * jnd T I T

properties and drag the =
elements of the array over the 1 Resulting Code:

. . e 2 .
object as the item. Choose “ith ;
item from array” - 4 let objectVisualization — = ftem index1 — from arrayVisualization.zlements more...
13 . . 5

expressions” = indexl. : .
; let arrayVisvalization — [indexi —]= | item index2 ~ from arrayVisualization.elements more...
_ expressions ! | index

Swapping Elements Swapping Elements

* Next, in array Visualization methods, drag “let * For the last step, you will need (g w8 7 et
array Visualization [index] = item” into the editor. Choose to drag “let array Visualization objectVisualization
. b (13 29 : b — 1 9 .
index1 as the index and select your “default person” again. [index] = item” into ._p.ro editor. [opjactisualization’s details
Go to the elements of the array under and drag it over the Select index?2 as the index, and -
s . N) i . [properties [methods [funciions |
object you used for item, selecting index?2 as the index. the item will be replaced by i - Tal
. . i| tem = <Nong
This can be seen on the next slide. the element on =
| girlProm b ra — objectVisualization under the _ create new variable
et Eﬁ%m:mnﬂmﬂﬂn .l-_ aliceLiddell] miﬁﬁm-.wﬂg.mr HVHOHUOH.a@m ﬁm_u O—W mo _“O e o mrasass s
| kelty b “expressions” = NP R @ voidmyfisimetiod |
Index . randomGuy1 3 “objectVisualization.item”.— world.swap 124]indext , [123/index2
— - create new vana
0 b randomGuy2 * | the entire randomGuy2 No variables
1 ’ coach 4 leftLeg b E ch ~ say Swapplaces! — more..
2 ¢ arrayVisualization riohii N e let obetWgggization ~ = | item index1 — from
3 b objectVisualization gpaciy= 111808 JVisualizatio 1 1= item ind
L . : . | - —.—ﬂgn.maw_ T - let arrayVisualization '3 __ Inde
eXpressions ¥ | jndaxi b | expressions b e T SR let arrayVisualization — [index2 WVisual

Swapping Elements

* Drag the swap method at the bottom of the specificElements
method where the user chooses 2 elements, and have those two
inputs be the indices of the objects that are switched in the
array. Choose the parameters to be “expressions” = indexI >
“expressions” 2 index2.

first set value to num more...

num set value to umber guestion=E

index2

~| Do together 0.25
item num — fra 0.5 -ation.elements
_ 1

sl wm -~ frd , ‘ation.elements
0.25 b - :
05 ¥ expressions b num

’ = from A i m

1 b | gum » | SNeme> first | : :
2 » RS otver— second | world.swap index1 =first — index? = second

..aaﬁ_d_mﬁoﬂu ¥ | second b |

. H o e [P -

Conclusion

* Arrays are very useful in programming and
iterating through a group of objects. This
tutorial explains how to go through the objects
in an array in order, in reverse order, every
other element, elements at different intervals,
random elements, selected elements, and how
to swap elements.

world.my first method

* The very last thing we need ﬁa world.my first method —

to do is add all of these new world.my first method No param
methods that we created into

world.my first method. They g variabies
should all be listed under

world’s methods and you ..En:n.mun_._m_m.zmz_

want to drag all of them in

except for swap, which is worid.backward

called in specificElements. worid.everyOtherElement
Change the event to run =

world.my first method when world.everyThirdElement
the world starts and this world.everyOtherElementDiff

world is complete. world.randomElement

world.specificElement

Visual Lists

Set Up

* Open any environment template and then click
on the “Add Objects” button. Go into the
“Animals” Folder and import 7 different
animals into your world (I added the Chicken,
Cow, Bunny, Penguin, Monkey, Turtle, and

Husky).

By Chris Brown AOD
under Prof. Susan Rodger OBEJECTS
Duke University
July 2012
Visual Lists Set Up

* In this tutorial, you will learn how to use visual
lists in Alice with the ListVisualization object.
We will make a group of characters perform
actions in order and then together at the same
time, and then cycle through the objects by
removing and inserting characters in the list.
Visual lists are the same as nonvisual lists,
except that there is an actual list object that the
characters stand on so that you can see their
position. This makes the characters stand in a
line. The list object can also be made invisible.

Go back to the Local Gallery after adding your
animals and find the “Visualizations™ folder
near the end. We want to add a
ListVisualization object.

.......

i ObjectVisualization

' on your computer 7 on, “rcompule” | on yourcomputer

Set Up

 After you add a ListVisualization, a window

that looks like this should pop up:

Set Up

* Click and drag the ListVisualization object to turn it and

move it around to get the entire list to fit the screen and
facing the camera. Notice that the animals in the list move
with it. Don’t click on the animals and move them or this
will cause problems accessing the objects of the list later
on. Click “Undo” if you accidentally move an animal.
When you finish, your world should look something like
this:

* Click on the “new item”
button to add 6 of the 7
objects into the list (item
0 —item 5). Make sure
when you add the object,
you choose “the entire

29

‘item 2 = bunny
‘item 3 = penguin
item 4 = monkey
‘item 5 = <None> —

® <None>
new ites

camera
light
ground
bunny
cow
chicken
husky

1 monkey

pengui

tortoise

v v v v v w

listVisuahization .

world.my first method

* Now we are done adding the visual list and
we’re ready to use the visual list we created.
Click the Done button to open up world.my
first method.

@ single view (O quad view

Move Objects Freely

Lhele g

["] affect subparts

more controls »>

For all in order

* First, we want each object in our list to move up
1 meter and then move back down in order. To
do this, drag in a “For all in order” instruction
into world.my first method and select
“expressions” > “listVisualization.items”.

|=IFor all listVisualization.items — one m item_from_items' at a time

Doinorder Do together [fElse Loop = While@ For allin order) For all together

For all in order

* Now, drag the “item_from_items” object from
the “For all in order” loop and drag it over the
animal that you chose. This will make it so that
each object will now move up and down in
order.
(= Forall listVisualization.items — , one .__m_ item_from_items at a time

_ item_from_items 1 meter — more...

" item_from_items 4 move down — 1meter - more..

For all in order

* In the object tree, select one of the animals in
your list as a “default object” (I chose the
chicken) to use their methods. Have the
chicken move up and then move down 1 meter
in the “For all in order”.

world.my first method No parameters

(o < e < e <

No variables

[~|For al listVisualization.items ~ , one _@?o_.:u:o_ﬂtzm_:m at a time

- chicken move P chicken move up 1 meter — | more...

chicken turn chicken move down 1 meter -~ | more...

¢ chicken _goll

Play Your World

* If you play your world now, you will see that
each animal in the list will move up and then
move down. Next we will make all of the
animals in the list turn at the same time.

For all together

 To get all of the elements in a list to do an action at
the same time, drag in a “For all together” from the
bottom of the method editor and go to
“expressions” - listVisualization.items as the list.

~IForall listVisualization.tems ~ ,one [0bi]item_from_items ata time
- item_from_items move up — 1 meter more...

. item_from_items — move down — |1 meter — more...

all listVisualization.items — , every _....[_..m_ item_from_items together

Do in order " Do together | IfiElse. Loop 'While - For allin order " For all t er

For all together

* Replace your “default object” with the
“item_from items” variable in the “For all
together” instruction.

~IForall listVisualization.items ~ , eveg, (0i|item_from_items together

item_from_items 1 revolution — | more...

- item_from_items turn right — 1 revolution maore...

For all together
* Now, go to your “default object” from earlier,
and have your object turn left 1 revolution and
then turn right 1 revolution.

E [=lForan listVisualization.items — | one m_ item_from_items at a time
item_from_items — move up 1 meter - more..
chicken move
item_from_items move down 1meter more..
chicken tum
chicken | roll [Forall istVisualization.items — | every m__.ﬂ_”m item_from_items together
~ chicken resize chicken — turn left — 1revolution — more..
chicken — turn right — 1 revalution = more...
chicken say

Play Your World

* Try playing your world and you will see, after
each object moves up and down in order, that
they will all turn left and then turn right
together.

Inserting/Removing Items

6 listVisualization

* Now we will go over [istvisuaiization’s details

how to insert elements [fereeres [metods [uacions |
into a list and then croat new method |
remove elements from
a list. These methods
can be found under
listVisualization’s
methods.

insert item at beginning of listVisualization
insert item atend of listVisualization

imsert item at index of listVisualization
remove item from beginning of listVisualization
remove item from end of fistVisualization
remove item from index of listVisualization
clear listVisualization

listVisualization move

listVisualization tumn

Inserting/Removing Items

* First, we want to add our last animal into the list. Drag the
method “insert <item> at <index> of listVisualization” and
choose your last animal as the item (Mine is the husky) and
3 as the index. This will put the husky into the middle of the
list.

insert item at index of listVisualizatio
remove item from beginning of __m_._.ﬁ__w:y

remove item from end of listVisualization

7S every ok item_from,

m left — 1revolution — mon

m right 1 revoly Mex

- remove item from index of listVisualization

clear listVisualization

istVisualization move 3

listVisualization | turn ' | the entire husky b | other..

cimsert husky - at 3 — of listVisualization — more..

Inserting/Removing Items

* When using these methods to insert and
remove items of a list, make sure that you be
careful where you remove and insert items
because this can cause problems in your list.
(For example, removing an object from the
middle of the list will cause two items to be
positioned on top of each other, even though
list will be changed correctly. We reported this
bug in the summer of 2012.)

Inserting/Removing Objects

e If you run the world now, you will see that the
husky moves to the middle of the list at
position 3.

Inserting/Removing Items

* Now go to world methods and create a new
method called cycle. For all of the elements in
the list, this method will remove the first
element of the list, shift all of elements in the
list over one space, and then add the first
object at the end of the list.

word's details

—-Eaﬁ_m}mm ﬂ_._._mﬁzn.nm w\ﬂ_:_._ﬂm_,.__._..q ..

my first method [edit]

cycle [edit]

—

l
QL create new method U

world.cycle

* Now, before we remove the first item, we want to
make it invisible so that two animals will not be
placed on top of each other. Go to your default
object’s properties and drag the “isShowing”
property into the “For all in order” and set its
value to false. Then, drag the “item from items”
variable over the object’s name.

fillingStyle = scid Forall listVisealizationitems — | one ___Im_nmau_g-#mam t a time

pomtOfview = position: 0, -0, 0.1 orientatiog chicken ishowing to false — maore.,

g Showingue-—rE—

world.cycle

* The first thing we need to do is drag a “For all
in order” into world.cycle and select
listVisualization.items as the list.

world.cycle Noparamefers

Mo variables

iinsert item at index of listVisualization

sForall listVisuakzation.ltems ,one 08| jtem_Irom_items at a time

Doin order Do together IfElse “Loop -~ Whi or all in order - For all together

world.cycle

* Go to listVisualization’s methods and drag in
the “remove item from beginning of
listVisualization” method.

‘[=IForal listVisualization.items — , one .“n_ls_ item_from_items i
remave item from beginning of listVisualizati item_from_items — set isShowing to false - more..

remave item from end of listVisualization remove iem from beginning of RsfVisuakzation — more..

world.cycle

* Drag the method “insert <item> at end of
listVisualization” into the “For all in order” and
select your default object as the item. Then,
replace this object with “item from items”.

insert item atbeginning of listVisuaization | [Vo variabies

imsert item atend of __m_ﬂ_ﬂmznmgg/
insert item | at index of listVisualization

remove iem from beginning of Estyisualizatio

=|For all listVisualization.items

item_from_items — set

remave item from gol BstVisualization — more..

remove item from end of NstVisualization

..smm: chicken — atendof listVisualization — more..

romava itom fram indey ' of Beflienalivatinn

world.cycle

[~ Forall listVisualization.items ~ one Obi|item_from_items ata time

item_from_items set isShowing to false more...
remove item from beginning of listVisualization maore...
insert item_from_ifems at end of listVisualization more...

item_from_items set isShowing to true more..

world.cycle

* Finally, we need to make the object visible again at the
end of the list. A short cut to do this is to right-click on
the first method and make a copy of it. Make sure you
change the “false” value to “true”, drag
“item_from_items” over the subject <None>, and move
this copy to the bottom of the “For all in order”. The
final code can be seen on the next slide.

[=Forall listVisualization.items

(obil item_from_items ata time

item_from_items isShowing to false — more..

t isShowing @ﬁ..

remove item from beginning of listVisuafization more...

<hones

insert chicken atend of listVisualkzation more...

world.my first method

* The last thing that we need to do is add world.cycle
method into world.my first method. Click on the
world.my first method tab and find the cycle method
under world’s methods. Drag this method into the
bottom of world.my first method and play your world.

world's details z ERPOrTET
[=For all listVisualizationitems — | one __#.. item_from_items at a time

properties |methods [‘funcions |

item_from_items ~ move up 1meler - more..

item_from_items mave down 1 meter more...

[=IFor all fistVisualizationitems — every 0% item_from_items together
itemn_from_items — turm left — 1 revolution — | more...

item_from_items — turn right — 1 revolution — more...

insert husky at 3 of listVisualization maore...

world.cycle

Challenges

* That concludes the tutorial on visual lists in
Alice. Try creating a new method that has all
of the animals do a back-flip in order and then
a front-flip all together.

* Make another method that cycles through the
items 1in the list backward, moving the object
at the end of the list to the front.

Collections of Objects

 Visual lists are only one way to group objects
in Alice. You can also use nonvisual lists,
visual arrays, and nonvisual arrays. Tutorials
for these can be seen on the Duke Alice
Tutorials website.

Scene Changes
* In the picture below, you can see how we will set up
the 3 scenes. We will put in the three different

environments, then rotate the camera from a fixed
Scene ﬁ_._mjmmm 2.0 spot to move to each one while fading out and
fading in the light. You can have anywhere up to 8
scenes in a world using this technique.

This is a modification of the Scene Change tutorial
written by Deborah Nelson in June 2009
By Chris Brown
Duke University
Under the direction of
Professor Susan Rodger
July 2012 1

Scene Changes Scene Change Note

* This tutorial is for users who have a version of

* This tutorial will show you how to create Alice 2.2 later than March 2012. If you have an
different scenes in Alice. You will make the earlier edition, use the previous scene change
Alice world dark, then light again into a tutorial on the Duke Alice tutorials website. The
different scene with a different ground old tutorial tells you how to drop in an Alice
texture and new objects. You will also learn class that contains the six ground textures. As
how to move a character between scenes and of March 2012, that is no longer needed as you
do different actions. can easily import other ground textures. This

tutorial also shows you how to use the “move
to” and “orient To” methods to have a
character move between scenes.

Standards

CSTA Standard 5.3.B- Computer Science
Concepts and Practices (CPP):

Students will be able to..

“1. Use advanced tools to create digital artifacts
(e.g., web design, animation, video,
multimedia.”

Part One: Set up

 Click more controls. Click drop a dummy at the
camera.

* In the object tree, expand the Dummy Objects
folder. Rename the dummy ‘scenel’ (by right
clicking on it and selecting rename).

e Go to the Environments folder.
* Scroll over to Oasis. Drag Oasis into the scene.
> See the screenshot on the next slide for an

Load world

* Open a new world, with any template.
e Save it in a directory that you can find again.

 After you have opened the file go into the
"Layout" mode by clicking on the green button
Add Objects (toward the middle of screen).

e Overview: creating scene changes
— Add objects.
— Drop dummy objects at camera positions.
— Write two methods for transition.

illustration
7
u e (@ single view () quac
..%”—“-ﬂs Meve Oblscis Fresaly
R round Neige
= £ Dummy Objects [[] affect subparts
a aspect ratio: 43
lens angle: —(F
mr“ drop dummy at,
mﬂ drop dumimy at
move camera 1o dumm
=

create new variable

wer controls <<

=
~wehicle = world
| pointOfiew = position: -4.26, 1.6, 7.34

|# Sounds
|+ Texture Maps

Add a Character

* While you are in scene 1, add a WhiteRabbit object
from the Animals folder in the Local Gallery. Use the
buttons in the top right corner to move the
WhiteRabbit so that it is standing on the oasis and
facing the camera as seen below.

Move Objects Freely

heleggse

Set up Scene 2- move camera over

* Once the oasis is in your scene, use the
camera position arrow to move the camera
view, until you can no longer see the oasis.

11

Add a Character

* Now, we want to set this
object to be invisible. Click on
whiteRabbit in the Object Tree

and click on the properties tab.

Find the isShowing property
and set the value to false. This
should make the WhiteRabbit
disappear from the scene. The
best way to move characters
from scene to scene is to use
invisible placeholder objects.

* pointOfView = position: 0, 0.47, 0; orie’
.
“isShowing = | true

ﬁ_ic_#_
pEP camera
@ ignt
a ground
@ oasis

whiteRabbit's details
[properties [methods [functions |

create new variable

‘color =

opacity = 1(100%)

vehicle = world

. skin texture = whiteRabbiLtexture
filling Style = solid

[i seidomus ®!e |ag
& Sounds | faise

e . 10
[+ Texture Maps

Drop dummy at camera

When you can no longer see the oasis or the
dummy object, drop a new dummy at the
camera.

In the object tree, rename this dummy
‘scene?’.

In the Environments folder, scroll over to
Island Drag Island into the scene.

See the screenshot on the next slide for an
illustration.

12

_js__& ® single view) quad view
%”“ﬁ—m e Ohjects Freshy
AU # 7
Rooms 5 o1l @gs
EQuoesis [~ affect subparts
[=] Dummy Objects
.amnm:e_ aspectratio: (43 i
JE lens angle: —{Fl——
oo
%3¢, drop dummy at camera
" @ drop dummy at selected |

mowe camera to dumnmg
[<tione>

capture pose

“wehicle = world
-~ pointOfview = position: -4.56, 1.6, 7.5

|+ Sounds
I+ Texture Maps

 onyour computer

OUF Computer [onyour computer N nur commer

13

Add a Character

* After theisland is in view, import another WhiteRabbit object an
position so that it is facing the palm tree.

* Click on whiteRabbit2 in the Object Tree and set its isShowing
property to false. The “orient to” method will turn the character
face the same direction as the invisible whiteRabbit2.

P i S 9
[T affect subparts

.....

aspect ratio: [4/3
lens angle:

[@unarLander
' [whiteRabbit

—

mﬂ-u drop dummy at camera

" @ arop qummy at selected of

/move camera to dummy:

create new variable

B AVA.V .? “
color = [> TR > Animais [T

opacity = 1(100%)

vehicle = world

skin texture = whiteRabbit2.texture
filling Style = solid —
poinlofiew = position: -12, 0.98, 1.09;

d

to

What to do if you can’t find your
object

* Sometimes, when you drag an object into your world, it
appears at the origin of the world, which is not in your new
scene.

* Scroll down to that object - in this case island —in object tree.
* Right click on island and select methods, move to, camera.

* Now, drag your island into your scene. If that doesn’t work,
right click on it in the object tree again and select methods,
orient to, camera.

* Right click on it in the object tree again and select methods,
move, forward, 5 meters.

Once you have one object in your scene, you can use that as the

reference to move all of the other objects into your scene.
14

Set up scene 3

Move the camera over (to the right) until you

can no longer see the island. . ‘.\w

Drop a dummy at the camera.

In the object tree, rename it “scene3”.

Go to the Space Folder.

16

* Drag lunarLander into the scene.

 Before you release the mouse to drop it into
the scene, hold down the shift key on your
keyboard. Continue to drag the object.

 If you’re on a PC, you will see the yellow
bound box move up because shift makes your
object move up as you drag it in.

 See the screenshot in the next slide for a

illustration of where my lunarLander is
positioned.

17

Add a Character

* Import another WhiteRabbit into scene 3 in front of
the Lunar Lander and set its isShowing property to
false. You should have a total of 3 whiteRabbits, one
in each scene. Now go back to scene 1 and add in
another WhiteRabbit character, but let this one stay
visible.

19

Part Two: Writing methods

* Click on the Done button to go back to the method
editor.

* In the world detail pane, click the properties create
new variables.

* Name it ‘storeAtmosphereColor’.
* Select type Other and select Color.

* Make another color variable and name it
‘storeAmbientLightColor’.

> See the screenshot on the next slide for an
illustration

20

The color property variables

—

& create new variable ﬂ,
Name: _aamzaaaﬁaqmna_aq _
Tyne: () Number

() Boolean

() Object

E.:a?. _na_a_._

Value: |_Imakea |List 1_
=

__@ storefiimosphereColor =

| @ storeAmbientLightColor =

_ n.qmﬂm new :ﬂ.mc_.m

21

world.fadeOut

world.fade

No vanabies

(@ world fadeOut

@_ storeAitmosphereColor = R
- —— = Do togethe
: @ storeAmbientLightColor = 0o Nothind areen
: blue
_ create new wariahle vellow
purple
-atmosphereColor| = pr—

e Resulting code:

~world — set atmosphereColor to

23

Write fadeOut method

Create a new method named ‘fadeOut’.

Drag in a Do together from the bottom of the
window.

Click on the properties tab in the world details pane.

Drag atmosphereColor into the fadeOut method. Set
value to black. Note, this is not the variable we
created.

See the screenshot on the next slide for an
illustration.

22

world.fadeOut

* Drag ambientLightColor into the do together.
Set value to black.

_.Hu BIues R ! No variablas E
|@ storeAtmosphereColor = = 1
— '] Do togethe
|@® storeambientLightColor = : o green
— - = Wl 1]
bilue
create new variable _ yellow
purple
atmosphereColor = orange
pink

| = world

set ambientLightColor to I Mot

24

world.fadeOut

* Click on the light in the object tree. From the
properties tab, drag brightness into the
fadeOut method. Select Other and set value
to 0.

* Here is the complete method:

[ight's details

world fadeOQut Vo pararmeters

Write fadeln method

* Click on the methods tab in the world details
pane. Create new method. Name it ‘fadeln’.

* Click create new parameter in the method.
Name it ‘atmosphere’. Select type color.

| - - — - @ istand 1@ —
ﬂ properties ?._m.#_nﬁw w\ﬂ_...nﬂgd _ B o varisbies © (@ unarLander _ 73 Create New Parameter |
i b = () Dummy Objects b 2 || name: 1l
_ : Cwora s smasperscons o [moe. ¢ o |
capture pose _ A Tax.u details world fadeln hop \ Oblect _E
= workd set ambientLightColor to E More... —— - =z |
4 l [Bropefies methoas [fuictans | W v venistics [Epther.. |color| E T
i T [}
color = > light — set brightness to 0 — more... myfirst method || edit| oot | _ |
H bright fadeOut [ean HERIG | make a E
ightness -
| —— [on][cven |
| .—u:ﬂm = 266 metars e AT A II
| Kt — 5 27
orld.fadeOut world.fadeln

* To test the fadeOut method, in the events
panel, change the ‘myfirstmethod’ to fadeOut.

Events _ create new event

* Play your world.

When the world starts, do = world.fadeOut

* The screen should fade to be completely black.

£2 World Running...

ot o ne] el

26

* Dragin a Do together.

* Then, click on the properties tab in the world
details pane.

* Drag “atmosphereColor” into the fadeln
method. Set value to expressions, select the
parameter, atmosphere.

e Resulting code:

~ Do together
i -~ world set atmosphereColor to atmosphere More

28

world.fadeln

* Drag “ambientLightColor” into the fadeln method.
Set value to expressions, select
“storeAmbientLightColor”

“"

* Click on light in the object tree

* In the properties tab, drag “brightness” into the
method. Set value to 1.

* Resulting code:

world.fadein _ (@) atmosphere

Novarzbies

~| Do together
world get atmosphereColor to atmosphere more...

world set ambientLightColor to world.storefmbientLightColos ma

light set brightness o 1 more... 29

Write scene one method

e Outside of the Do together statement, drag in
a “whiteRabbit4 say- ” and enter the string
“Put everything you want to happen in scene
1 in this method.” Below is the entire code for

scenel.
@ world my first method _‘ @ world fadeOut ﬁ @ world fadeln _‘Q world.scene1

world.scene1 Mo paramefers

No variables
-~ Do together
whiteRabbitd move to whiteRabbit more...

whiteRabbit4 orient to whiteRabbit Mmore...

whiteRabbitd say Puteverything you want to happen in scene 1 in this method. more... =

Write scene one method

* Click on world in the object tree and click on the methods
tab. Create a new method: name it ‘scenel’.

* In the beginning of this method, drag in a Do together.
Then, go to whiteRabbit4’s methods and drag
“whiteRabbit4 move to- whiteRabbit” and “whiteRabbit
orient to- whiteRabbit” into the Do together. This puts the
visible white rabbit into the same position as the invisible
placeholder and then turns it to face the same direction.

world.scene1 Mo parameters
Mo variables
=Do together
- whiteRabbit4 move to whiteRabbit more...

whiteRabbit4 orient to whiteRabbit More. . 30

Write scene two method

¢ Create a new world method: hame it ‘scene?’.

* We want to do the same thing in scene 2, except we want

whiteRabbit4 to move to whiteRabbit2. You can copy the
instructions from scenel by dragging them to the clipboard in the
top right corner, then drag them from the clipboard into scene2.

Events | create new event

When the world starts, do world.fageOut
un Methods when certain things happe!
ke when the mouse is clicked on an Object or

| when a cortain key i¢ pressed)

@ world my first method | fadad @ world fadeln | @ world.scene1 | @ world scene? | @ world scene3

prid.scene1 No parameters create new parameter

create new variable

‘whiteRabbit4 move fo whiteRabbit — more...

‘whiteRabbitd orientto whiteRabbit more.., 32

say Put ing you want to happen in scene1 in this method. more...

Write scene two method

 After pasting the code into the scene2
method, you will need to change all of the
occurrences of whiteRabbit to whiteRabbit2
and change whiteRabbit4’s quote.

| @ worldmy first method | @ world fadeOut | @ world fadeln [@ world.scenet [@ world.scene2 |

world.scene2 No parameters

Mo variables

/[=1Do together

whiteRabbit4 move to whiteRal more....
whiteRabbitd orientto whiteRa more...

whiteRabbitd - say Puteverything you want to happen A scene 2 V this method. — more...

33

In world.my first method: Store the
initial properties
* Click on the world.my first method tab.

* Dragin a Do together.

* Drag the color property variable we created,
“storeAtmosphereColor” into the do together

* Set value to no color. Drag atmosphereColor from
the pane on to the blank.

W] world's details _ @ world.my first method

_ properties [methods [functions |
I
w__ @/ storeambientLightColor =

|
__.
_. create new variable

| | world.my first method Noparameters

1 _.w_ storeAitmosphereColor = il 5o variabios

~| Do together

world.storeAtmosphereColor

“ " atmosphereColor

| amnientLightcotor = [JIEA

35

Write scene three method

* Create new world method: name it ‘scene3’.

* Repeat the steps for creating scene2 except
we want to refer to whiteRabbit3 this time.

| @ world my first method _. @ world fadeQut _‘ @ world fadein _. @ world scene1 — @ we

world.scened No parameters

Mo variables
— Do together
whiteRabbit4 move to whiteRabl More...
whiteRabbit4 orient to whiteRa more...

whiteRabbit4 say Puteverything you want to happen .@ this method. more...

34

Store the initial properties

* Drag the color variable we created,
“storeAmbientLightColor” into the Do
together and set value to no color for now.

* Drag “ambientLightColor” from the pane over
the no color value.
e Resulting code:
~| Do together

world.storeftmosphereColor set value to world . atmospheraColor maore...

% world.storeAmbientLightColor setl walue to ~ world . ambientLightColor more...

36

Scene change: Camera

* Click on the camera in the object tree.

* Drag the camera “set point of view to”
method into the Do together. Select Dummy
Objects, select scenel.

Changing the Ground

* After clicking on the button to import texture maps,
a window should pop up with all of the different
ground textures in Alice.

Lookin: NS

textureMap

Dimensions : 256 % 256

-

Recent

- / ,.,
camera set point of view to scene more... -.
l.._e-; FileName: GrassTexture.png] E
Network | puos of Type: [image Files (BMPLIPGLIPEGPNGGIFTIFTIFF) _u E
* For this world, you will need to import SandTexture,
WaterTexture, and MoonTexture.
Changing the Ground Changing the Ground
ground's details
n_ _A Q . ?ﬁcum:a.mm ﬂamanm.—\E:Q_u:m —|,I. O .H_J Q .ﬂ ._u ._...j OU .ﬁ |_|
ICK On ground In E = rag the ground item rrom the Jject Iree

the object tree.

* Go to ground’s
properties.

* Under properties, go
to the last property
and select Texture
Maps. Click on the
“import texture map”
button.

<

color =

opacity = 1 (100%)

vehicle = world

skin texture = ground.GrassTexture _
filling Style = solid

pointOfView = position: 0, 0, 0; a_.m_._j_
isShowing = true

[+ Seldom Used Properties

| Texiure Maps
GrassTexture

_ import texture map _ |

4] I | b

38

and drop it into the Do together after
changing the point of view of the camera.
Select “ground set skin texture to” 2>
“ground” > “sandTexture”. This is a method
that will change the ground texture from grass
to sand at this point in the code. See the next
slide for a screenshot of these instructions.

40

e Resulting code:

[
339
I .00 move
@ world.my fir

»
EY
world.my first me ground roll s |
operties [methods [functio [rousd reaize ._ |
- ground say J
pacity = 1(100%) [FlDo together | ground think »
ehicle = world world.store 9round play sound e to world .ngneanqmno,
Kin texture = ground.GrassTexture | ground move to »
TingStyle = sofid _| weHkl sinig ground move toward pfieito: |gweorkd © B L
ointOView = position: 0,0, 0; orienta camera - | 9round move away from * | | mgry
| »
= — ground orient to -
ground turn to face » | value
wnm.u.._“__w,_:h Used Properties ground point at * | ground | GrassTexture
Texture Maps | ground set point of view to P | gasis » _ sandTexture |
Enictosturn ground set pose ¥ | whiteRabbit » | waterTexture

sandTexture
waterTexture

ground stand up whiteRabbit2 » | moonTexture

ground set color to island |

moonTexture lunarLander #

3

»

ground set opacity to »

ground set vehicle to » | whiteRal
3

. hiteRRabbit4 » |
Doinorder Do e Sround setskintextureto k| WhiteRabbitd b |- ror all toget

import texture map

S T S

ground ~ set skin texture to ground.sandTexture — more.. a

Animation for Scene 2

* Dragin a new do together from the bottom of
the window.
* In the do together:

— Set the camera point of view to (dummy object)
scene2.

— Set the ground skin texture to waterTexture.

| Do together

camera set point of view to scene2 — more...

ground set skin texture to ground.waterTexture — more...

43

Click on the methods tab in the world details pane

Drag the scenel method into world.my first method,
underneath the do together

Then drag in the fadeOut method

“world.scene1

world. fadeOut

To play you world, remember to change the event
back to world.my first method. You should see your
scene 1 method and then camera will fade out.

Events | create new event

- When the world starts, do - world.my first method o

Animation for Scene 2

* Underneath the do together, drag in the fadeln
method. For the parameter, select expressions,
select the variable “storeAtmosphereColor”.

* Then drag in the scene2 method.

‘worldfadeln atnosphere = world.storedtmosphereColor
‘world.scene?

* Play your world and you should see your scene
1 code, the camera fade to black, and then the
camera fade back in to your scene 2 method.

44

Animation for Scene 3
* Drag in the fadeOut method underneath the Do

together.

* Dragin a new Do together from the bottom of the
window.

* In the do together:

— Set the camera point of view to (dummy object)
scene3.
— Set the ground skin texture to MoonTexture.
world.fadeOut

= Do together
camera set point of view to scened more..
ground set skin texture to ground.moonTexture more... =

~]Do together

world.storeAtmosphereColor ~— | set value to = world .atmosphereColor -~ more...

world.storeAmbientLightColor

camera sef point of view to scenet more...

ground sel skin texture to ground.sandTexture MOTe...

world.scenel
world.fadeOut
—|Do together
camera set point of view to scene2 more...

ground setl skin texture to ground.waterTexture more...

world.fadeln atmosphere = world.storeAtmosphereColor
world.scene2
world.fadeOut
=] Do together
camera sel point of view to scenel3 more...

ground sat skin texture to ground.moonTexture More...

p—

world.scene3

set value to worid . ambientLightColor more...

47

Animation for Scene 3

* Underneath the Do together, drag in the fadeln
method.

* For the parameter, select black (because the
atmosphere is black in space).

* Drag in the scene3 method.

-

workd.scene3

* Play your world and you will see all three scenes with
the camera fading out and in for each one. The entire
code for world.my first method can be seen on the
next slide. 4

Recap

* A fadeOut and fadeln method are used for
transitions.

* The camera position and ground texture are
set for each scene.

* To simplify world.myFirstMethod, a separate
method is written for each scene.

48

Challenges

Try adding the following modifications to your
world:

* Have the White Rabbit perform different actions
in each scene (e.g.- spin 3 times on the oasis, turn
around the palm tree on the island, and do a back-
flip on the moon.

* Visit scene 1 again in between visiting scenes 2
and 3.

» Add a 4th scene with a different skin texture and
have the white rabbit move there after scene 3
and do something. .

An Introduction to
Alice (Short Version)

Edited By Chris Brown
under the direction of Professor Susan Rodger
Duke University, November 2012
This is a shorter version of the full tutorial by Jenna
Hayes in June 2009

Topics

* This Alice world will tell a story about an astronaut
on the moon. In this tutorial, you will learn how to
add objects, move and adjust objects, use methods,
create new methods, create events, and use the

“vehicle” property.

* This tutorial takes 25-30 minutes. Topics that are not
covered in this version but are in the complete
version are creating dummy camera views, moving
the camera, using Do Together in a method, and
turning “as seen by” another object.

Hello! I'm Alice, and I'm
going to teach you how to use
the Alice program. With Alice, you
can make your own animations,
using tons of different
characters.

Starting Off

*Qur first step is to choose
a background.

*When you open Alice, a
box will pop up that has six
different choices of
background. It looks like
the box to the right.
*Select the space
background, because our
world will be in space.
*Click on space and then
click Open.

=z
mw Welcome to Alice! H

L Alice. @I

1

dirt

urass

space water

4]

Open

[v] Show this dialog at start

After you click Open, your screen will look
like this:

Events Iﬁ-s- W event

‘When the world starts, do . worldmy first method

@ world my first method
‘world my first mathod Vo parameters

N3 vanabies

Doinordes Dotogether WElse Loop While For allinorder For sl together Woll print

Saving your world

[swewora as... =
*In the box that pops wan S 1 5l @ B ®E
up, name your world T
spaceWorld, and save
itin a place that you
will be able to find
again, such asina
folder on your R —— I
Desktop. Files oftype: | AZW (Alice World Files) ~| [cancer |

Saving your world

*Before we do anything else, let’s save our world. You should also
always do this before you close out of Alice.

*Click on File at the

top left-hand corner 2 aimimsins -
fit Tools Help

of your screen, and
then click on
Save World.

i |
Save World As...
Export As A Web Page...

Export Movie...

Export Code For Printing...

% import...

Add 3D Text...

Make Billboard...

C:UsersiJennaDownloads'methodStart1b.a2w
CilisersiJennalDocuments\Alice2009'worlds'\spaceEssentials.a2w
C:WUsers\JennalDocuments\Alice2009'worlds\musiclesson.a2w

Exit |
[oTTS uetaNE)] world.my tirst method o parameters

Saving your world

*Also, while you’re working on your Alice world, this box will pop up
about every 15 minutes.

You have not saved in more than 15 minutes.
It is recommended that you save early and often to avoid losing work.

Remind me later

Save right now

*You should always click Save right now. This way, if Alice crashes, or
if your computer crashes, you will have backups of your world and
will not lose all of your work!

Adding objects to your world Adding objects to your world

*Now, we will add
some objects to the
world.

*Just below the
picture of your
empty space world,
there is a small green
button that says Add
Objects.

*Click on this button.

Scroll to the right until
you see the Vehicles
folder, and click on it.

*Scroll to the right again until
you see the Humvee.

*Click on the Humvee.

*On the box that pops up, click
Add instance to world.

*The humvee will appear in the
center of the space screen.

Adding objects to your world Adding objects to your world

A new screen will appear, on which there is a large selection of
objects below the space screen that you can add into your world.
This is called the Local Gallery. Each folder of objects in the gallery
has a different theme.

The humvee takes up
most of your screen, but
we will re-size it later.
First, let’s add another
|_more cantrats >> | object to your world.

Home : Local Gallery » Vehicles Py .
*Click on Local

Gallery above the
pictures of objects
to go back to the
gallery starting
screen.

Home > Local Gallery Tsy Search Gallery

Adding objects to your world

*Next, scroll to the right
until you see the Space
folder.

*Click on this folder.
*Click on the Astronaut.

*Click Add instance
to world on the box
that pops up.

*The astronaut will
be added to your
world, but you won't
be able to see
him/her yet.

The Object Tree
*When you add objects
to your world, they will B world
appear in a list on the W e
left of your screen, ”m@miﬂ
called the Object Tree. @ oround
*The humvee that you R —
added will be on the \..+V ﬂwﬂ.nzag
object tree. A
*Even though you can’t
see the astronaut yet,
his/her name will also
appear in the object

tree. That way you
know that he/she is
actually there.

Adding objects to your world

Your space world will look the same after adding
the astronaut. This is because he/she is being
hidden by the humvee!

Now we have
added two objects to our
world. The next step is to position
them!

Positioning the objects

*Look at the right side of
your screen.

*There is a group of
buttons with faces on
them.

*These buttons are used
to position objects.
*The first thing we will
do is make the humvee
smaller. Click on the
resize button, which is
the one with the four
arrows coming out of
the face.

® single view) quad view

N ol

| affect subparts

*Click on the humvee, and hold
down your mouse. Move your
mouse around, and the humvee
will get bigger and smaller!
*Downsize the humvee until you
can see the astronaut’s feet.

Positioning the objects

8!

*This button will move your objects up
and down.

*Click on this button, and then move
the humvee up and down. Position it
so that its wheels are directly on the
ground.

*Here’s a hint: Move it down so that its
wheels disappear into the ground, and
then slowly move it back up. You may
have to use the white arrow button
again to move the humvee back if it
starts to disappear off of the screen.
The second you see all of its wheels
appear out of the ground, you know it

e Try doing the same thing with the
is directly on the ground. astronaut!

% Positioning the objects

*Now, click on the button
with the white arrow on

it, as pictured above.

Click on the humvee and
move it to the left of the
astronaut. —_—
*Then, click on the

astronaut and move

him/her to the right.

*Move the humvee to

the right so that it is
completely on the

screen. Your screen

should look something

like this: >

The Undo button is your friend!

P

*What if you make a

mistake, like accidentally | @pay | __ ojundo ||
clicking on the ground and n e .
moving it? " pB® camera
*You can click on the Undo (3 tight
button above the object i
tree to undo the last thing + [humvee
you did. + [astronaut
*Use this button whenever

you mess up, or want to

get rid of something you

just did.

Positioning the objects

*This button is used to

spin your objects around. N A@w

*Try spinning your humvee
so that it is parallel to the
screen.

*Your screen should look
something like this: =——>

Now that we
are done positioning the objects,
we can start to animate the characters
in the world!

Positioning the objects

.._.Zm_ucﬁo:i__ﬂcﬂ:,\oc«
character backwards or @

forwards.

*This button will turn and
rotate your object in pretty =——————> 7 L@_

much any direction.

*If you want to, try these
buttons out on your objects.
When you're finished, click

Undo until your screen looks
like this again. >

Methods

*The large tan rectangle in the center of your screen is called
the Method Editor. Right now, it is blank.

—9 world.my first method _

world.my first method No parameters

credte new parameter

No variables create new variable

| Do Nothing

Do in order .“_uﬂanﬂ:oq ifElse ' Loop = While ‘Forallinorder | For all together Wait print

Methods

*The method editor is where
you can make your characters
do things.

_ create new method _

*Your characters already know iadaksnend -

how to do certain things. astronaut turn

- astronaut roll

*These are some of the things b Lol
that your astronaut already astronaut| say
knows how to do. To find this e—

list, click on astronaut in the
object tree. Then look below
the object tree at the box that astronaut | move to
says astronaut’s details, and astronaut move toward
click on the methods tab. This

list will appear.

astronaut play sound

Methods

File Edit Tools Help

*Now press the Play
button in the upper left-
hand corner of the
screen to see what these
methods will look like in
your world.

@) astronaut

x
b

*Challenge: What code
should we add to return
the astronaut to his
original size and
position?

Methods

*To tell your astronaut to do something, click on one of these methods,
hold down your mouse, and drag and drop it into your method editor.
Try dragging a few of them to see what they look like. For most of
them, such as move, you will have to select a direction or a distance
when you drop it. These are called parameters for the methods.

wo Jﬁuw_.___w. nmﬂm- method No parameters

ﬁaﬂ-.!!u.w details

properties ?_E_.aaw —\E_._:_Ea _II. e

a
\& astronaut move up — 1 meter more...
astronaut | move \ astronaut resize 2 maore...
astronaut | turn ¢ astronaut turn right 2 revolutions more...
astronaut roll

astronaut resize

world.my first method

[@ woridmy first metnoc

worid.my first method /o parameters

No vaniables

astronaut move up 1 meter more..
astronaut resize 2 more...

astronaut turm right 2 revolutions more...
astronaut resirze 0.5 more...

astronaut move down 1 meter more...

Methods

*To teach your astronaut

new things, you can — — __
Ccreate new m
combine these methods |__|_

that he/she already knows . astronaut move

into new methods. astronaut turn
i astronaut roll

eLet’s try creating a new astronaut resize

method. We will create a
method that makes the
astronaut wave. Make sure
you have clicked on
astronaut in the object tree.
Then, go to the methods for G astrenedt IO SN
the astronaut and click S
create new method.

; astronaut say
| astronaut think

astronaut play sound

i astronaut move to

l

astronaut.wave

*In your object tree, click
on the + sign next to

astronaut. This will show
you the astronaut’s parts.

*Click on rightArm in the
object tree so that you
can get a list of the
rightArm’s methods. We
will use these methods
to teach the armto
wave.

astronaut.wave

*In the box that pops
up, type wave, then
click OK.

*You should see a new tab appear in <oc_,n.3m~:og editor called
astronaut.wave. This is the space where you will create the Wave
method. K

_. o] world my first method __,ﬁ astronautwave .

astronaut.wave Mo parameters

Mo varabies

astronaut.wave
*Look back at
the rightArm’s
list of methods

ﬂ @ world my first method _.40_ astronautwave

and find TightArmrs details astronaut.wave Mo parameters
_,_mj.ﬁ>—.3 turn. [feropenies Jmethods [functions | B Novariabics
fghdATn e | [@owothing
«Click on this ~ [(omm wm —> [rightam tum |
rightArm _ roll
method and
rightArm resize
hold your
mouse down, | "M
. rightArm _ think
and drag it rightArm play sound |
over to the

rightArm move to

method editor. |

rightArm move toward
.-Tms ﬂm_mmmm rightArm move awayfrom
your mouse to | rigitarm orientto

d rop it there. rightArm | tum to face | . Doinorder Dotogether IElse Loop While Forall

astronaut.wave Events

*Now that we have written

*A small gray menu of directions will appear. In this menu, part of a method, we want to [Events [create new oven|
select backward. Another menu will appear, this time of how figure out how to see it in e R T
many revolutions you want the arm to turn. Select /% revolution. action. When you press the -
[@ world my first method [@ astronautwave Play button in the upper left-
astronaut.wave No parameters hand corner of your screen,
i Voation your world will use an event
(Do e that can show you your
_Mﬂaa__ . methods. An event is a way
dght b to call methods when your
[”M.Hﬁn ” — world is played. This is the event editor
1/4 revolution
*The event editor is found in
e e aa the top right-hand corner of
other... your screen.
astronaut.wave Events
*Now, click on the rightArm roll method. Drag and drop it into *There is one event in your Events [Gaunseiens
astronaut.wave. For the direction, select left, and for amount, select event editor already. It says [P w frsussasesss - |
other.... A calculator will appear. Type .1 into this calculator, and When the world starts do
then click Okay. world.my first method. This tells
23 Custom Number =] your world what to do when
A you press Play.

_‘ @ world my first method a astronaut.wave

astronaut.wave MNo parametfers

*This means that when you
press Play and your world

No variables world.my first method Wo parametzis

starts, whatever methods you

- astronaut.rightArm turn backward 0.5 revolutions MOre...

have in the world.my first M yariabien
Aechon, method tab are carried outin | Goweining
Jeft ¥ amount _Q
right ¥ | 174 revolution your .S\Oq. -

12 revolution *But if you click on your

1 revohution (all the way around) . .

2 ovoRIOns world.my first method tab in

 other... your method editor, you will see

that it is empty!

Events

*This means that when you

press Play, nothing will happen ﬂhm___“m.i;
in your world. Try pressing Play Qe
to see that this is true. @ oround

*So how do we make
astronaut.wave happen in our
world?

+ [bumimy Objects

*We could try changing the .
event that is already there to gyents i
astronaut.wave. To do this, click T
on the down arrow next to

world.my first method in the astonant— { uave)

event editor, and then choose
astronaut, and then Wave.

_ my first method

astronaut.wave

*Now we need one more line of code, that tells the astronaut to put
his arm down. Drag and drop a rightArm turn method. Select
forward, and % revolution. This will be the final code for your
method.

1 @ world my first method _v@ astronaut.wave I

astronaut.wave No parameters

No vanables

 astronauvi.rightArm fturn backward 0.5 revolutions more...
astronaut.rightArm roll left 0.1 revolutions MOTe, ..
astronaut.ightArm roll right 0.1 revolutions maore...

- astronaut.nghtAmm turn forward 0.5 revolutions more...

*Play your world one more time to test out the complete
astronaut.wave.

astronaut.wave

e
-

Let’s add more to the sstronautwave No parameters
method. Drag and drop

. Mo variables
another rightArm roll,
and select right, and
then other.... ._.<_Um in.1. astronaut.rightArm — roll left — 0.1 revolutions — | more...

astronaut.rightArm — roll right — 0.1 revolutions — more..,

*Now press Play to see
what astronaut.wave
looks like so far.

astronaut.rightArm furn backward 0.5 revolutions more...

*Play your world again to test astronaut.wave.

Events

*We can make spaceWorld
even more interesting by
creating a new event that
adds interaction in our
world.

*First, let’s change the
event in the event editor
back to my first method.

Events |create new event

When the world starts, do world.my first method

my first method

Events

*Now we are going to make an
event. The event will allow you
to control the humvee with the
arrow keys when you play your

_H—m.ﬂ.w new event -

When the world starts

VWhen a key is typed

When the mouse is clicked on something
While something is true

When a variable changes
et the mouse move <objects>

world.

Let the arrow keys move <subject>
Let the mouse move the camera
Let the mouse orient the camera

*Click on create new event in the
event editor. Then click on Let
the arrow keys move <subject>.

- Let

*Change the event from camera

to humvee by clicking on the humvee > theentire humvee
astronaut 2 =

down arrow next to camera, and N Il eissiansy

then selecting humvee, and then backRightmeel

frontleffwheel

the entire humvee.

Pulling it all together

*Now it’s time to pull this all together!

*In your method editor, click on the tab at the top that says world.my
first method.

*This tab should have the very first instructions we added at the
beginning, but now we are going to use it as a place where we bring
all of the methods that we have written so far together.

[@ world.my first method [@ astronautwave |

world.my first method No parameters
Mo variables

astronaut move up 1 meter more...
astronaut resize 2 more...

astronaut turn right — | 2 revolutions more...
astronaut resize 0.5 more...

astronaut move down 1 meter more...

Events

*Play your world, and test out this new event by pressing the
arrow keys and seeing what happens to the humvee.

Putting it all together

* First, add astronaut.wave into world.my first method by dragging it
into the method. Now, make the humvee roll left 1 revolution. Then,
have the astronaut move to the the entire humvee so that it will
eventually be able to ride it when you drive. Your code should look
like this so far:

—e world.my first method _~ @ astronaut wave I

world.my first method Mo parameters

No variables
astronaut move up 1 meter more..
astronaut resize 2 maore...
astronaut turn right 2 revolutions MOorea...
astronaut resize 0.5 — | more..

astronaut move down 1 meter more...
astronaut.wave

humvee roll left — 1 revolution more...

astronaut move to humvee more..,

Drive Humvee

*Now we need a way
to glue the astronaut
to the humvee so that
when the humvee
moves, the astronaut
will move with it.

*We can do this using
the vehicle property.

*To find vehicle, click
on the astronaut’s
properties tab, and
find the button that
says vehicle.

astronaut's details
[vroperties [methods [functions |

capture pose

color =

opacity = 1(100%)

o] e

skin texture = astronaut.texture

-fillingStyle = solid
pointOfview = position: -1.91, 0, -0.01;
“isShowing = true

Seldom Used Properties
Sounds
+ Texture Maps

+
¥

deled by: Brian Levinthal
T‘Hai by: Cheryl Platz
<

Pulling it all together

*Now, drag an astronaut say method at the bottom of your code, and
click on other.... Type in, “Use the arrow keys to drive me around
Change the duration on the command to make the speech stay on

the screen longer. To do this, click on more... on the astronaut say line
of code, then choose duration, other..., and then type in 4. Your final

code will look like this:

world.my first method No parameters

No variables

astronaut move up — 1 meter | more..
astronaut resize 2 MOTe...

astronaut -~ furn right 2 revolutions more...
astronaut resize 0.5 more...

asironaut move down 1 meier more...
astronaut.wave

humvee roll left 1 revolution more...
|astronaut — moveto humvee — more..

astronaut set vehicle to humvee more...

astronaut say Use the arrow Keys to drive me around! duration = 4 seconds

more...

”n
1",

Drive Humvee

*Click on the vehicle button and drag and drop it into your method.

*On the gray menu that drops down, select humvee, and then the

entire humvee.

*This will set the humvee as a vehicle to your astronaut. When the
humvee moves, the astronaut will go with it.

color =
opacity = 1(100%)

+ Texture Maps

n._scﬂﬂmﬂ gwgﬁiu«ﬂ
inted ne Chend Plate

astronaut move to hurmves more...

value |

the entire wortd |

camera

light

oround _
™| humwvee » theentice humvee
. RS OGR ' frontRightWheel
] oummyotiocs » g e
- backRightWheel
- frontLeftWheel

Pulling it all together

*Now test your world by pressing play. When your methods
are done playing out, try steering the humvee around with the

arrow keys.

Congratulations! You have just made your first
Alice world. There are many more things that you can
do with Alice, so keep exploring it! Check out the

Duke Adventures in Alice Programming site for more
utorials and materials to try!

(http://www.cs.duke.edu/csed/alice/alicelnSchools/)

Nonvisual Arrays

Hello, the function is 2x + 1__ :

by Chris Brown
under Prof. Susan Rodger

Duke University
June 2012

Standards

CSTA Standard 5.3.B- Computer Science Concepts
and Practices (CT): Students will be able to...“6.
Compare and contrast simple data structures and
their uses (e.g., arrays and lists).”

NC Standard Course of Study Mathematics Grade 6-

Goal 5: The learner will demonstrate an
understanding of simple algebraic expressions.

Objective 5.0.2: Use and evaluate algebraic
expressions.

Nonvisual Arrays

* This tutorial will display how to create and use
nonvisual arrays in Alice. Nonvisual arrays can
be an array of any object or data type that
don’t necessarily have to be in order in the
world. In this world, we will fill the array with
solutions to the equation 2x + 1 and have the
user calculate the answers for random integer
values of x.

Set Up

* Click on the “Add Objects” button. For this world, all you will
need to add is the MadScientist character under the “People
Heading” in the Local Gallery and a 3D text object to keep
score. Right now, set the text to be 0.

Nonvisual Array
world's details

* Now we’re ready to start
building the array. Make
sure that world is selected
in the object tree, and then
go to properties under

?ﬁnum&mm Tjﬂ:_..&m Tq::nn_n_:m _ J

create new variable

—_

In the world’s details

pane, go under

“functions” and create a

Function

world's details

properies ﬂ_._._ﬂ:amm ﬁ::ﬂ.n:m

create new function

world’s details. Click the 128 crene new variable s new function that — .
“create a new variable” Name: [il 73 New Function =
button and call this variable . = | returns m. 3c3Um.s T e _
array. Make sure that it is a et L L Name this function
:) Boolean Type:
vou check the boxfor | o calculate. In here, we ™ 5l _
“make a” and select Array. D, will calculate the values | > Object
wmﬂm the array empty for _ | to be put in the array. |) Other... []
f | [/makea |List E
o] (oo |
Loop :
'@ world.my first method | RN T C n n.—”_ O n

world.my first method No parameters Vworldmy firstmethod |22 world.calculate

No vatiables . ZmX.F we’ll see how to fill in Id.calculate ”W«..E_._..

the array. Suppose we want

create new parameter

(Do Nothing

anadies

nﬂ_‘_ create new variable
e _ an array with all of the
2times solutions to the equation . . .
- “I% +1” from 0 to 50. Add 2 _ — * This function will need a
iy s loop from the bottom of the \“MM _,_”_ e | parameter to pass in
S editor into the method and P different values to
o enter 51 as the end value [0, > Boolean _ calculate. Click on
50] by selecting :&:m?.\.‘ in w_”ma] “create a new
o
| Doinorder Dotogether fEise " Loop While For allin order _M_E QDQ name ﬁj_m chcmﬂ

[~lLoop 51 times
[Do Nothing

tmes | show complicatedversion | parameter num.

Function

Ne vanables

* Where the function
returns 1, click on the U_HHMO
drop down arrow, 025

0.5 b

Filling in the Array

* Go back to world.my first method. Under world properties, drag
the array variable into the loop and select “set item <index> to
<item> in world.array”. Select index to be the index and
world.calculate to be the item, both under “expressions”.

choose “other...”, and _ o
) [properties [metnods [funclions | No variables
select 2. Then go back |22 o oy prmn
expressions » 1 i =lLoop 51times times show complicated version
to the same menu next =T 2 create new variable Nethinn
p i B e— . | setvalue b
to the 2 and select | omer. | 2. expressionsh [ordcalculatenim | amosprereconr - [ot tem <index> to<tem> in woridartay s
2 T2%» other... scorevalue ambienttightColor = [0 y
\\gm.ﬁj\\ ¢ \NN *7 ¢ 21 » I world.calculate ambientLightBrightness = 1 51 »
“expressions” 2> Buncindmncs B~ Sk eoressons) ngex dliom |
fogDensity = 0.1 scorevalue P | g
world.calculate.num. fogNearDistance = 1 metar world.calculate» | g5 7
fogFarDistance = 256 meters OLIBsom. B . index
4| Seldom Used Properties 2 m.woo_m.,._acm |
#+ Sounds 51 world.calculate
4| Texture Maps _ ey workdrandion
Function Filling in the Array
e * Now, click on the arrow * Now, click on “show complicated version” on the loop in
T , next to “Return (2 * the method.
Return * num A v ” « ” ===
s I SCBV m_JQ mO to Bm._..j =Loop 51times times € show complicated version
: “f~x ” “uaqn R
0.5 2 AN 3:3\; + 2“1 setitem index to world.calculate mamn =1 in world.array more...
1 to create a function that
2 calculates 2x + 1.
expressions b . “
L * Where the command in the loop says “world.calculate
math 4 (Z*num}) +» | p ” w: ” . . .
| | num=1", drag the “index” object in the loop over it.
other... (Z*num) - ¥ | .25 , .
| Zoum)* ¥ | g5 “Loop 122 indesedggm 0 upto (but not including) 51tmes — incrementing by 1 | show simple version
{2*num) | » |13 , =
—1 : worldaray -~ more..
. eXpressions b

Filling in the Array

* You are going to want to speed up this
process, otherwise filling in 50 values in the
array will take a while. Click on “more...” at the
end and go to duration and set the value to
something very small like .25 seconds.

[=Loop 51times — times _ show complicated version _

setitem index — {p | world.calculate num =1 in world.armay — more..,

duration» 0.25 seconds
0.5 seconds

* 1 sacond

fanswer=1- | [2slx=1", li23score=1 e

madScientist — say Hello, the functionis 2 +1.. — duration =3 seconds -~ more..

=Loop mmmm__amx from 0 upto (bwt notincluding) 510mes incrementing by 1

setifem index -~ o Worki.calculate num = index in worldarray — duration = 001 seconds

=\Loop infinity fimes — times _|.”..:_._. complicated version

x| st value fo - random fwmber minimom =0 - marimom =50 — integerOnly = true MAre..

madScientist - say Sobvefory. — more.

answel et value fo | askuserforanumber question=, Y= [omeduwilh | world.func joimed with X = joinedydth | %~ | asastring

=it answer — == ilem ¥ from workdarray

madScientist - say Thatis correct — more..

imcrement score -~ by 1 more.

Eise
madScientist -~ say Thatismcorrect., move.

decrement score byl more.,

scoreText ~ set text to SCOFR © @sasling — more..,

Complete the World

* Now that the array is filled, we want to choose
random values of x and then ask the user to
input the solution of the equation at the given
value of x, keeping score with how many they
get right. Try this on your own, a basic solution
is on the next slide.

Challenges

* Make a similar world and change the function
to a different equation suchasy=3x+5or
y=x%+2x—1.

Nonvisual Arrays and Recursion

Fibonacci Numbers!

by Chris Brown
under Prof. Susan Rodger
Duke University
June 2012

Recursion

* This presentation will also show how to use
recursion, which is an advanced Computer Science
programming concept. Recursion is when a function
must call itself with a smaller problem in order to
solve a larger one. It’s similar when a word 1s used in
the definition of the word, but using code. Here are
some images showing examples of recursion below:

Nonvisual Arrays

* This tutorial will display how to create and use
nonvisual arrays in Alice. Nonvisual arrays are
collections of any object or data type that don’t
necessarily have to be in order in the world as
opposed to visual arrays, but they are still
ordered in the array structure. We sill use this
to store the values of our recursive function so
that we don’t have to calculate it each time we
want to ask the user to solve for a specific
value.

Recursion

* In this tutorial, our recursive function will be

Fibonacci’s sequence of numbers. In Fibonacci’s
sequence, each successive number is calculated by
adding the preceding Fibonacci numbers. Initially,
the 0 Fibonacci number is 0 and the 15t Fibonacci
numberis 1 (0, 1, 1,2, 3, 5, 8,...). Note here that
fib(x) = the xth Fibonacci number.

« Ex: fib(2) = fib(1) + fib(0), fib(3) = fib(2) + fib(1),

.. fib(n) = fib(n-1) + fib(n-2). ..

Standards

CSTA Standard 5.3.B- Computer Science
Concepts and Practices (CT):

Students will be able to... “3. Explain how
sequence, selection, iteration,

and recursion are building blocks of
algorithms.”
CSTA Standard 5.3.B- (CT):

“6. Compare and contrast simple data structures and
their uses (e.g., arrays and lists).”

Getting Started

 After opening Alice, choose any environment
template and open it in Alice.

22 wetcome to acet =)

Tutorial | RecentWorlds | Templates | Examples | Open aworld
Templates

=
Nonvisual Arrays and Recursion Getting Started
* In this world, we will use Alice to create a * The only thing that we To
world where the user will have to enter the nth will need to add to the @ o
world is a person to ask =

number of the Fibonacci sequence as prompted
by the world. We will use recursion to
calculate the values of the Fibonacci series and
store those values in a nonvisual array.

entering lab

the @co.mco:m and a 3D — —
text object to keep —

score. Click on Add RN e i e
Objects and import the [0 SEEEii il e
MadScientist in the @ | v
Local Gallery in the

W@Oﬁ_m section. EE :

Getting Started Nonvisual Array

* Then, scroll all the way Create 3D Text * Now we’re ready to .ia.__“m P [

. . . g | meinods nCcHons
to the right of the Local start coding. Click wua_s =
Gallery and select “Done” on the right of {2t new varabe
“Create 3D Text”. Set your screen to go back | amospherecoior - [
the string to be “0”. to the method editor. To| ,mpienttigntcolor ‘B

i create the array, 20 t0 | ambientLightBrightness = 1 -
o the “properties” tab _fogStyle = no fog
under world’s details fogDensity = 0.1
and create a new fogNearDistance = 1 meter -
| variable. - fogFarDistance = 256 meters —
PO [agencyra [Flelz] [# Seldom Used Properties
[+ Sound
Lo) cmen] [+ ._.mn__”_:” Maps
Getting Started Nonvisual Array

| create new variable g

® single view (' guad view

 Arrange the objects in RN * Name the variable array | "me amay
the world using the e and make sure that it is __ T¥Pe: @ Humber
move objects in the top S of type Number. Then,
right corner. Your world at the bottom of the
should look something pop-up box, check

“make a” and select
Array from the menu.
Don’t add any items to
the array yet.

like this:

(o] [concn |

Nonvisual Array

world's details

?Eﬂm_ lies ﬂ_jmz.__u_u.m —qd.::_u__u:m

_i. array = =3

create new variable

‘atmosphereColor = !
ambientLightColor = [
ambientLightBrightness = 1

L InoSivle = oo finn

You should see that the
array variable was
created in your world
under the world’s
properties. Now we are
ready to fill in the array
with the Fibonacci
numbers with a
recursive function.

Function

* Now in the fib function, we want to create a
parameter to pass into the function when we call
it. Call this parameter num and make it a number

parameter.
d [world fib

[create new parameter

_ create new variable

[@ world.my first method [world.fib

world.fib 123 num

No variabies

Function

* To create the function,
go to the “functions” talf
under world’s details.
Click on the button to
create a new function
and name this function
fib and make sure it’s a
Number type function.

world's details

[properties [methods [functions |

create new functions

[~ boolean logic
not a

both a and b
either a or b ,orboth

= math | o New Functions

a==»nb
Name: fib|

ak=b

Type: @ Number
_' Boolean

a==h . Dbject

Other... _

(=] random

s [5]
a==Dhb _ | make a _Emﬁ E

P _ E Cancel _

Recursion

* When using recursion, the first thing you need
to do 1s make sure that there is a “base case”,
or a way out so that you do not get trapped in
infinite recursion. In this case, the base cases
are: when num is 0, fib(0) = 0; and when num

is 1, fib(1) = 1.

Recursion
~ @ world my first method 122 world.fib I

Recursion
[@ world my first method [z world-fib || RGN

* At the beginning of this
function, drag in an

world.fib m num

Mo variables

* Now, drag in a Return weriafib 23 num

statement from the

No variables

[=lif true
If/Else statement from (Do Notring bottom of the screento =4 wm =1
the bottom of the screen | T below the If. We want <Mone>
into the “Do Nothing” | | the function to return 1~ @ | '
. . Do Nothin *
and set the value to true if num is 1, so Return 1 S—
for now. if a=="> is true. [
0.2
0
I MD 4
u expressions ¢
WElse Loop ~While Forallin order print Return t math ._
il other... |
[ifElse Loop ..._S____am For all in order print m
Recursion Recursion

ﬁ @ world.my first method _~_:u Enlnvmcl

meihods {functions Novariables

E.E;E

create new functions

* Now, under the world’s

b “functions” tab, find

“a==Db”’ under the math

=/ baolean logic
not a

_ heading. Drag this over

both a and b

either a or b,
El math
a=b

expressions | worid iqum |
woridfib)|

a*b

w the true value in the

=« | If/Else and set the value

of a to world.fib.num
and b to 1.

=i

(Do Nothing

Else
\Do Nothing

num =1

- Retum 1

worldfib [122 num

No variables

El

* In the Else section, we
will need to check if the
value of num 1s 0. Drag
another If/Else statement
inside the Else and check
if num 1s 0. If num 1s 0,

(Do Nothin

turn 1

then we want to return 0.
(In the menu for Return,
you may need to select

“other...” and type in 0.)

.Emﬁm Loop While For allin order - print _..Ian_ﬂ

Recursion

* At this point, we have finished checking for
the base cases and are ready to use recursion.
Recursion will be used at the bottom of the
function, where it says Return 1.

Recursion

" @ world my first method

[(22 world.fib

* Notice that inside the worid.is)12 num

world.fib function we

Mo variables

are calling world.fib.
That 1s recursion.

* Now drag the num
parameter over the
value of num =1 in
the final Return
value.

Return 0

Else
Do Mothing

© Returm world.fib num =Tum

Recursion

* In the world’s functions tab, drag fib that we created over the 1
as the Return value. Alice will display a warning dealing with
recursion to make sure you know what you are doing. Make
sure to click Yes. Choose any value to be num, we will change
this later.

worid's details

“Recursion Warning

9 The code you have just dropped in creates a recursive call. We recommend that you understan
. what recursiop iz belate ma

king a call like this. Are you sure you want to do this?
properies | methods [functions | - y !

Return 1
Else
~both a and b =i s =
either a or b, or both RERIS 0
= math Else

‘al=b (Do Nothing
a=b

a=b

Recursion

vorld.fib 123 num

Vo variables

=l num — == 1

* Select the down arrow
next to num, and go to
“math” = “num - =

Return 1 : 2#3
(b .
Else | 025
=l num -~ =10 0.5
Return (0.25 | i1 _
0.5 | 2
Else F c‘
(Do Mothing |
2 | 0.2
0 “ | 20

‘Return ~ world.fib I 1

0.2 num + k .

expressions b

20 | num - » | other...

expressions * | num* » |

Recursion
* Now select the down arrow at the end of the return
statement and select “math” - “world.fib[... +” 2>
“expressions” > “world.fib”

world.fib | 122 num

No variables

= num =1
Return 1 2
0.25
Else 05
=K num == 0 1
_ 0.25 2
| 0.5 0
E
{1 0.2
_ 2 20
o = e
0 . B | expressions } | worid.fib.num |
Return = <
0.2 ‘world.fib{Ledu.cmu.cs.stage3.alice.core. fﬁ%a-ﬁ. + b | other... world.fib
20 worlid.fib[Ledu.cmu.cs.stage3.alice.core.Variable;@a6 1171 - »
expressions b world.fibfl edu.cmu.cs.stage3.alice.core.Variable;@a6 1177 * ¢
|
| math » | world fib[Ledu.cmu.cs.stage3.alice.core.Variable;@a61171/ » |
iFlse | orawrm e T R

Recursion

* That concludes our recursive function. fib must
call itself in order to find the sum of the previous
2 values of num. Note that there are two recursive
calls to world.fib in the return statement and both
values, (num — 1) and (num — 2), are smaller than
num, which is the value world.fib 1s called with
originally. Now, in world.my first method, we
will fill in the array with the Fibonacci values.

ItEise. -Loop - While Forallin order - print Retury

Recursion
[@ worldmy first method [world i |
.= * Finally, drag the num
an G parameter over num = 1,
o= » | and click the down
- 025
i (= = arrow next to num and
Return 0 0.25 1
= @ go to “math” = “num -
(Do Nahing M ‘”_u 7 99 ¢ 2N3.
0 n
"Retyrn | { worldfibpum=" [num -1} + 0.2 S muuqmmm_oﬁ.“
2 num - b | other... _
eXpressions » um* »
0] v * The final Return

statement should look
like this:

Rewrn (worldfbmum= (num -1) + worldfibnum=(num~ -2)

* Click on the world.my

world.my first method

Wortdmy rst method) 2 woric i |

world.my first method No parameters

first method tab.

Drag a Loop into the
method from the bottom
of the screen and choose
10 times. This will
eventually calculate the
first 10 numbers of the
Fibonacci series. Also
click on “show
complicated version”.

No variables

SlLoop 10tmes — times@l show complicated version '

Doinorder Do together | |iElse ~Loop ~ While - Forallin order ' For all togethi

world.my first method

* Now, drag the array into the loop and select “set
<index> to <item> in world.array”. Set the index to be
index and item to world.fib, both under “expressions”.

worlds detafls WOTIQmY Nrst Memoa o paramees
properties m‘qmﬂa_“_m ?333 _ Mo variables flem
[*lamyz= _ -2 .

=lLoop 122/ index from 0~ upto (butmot including) 10times = incrementing 05 show simple
create new vanable o hiol 1

T setvalue » 2

atmosphereColor = .u. setitem <index> 1o <item> in workd.array b | index 0
ambientligntColor = [0) 02
ambientLightBrightness = 1 02) 0
fogStyle = nofog E 4 ENPIESSIons b | index
fogDensity = 0.4 expressions | index 5| other.. woridf |

foghlearDistance = 1 mefer world.fib »

world.my first method

* We are now finished filling in the array, and
are ready to quiz the user. Create a new
Number variable called answer. This variable
will take the user’s input.

O wordmyrtmetod v [

world.my first method No parameters

[122 answer = 1 A

Create new parameter

Ccredte new variable

N —

world.my first method

* Once you have done that, then drag the index
element from the loop to pass in as the
parameter for fib.

= Loop @ inde 0~ upto(butnotincluding) 10times ~ incrementing by 1

setitem index in world.array -~ more...

Quiz
 Drag another loop into the method and set it to be the
same length as the previous loop (in this case, 10).

Then move the answer variable into this new loop and
just set the value to 1 for now.

world.my first method No paramelers
123 answer = 1

“Loop ['23/index from 0 upto (but not including) 10 fimes — incremen

" getitern index — to | worldfib men =index in world.array — 1

oop 10times times show complicated version

answer set value to 1 more...

Quiz

* Now, go to the world’s functions tab and under the “ask
user” heading, drag “ask user for a number” over the 1
that we set as answer’s value. This function will set the
value of answer to be whatever number the user inputs
when prompted while the world is running.

opetties ?_m:unm [functions |

23] answer = 1

-

‘a<=h
random ~|Loop _ﬂlw index from 0 upto (but not including) 10mes — incrementing by 1 |
choose true ua_.m&-w_en._aam setitem index — (o workdfib s = index in worldarray more..
random nurmber
string = =lLoop 10 tmes — limes show complicated version
a joined with b
" - ansiwer set ask user for a number question =Enter a Number: -~ more..
- what as a string
ask user
ask user for anul

RS FETEEE A ST S —

Quiz

* Then drag “what as a string” over the default
string for b and select “expressions” >
“index”’.

show 5| the entire world

o [HLoop W index from 0~ upto (but notincluding) 10times ~ incrementing by 1

my first method ¢
camera

indom |
choose true probabilityOfT e q_

setitem world.fib num =index to index ~ jn world.amay -~ more..

! lLoop 10times — fimes | show complicated version fight

i behaviord
ng answer~ set value to @skuserfor anumber question = EeFEE_N ground § [OTE..
& joined with b
array

what asa madScientist »
sk user fib ¥ index
ask user for a number 30 Text answer
ask user for yes or no my first _. workd.ar

M _v. Doin order | Dotogether IffEise Loop - While Forallinorder Foralltogether | WWait ~ print |

expressions b | workd.fit

Quiz

* Now, under the world’s functions “string” heading, drag
“a joined with b” over the question asked for the value of
answer. Let b be the default string for now.

world’s details world.my first /o parameters
roperties [methods |functs e
__n_ peries T_._m o .T:.n a_:_.) _rlw T I
‘a<h = _ _ = _
[=Loop _.d.m index from 0~ wpto (but notincluding) 10times — incrementing by 1 sh
ae=Dh
. setitem - world.fib num = index to index — in world.array — more..,
=| random =]

 choose true probabilityOMTrue of
= [<Loop 10times ~ ftimes | show complicated version _

random number
=] string — answer — | set value to ~ askuserforanu = Fmtarnallomban — | RO
: b
@ joined with b : — _
- what as a string Rl

Quiz
 For the value of a in the question, click on it and ask

something like, “What is the value of the Fibonacci series
mH 29

oop 10bmes — limes _ shiow comphcated version _

Canswer — set value to | askuserfor a number question = [the value of the Fibonace series at | jomedwith index — as astring

* Now, drag an If/Else into the second loop and select true.

_oop 10times times _ show complicated version _

answer -~ sel value to ask user for a number question = What is the val

true
o Nothing
Elsi
(Do ﬁ

N\ —
order Uananﬂi’_—___m_mm Loop |- While For allinorder For all together

Quiz

* Under the world’s functions, drag “a ==b" over the
“true” in the If/Else statement. Set a to be answer
under “expressions” and b to be any value for now.

either a or b ,orboth

. m

akb

ax»b
:a>=bh

a<h

a<=h

| 4

[~lLoop 10times times _ show complicated versio
: answer set value to askus D
0.25
Pt 5 . i
(Dof g.25 b i
Else | 0.5 b I
(Do 1 Pl odee b ...mxﬂ_ﬂmmm.gmv
2 » ‘answer b other..
Doin order - | éxpressions ¥ | worldfib} | nile Foral

Quiz

* If the user gets the answer right, we want to update the
score and have the MadScientist say “That’s right!”. If
they get it wrong then we want to have him say, “Sorry,
that’s wrong.” The say method is under the MadScientist
methods. Click on MadScientist in the object tree and drag
“madScientist say” into the If/Else and enter the string

after clicking “other...”.

NMHNDLETARY T
madScientist turn
matiScientist roll

radScientist resize

answer st walue to - @Sk user for anumi

Sif | answer == - flem index -~ from
adScientist -~ say That's correct! — ' n

Else
adScientist — say Sorry, that's wrong!

Quiz

* In world’s properties, drag array over the value of b
and choose index as the “ith item from array”.

(% |amayg =

create new variable

atmosphereColor = .
ambientLightColor = |3
ambientLightBrightness = 1
foyStyle = no fog
foyDensity = 0.1
fogNearDistance = 1 meter

fogFarDistance = 256 melers

+ Seldom Used Properties

J M UPBI UG | IHIBHIVMS. | IMHLUUID, |

123/ answer = 1

“lLoop mm_i%x from 0

up to {but not including) 10 times — incrementing

setitem index — to world.fib num =index in worldarray moi

oop 10times — times | show complicated version

answe set value to ask userfor anumber question= Whatisthe

=iif answer — == ui_imx
\Do Nothing | .
s enressions > | ndox
EDRcIG | a_ﬂm?. . answer
| worldfib

size of array 0

Quiz

[]
@ worldmy frst method

vrorid.my first method Noparameters

_rﬁn answer =1, ..uum score = 0
. . -
[Hioop 123l from 0~ upto (but notinchuding) 10 times — | increm
 setitem ifflex to Worldfib num =index in world.array

- ans set value to sk userfor anumber question=VWhat

answer == ftem index from world.array

adScientist — say That's correct! ~ more...
set value e

madScientist increment workiny first method.score by 1
decrement world.my first method.score by 1

For keeping score,
create a new number
variable called score
and set it to 0. Drag
score into the If part of
the If/Else and choose
“increment score by 1.

random |
choose true protrabiityOfTrue
random number

string

‘@ [ained with b
what asa

ask user

 @sk user for a number
- ask user fof yes of no
- ask user for a string

mause

C

Quiz

3D Text's details
* Now to update the e e s
score on the screen, et row e
go to the properties of [mmemse
3D Text and drag o
13 29 ,.aan"g —
text ” to the top of oxsn - 025
- curvature = 2

the second loop.

30 Text - set

=2

lLoop 10tmes — times _“

world.my first method Noparamelers

iz answer = 1, | fiz2] score = 0

the entire world -

iy first method _._

Wher question =
camera _
light
hehaviord
around L3 —
amay Index
mailScientist — » | answer
fib v_ﬂ

3D Text workdarray
expressions b workLi

m world.array

Eloop 23] index from 0~ upto fbut not it

_setitem index — to worldfib num =it

Elloop 10times — times | show eomplici
3D Text - set text to default string

answer — set value to ask user for ¢

* Over the default string,
go to the world
functions and drag
“what as a string” over
it, and then select score
under expressions.

Challenge

Try creating a world similar to this one that
asks users to calculate factorials, another
recursive mathematical function. What would
be the base case?

Conclusion

* That concludes our world! Run the world to try
it out and take the quiz to calculate the first 10
Fibonacci numbers. This world used nonvisual
arrays to store all of the values and recursion
to calculate the values of the Fibonacci series.

That's correct! M :
n

Probability

m__._m VL W ,__1_‘,___,__,___ i Zmn_

by Chris Brown
under Prof. Susan Rodger
Duke University
July 2012

Standards

NC Standard Course of Study Mathematics
Grade 6-

Goal 4: The learner will understand and
determine probabilities.

Probability

* In this world, we will create a probability
game where students will have to give the
probability of choosing a certain colored ball
from a hole in the ground. They are provided
with the total number of balls and the number
of balls for each color and will be asked to
calculate the probabilities of choosing random
balls out of the group. This world will help

students learn about probabilities and fractions.

Set Up

* For this world, I chose the Sand template after
opening Alice. Once you have done that, click

on the “Add Objects” button to add all of the
things we will need into this world.

]| €—

Set Up

* The first object we
want to add is a
circle, to represent a
hole in the ground
where we will place
our balls. Scroll over
to the “Shapes”
folder in your local
gallery and import
the “Circle” class.

Set Up B
@ vamn
* To change the color of a W e |
ball, make sure its name WHM
is highlighted in the @ bars
object tree and select the WHM b
properties tab under the @ aie
ball’s details. Click next s i .
to the color property to _é_”éMsH”w -

change the color of the
ball and you should see
the ball change colors.

- colof
- opacity = 0%) —
:vehicle = world

Propertie:

Thistaba
|the Prope

“skin texture = <None>

"filling Style = solid

Set Up

B voria * Now, while we are in the
»E® camera Shapes folder, we want to add
Qi ight 12 spheres to represent the
colored balls that the program
“ns___z_ will choose randomly.
circle SphereHighPoly makes the
Q) sheretighPoly spheres look rounder, so I used
@ sohereHighPoly2 those. You will see 12
. sphereHighPoly objects added
“%_ssxa__u&u to the object tree in the top
sphereHighPoly4 right corner. I changed their
) sphereHighPolys names to balll to balll2 just
Q) sohereHighPolys for clarity by right clicking on
R soneriigwooy) 1 the name and selecting
'Object Tree rename.
sphereHighPoly8
a _._.amaﬂmﬁ Tree shows all . .
@ sohereHighPolys of in the world. | - Note: After adding each one, you will

need to move it or Alice will place all 12
spheres on top of each other.

Set Up

* Change the colors of the balls so that there are

4 blue balls, 3 red balls, 3 yellow balls, and 2
white balls.

Set Up

* Now, resize the balls using the icons on the right side
of the screen so that they are smaller and move them
so that they are all “inside” of the hole, or just below
the circle in this case. Here’s a picture from the
bottom, but your world should look like the picture
on the next slide.

Set Up

* Next, we want to add 3D text objects, one for each
possible color of the balls, to update while the game
is being played with the number of balls of that
color left. Scroll to the end of the Local Gallery and
import four 3D text objects, setting the text of each
one to “Red”, “White”, “Blue”, and “Yellow”. Also,
go into the properties of each of these new text
objects and change their color to their respective
string values. I renamed the 3D text objects red,
white, blue, and yellow to make a distinction
between them in the Object Tree.

 See the next page for the final setup of the 3D text
objects.

Set Up

* Change the color of the circle to black so that
it actually looks like a hole by going to circle’s
properties and changing the color to black.

@ ranz
@ bans
[bans

circle's details

[properties [methods [functions |

create new variable

Create 3D Text

TENT

Set Up

* Now we want to save the start camera position
because we will be moving the camera. To do this,
you will click on “more controls >>"" on the right
and then click on| #umsmaann | n the object tree,
you will see a new folder called Dummy Objects
and you are going to want to rename the dummy
object in that folder to start.

Set Up

* Now we have all of the objects that we will
need set up in this world and can start
programming! Click on the Done button to
continue to world.my first method.

Set Up

« Now we want to add a . s _
new camera view to : v A
animate when the balls are
taken out of the hole. Use
the arrows below the
camera view to move the
camera to get a close up
of the hole by itself, and
drop another dummy
object at the camera. In
the same folder, rename
this camera view object
choose.

Tree, and select “create
new variable” under
world’s properties.

world's details

Senmethiods —\E_._u_a:u_

:atmosphereColor = !

-ambientLightColor = !

‘ambientLightBrightness = 1

Lists
= Jworid =
. »E® camera
* The first thing that we Q3 tight
need to do is make a list L T
of all the ball objects that Wﬂﬂm
we added into the world. @ vanz M
Make sure world is WHH
selected in the Object R vans

Lists

S|
_ * When the menu pops up,

name the variable
listOfObjects. Make sure
that you select Object as
the variable type and check
the box next to “make a
List”. Add 12 new items

[v] make a _E.m_ H_

Name: |colorNames Name: |colortist Name: |cojorhiums
Type: O Number Type:) Number Type: @ Number
_ Boolean ' Boolean \ _) Boolean

_ Object) Object _ Object

- Other... |String A“_ﬁ *- Other... _noaq ‘”_— = Other... |
Values: [v] make a _._2 H_ Values: V] make a __..ﬂ E Values:

[v] makea |List H_

* Now we want to create three more lists: one

that contains the string of color names
(colorNames), one that contains the actual
colors (colorList), and finally one that contains
the number of balls at each color left
(colorNums). Note that the indices of all three
of these lists must correspond to the same
color (0 =red, 1 = white, 2 = blue, 3 = yellow).

v crerrrs . item 0 = red [0l T ._saaul item0/= 3
| [s oo = || (item 0 —11) and choose === = —%
_ e each ball to be an item in item 2 = blue item 2 - [tem 2 - 4
_ ST M | | the list. Click OK when tom3=fpoto] | | [em3- -
: z _ _ : MNOC‘ NH.O %MHHHMWOQ WSQ V\Oﬁ : __._m._e:m_.: _ , _u _ new item _ _ remove item _ _ new item _ _ remove item _
new item remove am . . ,
_ = should see this list under .
| . Cancel Cancel
n 5 | world’s propertics ll | e o] oo |
ﬁ_ | ok || cance |
Lists Lists

* When you’re done, you should see four list
variables under world’s properties.

in_.___,.mnm_umm
__._“_:..__um_.:mm [methods [functions |
osi|| listofObjects =| ball1, bali2, bali3, ball4, b

|j || coloriames n_ red, white, blue, _._m__a_.__.__

@: colorList = _ red, no color, blue, yeliow _

uu.._ colorNums =| 3,2, 4, 3

create new variable

world.my first method

* Now we’re ready to start adding code to world.my first
method. The first thing that you want to do is drag a Loop
into the “Do Nothing” section of the method and set the
value to however many times you want to quiz the user to

calculate the probability.
[@ world.my first method || NG

world.my first method Mo parameters

Mo variables

[~ILoop 12times — times _ show compilicated version _
Nothing)

Do in order | Do togetherH.mn/. Loop \While Forall in order
e

Changing 3D Text

° ‘H,WO mﬁwﬂ _“H\:me ﬁ_\wm—\m we world.my first method No parameters
want to do is change our ===
3D text so that it HSWLHHMW ot e e s |
displays the number of (Do Nothing
balls left at each color. Ao
Drag a Do together into
the loop we just added
to change all of the 3D
text values at the same

time.

Do in order B Do together | IffElse = Loop - While - Forallin on

world.my first methd

* (Create a new number variable called fotal that will

keep track of the total number of balls left in the hole.

Each time a ball is taken the total will decrease by 1.
Initially set the value of fotal to 12.

£ Create New Local Variable ot

Name: |; ¢

_ Type: @ Number .
_' Boolean
_ Object

Other... _F D
¢ e [Imakea |List _M_

Changing 3D Text

i Ban12
Wms * Now, to change the text
@ oiue of a 3D text object, you
Q yetiow . . .
& S e e will go to its properties
e and drag the “text”
[properties [metnods [uncions | variable into the Do
Créste aow variablo together. Set the value
e to default string for
— now, because we will
“ME change this next.

extrusion = 0.25

curvature = 2

Changing 3D Text

* Click on world in the object tree and go to world’s
functions. Under the string tab, you should see a “what as
a string” function. Drag that over the value of the default
string that you set the 3D text red to. You can also choose
any object for now because this will be replaced. I chose
“circle” in this example.

world's details world.my first method Ne parameters
?Sum:_mm ﬂ.i.m%onm ?._:Q..o_._m_ No variables
asw Tt
as=b = Loop 12times limes show complicated versios
= Loaknn . [=IDo together
choose true babilityOfT i
pee Louiliad red set text circle as a siring
random number =
[=] string

a joined with b

what as a strin

|= ask user

Changing 3D Text

=lLoop 12times mes _ show complicated version _
[~ Do together
red set texi to & o item 0 from world.colorNums as a string
white — set text to ~ ftem 1 from worid.colorums as a string
biue set text to item 2 from worid.colorlums as a string
yellow set text to item 3 from world.colorNums as a string

* Then, you are going to want to set the other 3D text
values to their corresponding value in the colorNums
list inside of the Do together as shown above.

Changing 3D Text

* Now go to world’s properties to the lists that we
created earlier. Drag the list colorNums over the
arbitrary object that you picked earlier. When asked for
the index, go to “ith item from list” = “0”, to choose
the number at position 0 in the list which represents
the number of red balls.

?Sumawm _~:¢.m=:5w _\Hgﬂa:w _

No variables

[o%i]] listorobjects ={ ball4, ball2, ball3 =]

7 i [HlLoop 12times — times show complicated version
Jg colorNames =| red, white, blue, y| i
s [=!Do together

@) cotortist =[red, white, biue, yelid
[r23]| coloriums ={ 3,2,4,3 |

create new variable

red — set text to = Cf='~— mmmet=mm e,
world.colorNums

first item from list
fast item from list
random item from list
atmosphereColor = ! ith Htem from bst W index
ambientLightcolor = [JIES [

‘ambientLightBrightness = 1

is list empty (1]
list contains k(1

foaStyle = no fon size oflist 2

Random Number

* Now we want to create a £3 Create New Local Variable E;
random number variable | name:
to ask the user the S
probability of selecting * mH”a_”T
random balls from the

colorindex

J Object
hole. Click on “create 2_“2... []
new variable” in the right T
corner of the method | vawe: 1 [imakea [ust [~]

editor and call this new

number variable | ok || cancer |
colorIndex. Make sure : “
the Type is “Number”.

= string

Random Number Random Number
T —— * Drag the colorindex * Click on the purple “more...” in the random
e leuas (- T variable from the top of number function and set the minimum value to
58 X . .
the method into the loop 0, the maximum value to 4, and integerOnly to
: . but below the Do
white — set text to item 1 f be true.
together, and set the
biue et text to item 2 ¢ value to any integer for colorindex ~ set value to | random ===Em_._®| more...
now. | minimum # |
yellow — set text to item 3 maximum »
integerOnly »
colorindex set value to 1 more...
colorindex. col value to random number minimum=0 - maximum=4 — integerOnly =true
Random Number world.my first method

= random

* Under world’s functions random tab, drag random
number over the value that you just chose for

colorIndex.

—| Do together
choose true probabilityOfTrue of il ot St item 0 L pe—"
random number :

white set text to | ftem 1 from world.col
a joined with b
what as a string " blue — set text to fem 2 from world.colo
= ask user

ask user for a number ~ yel set text to item 3 — | from worid.co
ask user for yes orno

colorindex sel value random number more...

ask user for a string

£l
.Mm Create New Local Variable

* Now, in world.my

=)
first method, create a

| Yame: |curentcolod new String variable
TPe O Number | called currentColor.
_ > Boolean This variable will
- M”M_ — 5 keep track of the

| Value:

string of the current

makea |ust [+] random color so we
can ask the user to

ok | cancer | | calculate the

default string

° probability.

world.my first method

» We want to set the value of currentColor to the
value of the list colorNames at our random
colorindex. First, drag the currentColor variable
to the bottom of the loop and set the value to
default string for now. Then drag the
colorNames list over the default string and go to
“ith item from list” = “expressions” >
“colorIndex” for the index. You can see a
picture on the next page.

Quiz

At this time, we are
ready to quiz the user on
the probability of
choosing a certain ball.
The first thing we want
to do is create a new
string variable called
answer in world.my first
method, to save the
answer that the user will
give.

..\.u. Create Mew Local Variable @
Name: _m=w£nl
| TYPe: () Number Y
_) Boolean
_ Object
® Other... [String E
Value: default string make a |List _M_

o] [conn |

world.my first method

roperties [methods [functions |

— ,M“ currentColor = default string — | T.._M” total = 12—, _migmsﬁu default string

obi | lstofObjects = Ball, Balld, Ball2, #
.,W,«__ colorNameg = | red, white, biue, y [FlLoop 12times — times | show complicated version _
o i [=Do together
@) colors = red, wNgbiue, yellow i
i . red -~ settextto ~ item 0 from world.colorNums asasting -~
,_3.,‘__ colorNums =| 3,2,4,3] .
sreate new variable white -~ settextto ~item 1 from world.colorNums as a string
atmosphereColor = ! blue ~ set text to item 2~ from world.colorNums as a string
ambientLightColor = [J
— elloWN, set text to ~ ftem 3 from world.cola, s a strin
ambientLightBrightness = 1 X | index [9
fogStyle = no fog — 0 L
; colorindex = set valueNg _random number minimum =0 1 index
fogDensity = 0.1 5
total
fogNearDistance = 1 meter currentColor — set value to defa firstitem from list
[= _ 3 [colorindex
- ‘ last item from list _
fogFarDistance = 256 meters | &= _ int
¥ random item from list | eXPressions »
T T Doinorder ~Dotogether If/Else Loop| = — " ™ __q\‘ wan

ithitem fromlist » other..

123 colorindex = 1~ |, | {".| currentColor| = default string

I~/ Do together

red set text to item 0 from .colorNums

white — set text to ftem 1

world.colorNums

blue — set text to 2~ | from world.colorNums asa
yellow set text item 3 from world.colorNums as
value to random number minimum =0 — maximum =4

colorindex

set value to item colorindex

Canswer — set value fg AeSmah atrinm

more...
|® defauit string

from world.colorNames

| I

| expressions b |
Joinorder Do together IfiEls

| 'Foraliin order | For all together

Next, we want to set the
value of answer so that
it will save the answer
that the user types in.
Drag answer to the
bottom of the loop and
set the value to the
default string for now.

Quiz
e Then, go to world functions under the ask user
tab and drag “ask user for a string” over the
default string that we set answer to. When
prompted for a question, select “other” and

type in, “What is the probability that you will
choose a ” and we’ll complete this question

later.
i colorindex — | sel value to ¢ FENGOM DUMDET MIMMUMm =0~ maumam =4 ~ | infegerOnly = true
ask user for a number
ask user foryes or no currentColor ~ set value to ftem colorindex ~ from world.colorNames more_.
ask user fora strin answer sel ___mgw askuserforasiring guestion = \Whatis the probabity that you will choose a

mouse

Quiz

* Repeat the last step and drag “a joined with b”
over the entire question string. This time for b,
choose other and type in “ ball? Do not
simplify. (a/b)”, to give the user more
information about the input of their answer.

(13

AnWer et yvalue to askuserforastrag queston= . VIhatis the probabity thatyou wilichoosea | nined with curentCoke ~ juined with bal? Do not simpify. faib|

Quiz

* In world functions under the string tab, there is
an “‘a joined with b” function. Drag that over
the string we just typed earlier in for the
question and for b, go to “expressions” >

currentColor.
iy CONMMOSX ~ | sel yalue W 7 TERGQIIIUDES MG =U | AKX =4 NREJEruny = oue e,
4 joimed with
valug to - ftem colorindex | from warld.colorkames more..

weal a5 astring 5 |
sk user answer ~ St value fo u:-ﬁaamga delait stig h current
sk user for a number -

Wit is the probability that you will chosea ——
ash user for yes or no 1| _ (s i y that ou wil ¢ |
i BApIESSiONS b
sl saanten s atiinn “Nevin nrdar | Rindnnathae |WFlca | anol Whila | Encallim netort - Frall oot oo cumentColg

Quiz

b zwxﬁ we want to OFOOW ;. [123 colorindex = 1, ._ﬂnm currentColor = default siring

the answer that the user | I SR e o
gave is actually correct. yelow — | set text to || fem 3~ from worlde
We can do this by W
Qﬂmmmwum up an Hﬁ\m_mo colorindex set value to | random number Eh._.,.ﬂnj
statement from the bottom| currentcolor set vale to item colorindex _i
of the method editor and ,

answer set value to ~ ask user for a siring qcmmumi

dropping it in the bottom
of the loop. Set the
condition to be true for
NOw.

=il true

Nothing

1 |

Do in order | Do together ¥ MiElse Loop = \While For all it
_ - s -

Quiz

* Drag the answer variable over the true in the If/Else
statement and select “answer =" = default string.

m|u_n_..._a_.__.amx o _.,_|Fﬁ_ currentColor = default string _ﬂ_msmsﬁ_ = default string

yellow — set text to = item 3 asastring oy

colorindex sot value to random ber minimum =0 maximum =4 integerOnly
currentColor set value t item colorindex from world.colorNames more...
answer — set ypife to askuserforastring guestion= Whatis the probability that y

= If answer == default string

(Do Nothing

Quiz

* For the center default string, simply change that to “/”
to represent the bar of the fraction. The denominator
will be the last default string, so go to world functions
and drag the “what as a string” function over the last
default string and choose “expressions” —>total.

string

a joined with b
what as astring St answer — = defaultstring ~ 'joined with | joined total ~ as.a string
b (Do Nothing
ask user for a number
Else
ask user for yes of no T

- sk user for a string

Quiz

* Drag in an “a joined with b” function from world’s
functions over the default string, and then drag
another “a joined with b”” function over the previous
two.

=it - answer = default string -~ joined with default string joined with defauit string

(Do Nothing

Else

(Do Nothing

Quiz

* One thing to note is that in Alice, integers are
represented as 1.0. Instead of having the user type in
a.0/b.0, we just want their answer to be in the form
a/b. To do this, we will need to use the world’s “int as
a” function.

* Note: As of March 2012, there is a bug in Alice that hides this
function for some reason, but it is a very tiny purple speck at
the bottom of the advanced math section of world functions.
Drag that over total and select “more...” =2 “a” 2>
“expressions” >total. The next few slides will show this
clearly. This bug should be fixed in the next version.

Quiz

the b th

other

Quiz
* In the default string representing the numerator,
you will also need to drag the world functions
“what as a string” over the default string, and then
the “int as a” function over that. This time,
however, choose any value for a and we will
change this later. I chose 1 below.

Ji | answer == L asastring ~ joined with / joined with total as a string
|Do Nothing -
Eise
(Do Nothing

* Note that there are 4 tabs before the “1” for 3 functions, that
means your statement is correct with the “int as a” function
bug.

* Drag this function over fotal that we placed in the
“what as a string” function earlier. To set the value,
choose “more” = “a” >“expressions” = total.

BIarse0 Wme a poves
[EEERemaindercf a | b
“round &

@ converted from radians to

a converled from degrees |

Quiz

answer — sel vale to - a5k userforastring question =

answer — = ”‘ ! default sfring ~ joined with |

VWhatis the probabiity *”
expressions b | index

106 Nothing

—m——

Quiz
* Under world’s properties, drag the colorNums list
over the value that you chose earlier and select “ith
item from list” = “expressions” >colorindex to get
the number of balls of the specific color left. The

correct answer should be (# of balls for the current
color/total number of balls).

||| Colors; =| red, Wiie, Diue, § colorindex set value to | random number minimum =0 — maximum =4 — | inleg

currentColor set value to ~ flem colorindex from word.colorNames 1

create new variable | ” index _
|7 set value to ask user for a string questiol a - —fhe probability
atmosphereColor = l 1 7
ambientLightColor = JEEES — o a1 2 ioil ,
19 I = answer = = - ! first itemn from list § 3.:2_4
ambientLightBrightness = 1 Laet o from list b |

fogStyle = no fog 100 Nothing random item from list | SXRTESSIONS Y | index
fogDensity = 0.1 = Else | ithitem from fist | other... | colorinde

Quiz

* Now we are done checking to see if the answer is correct,
but we need to decide what to do if the answer is right or
wrong. If the answer is wrong, we want the circle to say,
“Sorry, that’s incorrect...”. Click on circle in the object
tree and go to circle’s methods. Drag “circle say” into the
Do Nothing of the Else portion of the If/Else statement at
the bottom and choose “other” to type in a string. If the
answer is right, have the circle say “That’s correct!”.

circle turm i
circle roll =i | answer ~ == ftem colorindex — from worid.colorums as a string
circle| resize E
Do Nothing
circle say = Else
circle think circle -~ say Sorry, thal's incorrect.. | more...

not

both a and b
-gither a or b ,or both

Quiz

* Go to world’s functions
and drag the function
“a!=Db" over the
condition that you set

=l answer— =

circle say That's correct!

math
a==b 025 =0 ﬁ\wﬂ Hﬁ;\mﬂmﬂ ﬂo. Em_\; now
at= b= (Do Nothing choose any value for a
J L Sl (a=.25 in this picture)
- |Do Nothing
and let b equal 0.
ax<b Else
ae=h circle — say Sorry, that's inc

Quiz

* If the user gets the
answer right, the first
thing we want to do is

=1 answer == item colorindex

BNWO sure ﬁpwﬁ Q.»@ circle say That's correct! more...
number of balls of that n:_ M_Hsé
color isn’t 0. In the If %
portion, drag in another s
If/Else statement and -
circle Sorry, that's incorrect... MOre...

select true for now.

i Do in order Uanoumn_mq/_am_mm “Loop ' \While For:

“atmosphereColor = [

Quiz
* Click on the world’s properties tab, and drag
the colorNums list over the value that you

chose for a and select “expressions” >
colorIndex as the ith item from the list.

|||} COIOTS =| req, whie, Dive, y
[123]]| colorNumsmg3, 2, 4,3

create new variable

ner LU iiue R e wWuoli.Luow

=in answer ==

= _ index
[
> | 0
circle say That's correct! |
e |

por . i) |
2

| first item from list 7 L

ieai phiCol I ”bo_,.__n_ last item from list .
-amibien: or = - ol

Else | randem item from list | expressions b | index _I.
ambientLightBrightness = 1 Do NG iih item from list ’ _ other... colorindex
fogStyle = nofog Efea aizeof list total
fogDensity = 0.1 circle - | firstindex of et more.. nt
“fogNearDistance = 1 meter lastindex of] |

fonFarDistance = 256 meters

Quiz

e If the number of balls of the current color is
not 0, then we will want to animate the process
of picking the ball out (which we will do in
another method), decrement the value of the
number of balls for that color in colorNum,
and decrement the total number of balls by
one. Otherwise, we do not really want to do

world.selectBall

* For this method, we will need to pass in a parameter,
or information from the world, so that it will know
which color ball to take out. Click on “create new
parameter” on the right side of the method and make
a new Color parameter and name it color.

£ Create New Parameter E

Name:

|| Type:

color
) Number ﬁ

) Boolean create new parameter
mHHV\ O%a ﬁ_\wom@ H#Hﬂbmm. s I . create new variabie
*i Other... |Color @ P
[make a “—._..: E
world.selectBall world.selectBall
* Go to world’s methods and create a new * Thefirst thing that we |ammem — grerd
method called selectBall want to do in this method ™o sy~ o S—
. is to change the camera .. A s
world's details world.selectBall No parameters view to the position that camen meeto .
?E_u.mﬂ._mm —?n.:nﬁw ﬁ_____qn_E._._m _ o variables we mm<®Q @WH.SQ.. Goto H“MH HHM Hﬂ.”aa M"“
el ot (5] the camera’s methods — o
Do Nothing @HHQ Qﬁmm Hs ﬁ?@ B@ﬂwog camera tum to face Ball2
. . camera point al Ballt
= “camera set point of view ™" MY Bail
create new method v ﬂouu MSHQ ﬁwﬂ@s m@HOOﬂ camera setpose _mm.w.“_._m
“Dummy Objects” = parwers [Sadaly -
“choose” as the object. o ey Domoradyelow ____srt__|,

Dummy Objects » | Choose o

world.selectBall

* Now, we want to go

..._..m Create Mew Local Vanable

through each object in the [
listOfObjects until we =

find a ball that is the right | "P® ® tumber
color. To do this, we will HH_,

need a temporary number
variable to iterate through
the list. Create a new \
variable named ifer and
initialize its value at 0.

) Other... D
:m*__m“@ |imakea |List _M_

7 oK __ Cancel _

world.selectBall

* Now, go to world’s properties and drag our
listOfObjects over balll and choose “ith item

. 29 (13 < 29 b
from list” = “expressions” =2 iter.
world's details world.selectBall @) color m
?a._wmamm __jmsnam _\E:.B.o_._m _ _ _H g §
| losi| listOfObjects 1, ball2, ball3— 7
- camera sel point of view to choose
"% ||| colorNames = | red, white, blue, 8
: e 9
@_._ colorList =| red, white, blue, yellg =While | first item from list

(Do Nothing | last item from list b=
| random item from list | @XPressions » | jiar

ith item from lst k| other..,

create new variable

world.selectBall

world.selectBall (@) coll “¥2"
— magenta
No variables gray

bali1's details

:._U-:m__..mm ﬂ:_m_:aam 1..::.43_..«. _

create new variable 7| light gray

dark gray

ball1.color — » | SXBRESSIONS b | color
 palll.color!= k| other..

caplure pose

colo
opacity = 1 (100%)

vehicle = world

skin texture = <None=

filling Style = solid

pointOfView = position: 0.51, -0.4, -0.46;

ieShowing = true

[Seldom Used Properties
[+ Sounds
[+ Texture Maps

&l 1l] v Doin order| | Dotogether | IfiElse Loop WWWhile

* Drag a While loop from the bottom of the method editor into
the method and set the condition to true for now. Then, go to
any of the balll’s properties and drag their color property over

the true and select “balll.color !=" = “expressions” > color:

world.selectBall

* While the ball at position iter is not the right color,
we want to increment iter by 1 to check the next
position. To do this, just drag iter into the While loop

and select “increment world.selectBall.iter by 1.
world.selectBall @) color

[123] iter = 1
camera set point of view to choose MOore...
[=]\While item iter from world.listOlObjects .
(Do Ngthina)
| set value k|

| increment world.selectBalliter by 1
decrement world.selectBalliter by 1

world.selectBall world.selectBall

* Assoon as we find a ball that is the right color, we want + To remove an object from a list, drag the listOfObjects to the
that ball to move out of the hole in the ground, become bottom of the method and choose “remove item from
invisible, and then delete that ball from our list. To do position <index> of world.listOfObjects” and select iter as
this, first go to balll’s methods and have balll move up 1 the index.
meter outside of the While loop. Then, under balll’s v toronjects = bait, batz,bany == =

= ingex
properties, set the isShowing property to false below that. [cotrmames Ngtwmie ey [7St pentotviewt choose more- o m
create new variable _ _Q__no_u_._._mn E.F bive, ___m__n /EWse | (R et T JRES weorkL st Nblects ._ e
camera set point of view to choose more... | 2 |
. _mt_ Colniihms ug increment iter -~ by 1 more... 3
E mgm—m SO e o) word u_mnoa—uﬁﬁe create new vanabie . 4
2) = “ftem iter — from worldlistOfObjects move Up 5 re.
; n.:n”ﬂ“ - . “increment iter by 1 more... | Freer o o u! _ o .] ” ”Be..m_.
oE. K ball1 move up 1 meter MOTe... ambientLightColor u! _ insert <item> at beginning of world.listOfObjects '.. 8
vehicle = world ot - [R50~ | BT ambientLightBrighmess = 1 insert <item> at end of world.istOfObjects g
skin texture = <None> fogStyle = mo fog insert <item> at position <index> of world listOfObjects » 3
filling Style = solid fogDensity = 0.1 - remove item from beginning of world listOfObjects e :
pointOfView = pog®70.51, 0.4, -0.46; §=9H9§=8 - 1 meter [e e
2 — - %ﬁgggﬁsuvas&%ﬂf:%?.
~isShowing'= true fogFarDistance = 256 meters | remawe all items from world_listOfDhiects :

Quiz world.selectBall

The last thing that we need to do in this method is set
the camera view back to the “start” position under
“Dummy Objects”. Here’s the final code for this

* Go to the world’s properties and drag
listOfObjects over both instances of balll that
we just added and choose ifer as the index

method.
(13 . 29
SSQOH. cxpressions . camera’s details worid.selectsall | (@) color
e _ — _ {123 teri= 1 “properties T.:m:..unm T:_._n._n_:m _ —
|oni| listOrObjects | ball1, baliz, bail3— - i1 —— | 123 iter = 0
— camera set point of viey 2 more Converd ey S o
[*a/|| colorNames = ’Vg] camera — setpoint ofviewto choose — more...
i N, 3 : camera geta good look at e
_@ | colorList = Eé = \While ftem iter . listOfor iter — set value to 0 — more...
" camera move to T —
122| colorNums = Iu 2.4,3 B - = Whi © o item iter from worldlistOfObjects . color = color
_ /l increment iter — by 6 camera move toward Sl P
create new variable _ 7 camera move away from increment iter by 1 more...
= ST ftem iter from worl n
8 camera orient to B ; =
atmosphereColor = ! aiid— | nat inChauian tal § b pm—y o em iter | from world.listOfObjects move up 1meter more..
ambientLightColor = [first item from list 12 p— ftem iter from wioridlistOfObjects set isShowing to Talse — | more
g ’ last item from list :
ambien ness = ; : Z : T : :
fghttrig random item from list m“ﬂﬂagw-. iter ‘A camera set point of view to, remove item from position iter of world.listOfObjects — more...
fogStyle = no fog | ith item from fist » other... camera setpose mera — setpointofviewto start — more..

world.my first method

* Now, we should add world.selectBall into our main
method. Under world’s methods, you should see
world.selectBall. Drag the method into the second If

statement and pass in any color for now.
world's details world.my first method No parameters

world.my first method

* Next, drag the total variable just below the method
call for world.selectBall and choose “decrement
world.my first method.total by 1” to subtract one
from the total number of balls.

122 colorindex = 1~ |, [*s.| currentColor = default string — |, ”_Sﬂ_m_.ms_mq = default string [122] totar = 12
,.U_.n.um_dmm methods _E_’ Tum_ colorindex = 1 ; M currentColor = default strinc B colormdex B wordic g
my first method | [edit] Bl | snawer— [= | : asastring -~ joined
selectBall color g
= circle — say That's correct — more,
create new method Elf answer — = B coermost =
= - item colorinde; worid.colorNums =0
circle say That's correct! MOore... Ball color = item colorindex from world.colors
=T item colorindex from world.col Pt ’
Y increment world.my first method.total by 1 |
io:n.mw—wnnmu_l flse | UECrement world.my first method fotal by 1 _
world.my first method world.my first method
* To get the color we want, go to the colors list under * Now in world.my first A ceae new Local Varisbie ==
world’s properties and drag it over the random color method we want to | ame: [—
that you chose and choose colorlndex as the ith item decrement the number —
. . " @ Number
from list. of balls for the specific | i J
3 %_ COIDTNUMS =] 3, £, 4, u‘ anavel Sl vawe w TN UT TU S DU U e e T = OO#OH‘ ﬂwmﬂ gm‘m O:omQ:u | Oﬂ—mmﬂﬂ
red, white, blue, . . . T
S B item colorindex — from world.colorNums ‘H,O Qo A.H\:mu w¢C 2H~_ SOQQ ! Sther— ! D !
create new variable N 2 answer s B
. to create a placeholder | yaue: 1 makea [List [+] |
atmosphereColor u! circle ~ | say That'scorrect! © more.., idax BCEUOH <m\im~—u_® m—SQ
amientLigntcotor = [IEA e prpore .
amblentLighiBrightness = 1 coorineex < SRR wark.co _._.._ % call it num. i oK : Cancel _
fogStyle) = no fog first item from list 2 ERCIRE : g
fogDensily = 0.1 Else last item from list 3 [t
fogearDistance = 1 mater ik’ random item from kist | SxPrESSioRsh| int
“fogFarDistance = 256 meters B e e E_auu-:___..i:m.ﬁ —_ca,_mq‘

world.my first method world.my first method

* Drag the num variable right below where we * To decrement the value,
decremented fotal and set the value to any number. : just drag the num
Then, under world properties, drag colorNums over 8 (] G colornan - R workicolhms — = 8.0 variable below the last
the number and choose colorindex as the ith item world selectBall color = item colorindex. | from world.colors instruction and select
| from list. P “decrement world.my
B NPT S answer = S cokrsdex — EEE word.cotrema _ first method.num by 1”.

num -~ set value to fem colorindex — from world.coloriiums

circle say That's correct! more...

create new variable

- remove item from position colorindex — of world.colorNums — mo

| index

" | =P _item colorindex — from world | :
atmosphereColor = [IEA _ o decrement num by 1 more..
‘ambientLightColor = [A il arid.selectBall cofor = item colorindex — frof 1 .
- 2 ————— Se
ambientLightBrightness = 1 aia { first item from list £ >
fogStyle i : — : | lastitem from hist _ S Dﬁ.__.__h_?-a_q
fog = no fog N
" . | o - " random item from fist _ expressions b | index _
fogDensity = 0.1 | } i

i Eise .3..33:3!-_052_: ms.aaa&..
-fogNearDistance = 1 meter T — S

| size of list

world.my first method world.my first method

» Next we want to remove the number of balls of
currentColor from the list, decrement the value, and
then put it back into the list at the same position. To
remove the number, drag in the colorNums list and
select “remove item from position <index> of
world.colorNums”=> “expressions” =>colorIndex

* Now drag colorNums into the method and this time
select “insert <item> at position <index> of
world.colorNums” = “expressions” 2>num >
“expressions’ =>colorlndex to put the new value in
the colorIndex position.

1] colorHumag world selectBall color= item colorindex -~ from worid.colors
(123]| colorhums g 3,2,4,3 | [Hm item colorindex — from world.colorliums =0 @4__ o
=)| colors;= decrement total - by1 more..
@] cotors =[rea, wihege yellow world.selectBall color=_ ftem colorindex — from world.colors
create =ms_§=m=i num | set value fo - em colorindex — from world.colorhums more,..
create new variable : decrement total by1 more... m
z = item
num | set value to tem colorindex — from world.colorNums e almosphereColor "! remove item from position colorndex — of ia_._n_.nn_a_.-__E“
atmosphereColor = l 3 | 0.25 1)
index ientLi - dey :

ambientLightColor ul Eise | set value b : ‘ ambientLightColor ! aivani vlos N index
ambientLightBrightness = 1 |Do Noi insert <item> at beginning of world.colorHums b + r e ambientLightBrightness = 1 m_.q.|m. insert <tem> at beginning of world.coloriiums) 1] 0

insert <jtem> at end of world.coloriums b - l 1
fogStyle - mofog Else) 2 colorindex fogStyle = nofog 09! 1 gart <itam> at end of worid.colortiums b|2 J i

v | insert <item> at position <index> of world.colorNums » : m = 2 colorindex
= circ ity = EXpressions A
fogDensity = 0.1 - | remove item from beginning of world.colorNums > | fogDensity = 0.1 Flse .sgsmgéﬂsg ¥ index 4 7 e
fogNearDistance = 1 meter | remove item from end of world.coloriums o e fogNearDistance = 1 mater Fpe| LN A A Bt WSy OF W2 W Cou 13 Eolorimiak ¥
7 = 2 el | x i nm
fogFarDistance = 256 meters | RN . remove item from position <index> of worid.colorlums » .osm?, fogFarDistance = 256 meters remave item from end of workd.colorums total] expressions
[4] " 3 Doia order) (D6 100€| remove all items from world.colorNums feibey AR Cpan . D in ardlar. T fod TEMOVE e Irom position <index> of workd.colorums » [o - lnum. b other..

world.my first method

» That concludes the actions that we need to do
if the number of balls of a certain color is more
that 0, but what about if there are no balls of
that color left? We just want the camera to
move to the choose position, wait 1 second,
and then move back.

r

world.my first method

* Finally, in between the two “camera set point of view
to”” methods, drag in a Wait instruction from the
bottom of the method editor and set the duration to 1
second. The entire method code can be seen on the
next 2 slides.

Else

camera

set point of view to choose More...

more...

lfiElse

‘Do together Loop While' - For allin order : For all toge

world.my first method

* Go to camera’s methods drag “camera set point of
view to” in the empty Else section. Select the choose
view from Dummy Objects. Right-click on this line
and make a copy of it. In the copy, go back to the
object to set the point of view to, go to Dummy
Objects and this time choose the start view.

e

camera point at camera ~ setpointofviewto choose — more..
—

camera sed point of view to

camera — sed pointof view to ¢ Ore...

camera’ sel pose

Play your World

* Play your world to test it.

40 1
>

bl

* The world should work, but notice that the 3D text
objects display the decimals rather than the number
itself. Use the “int as a” function from earlier to fix
this.

world.my first method
' world.my first method @ worid selectBal |

Probability Game

irld.my first method No parameters create eg o
— - - _ _ = * And that concludes the probability game! Try
colorindex = 1, [currentColor = defaultstring — , | answer = defeultstring ~ , 123 total = 12~ |,/ 123 num = 1 E . .
‘ playing your world to see how it turned out.
Cope L e You can also try different things such as
[=Do together .
ot ot |00l vomcoums || ssagig - =1 s o changing the amount of balls, the colors, the
ot 1 BB~ B wowomonne |- |- IO - | geat -t e lmn. number of balls for each color, the objects to
MU m C—onl N be used, etc. to help your students get a better
. understanding of probability.
yellow | set text to item 3 - | from_ world.colorHums asasting — duration=15econd ~ more...
colorindex st value to random number mi =0 imum =4 gerOniy =true more...
curreniColor ~ set value to ftem colordndex — from world.colorNames MOre...
answer set value to askuserforastring question= . Whatis the probability that you wil choosea — joined with currentColor joined with ball? Do not simplify. (alb)
world.my first method
i p— item colorindex — from world.colorhums asasting — joined with | joined with total as a string meﬂﬂwbmm

ground — | say That's Correct! — mere..
=i item colorindex — | from world.colorNums =0

‘decrement fotal - by 1 more..

world.selectBall color = - item colorindex — from world.colors

num - set value to item colorindex — from world.colorNums MOre.
remove item from position colorindex — of world.colorNums — maore...
decrement num by 1 more..

insert num ~ atposition colorindex — of world.colorlums -~ more...

Else

camera — setpointof viewto choose — mere.
Wail 1 secend

camera setpointof viewto start — more..

Else
ground — | say Sorry, that's incomrect.. — | more...

ground | S5y Garme Over. ~ | IOI%.. - Outside of the loop.

* Add a billboard with instructions for the game.

* Try modifying this probability game world so
that there are different colored balls and a
different number of total balls in the hole for
the user to calculate. Don’t forget to also
change the number of times the user is asked
in the loop!

Appendix 3: Challenges

This appendix contains all of our Math Challengégese are Alice worlds where students
must fill in a function or a specific part of aniéd world in order to complete it so that it
works properly. For the challenges, students vatimeed to be introduced to everything
about Alice programming, but they will only needcktwow specific topics relevant to the

challenge.

144

Boat Racing Game Average Time

ﬁ—._m _ _ mjmm #”_. * We want to find the average time for each arch in this game.

By Chris Brown
Under the direction of Professor Susan Rodger
Duke University, January 2013
Based off of the Boat Racing Game by Jenna Hayes

Boat Race Challenge
* In this world, you must * For this challenge in the boat race world, you
Usa the anrowkeye to drie, - 0| a boat to travel will need to complete the “average” function

through the 10 arches in

the boat through the loops i
the race course in order to

to calculate the average time of the boat
in a race against the clock.

This data will be collected win the game. The faster between a pair of arches that it had to travel

and used later in the game, your time, the better you ﬁ_ﬁ.ocm_‘d and _‘SOQ:J\ the “win” method to

P to play! ! . .
il Bl will do! We want you to display the average speed between pairs of

modify this game so that
you will know the average
time your boat travelled the game.
between each pair of
arches when the race ends.

arches to the user once they have completed

world.average

* You are given the total time that the game took
and you need to calculate the average amount of
time/arch.

world.average [123 time

Mo variables

[Do Nothing

Returm 1

* Hint: There are 10 total arches in the game.

world.win

* Now, modify this method so that the text that
once displayed the timer displays the average
time of the boat. Add other methods and
explore Alice to see what you want to add to
this, such as having the boat explain (“say”)
what the value that you computed represents.

world.win No paramefers
No variables

world.gameOn set value to false more...

You win set isShowing to true more...

Boat Racing Game
Challenge #2

By Chris Brown
Under the direction of Professor Susan Rodger
Duke University, January 2013
Based off of the Boat Racing Game by Jenna Hayes

Challenge

* For this version of the boat race world challenge,
you will need to complete the “average” function
to calculate the average distance that the boat
travels to go through each hoop in the game, and
then modify the “win” method to display the
average speed to the user once they have
completed the game. The program is already set
up to collect the distances between each arch, you
will use those to calculate the total distance
between each of the arches that you must pass
through.

Boat Race

In this challenge, you must drive

Use the arrow keys to drive
the boat through the loops
your time, the better you will In a race against the clock.
do! To make things more This data will be collected

difficult, the arches are placed gnd used later in the game,

in a random position each time Press p to suﬁm.vx...
you run this game, so no two

courses will be alike. We want
you to add to this game, so that
in the end you will know the
average distance between
arches.

arches in a race course in order
to win the game. The faster

Average Distance

* We want to calculate the average distance between pairs of
arches. The code provides a list of this information called
distances for you to use to calculate the final average.

world.average

* You are given a list of the distances between pairs of
arches and you will need to calculate the average
distance between two arches (meters/arch) it took
the boat to finish the game.

world.average m..z.“." distanceList

Mo variables

Do Nothing

Returnm 1

* Hint: There are 10 total arches in the game and the boat starts a short
distance before the first arch.

world.win

* Now, modify this method so that the text that
once displayed the timer displays the average
distance the boat travelled between arches.
Once again, feel free to explore Alice and add
other aspects to the winning screen of the
game. For example, have a fish come up out of
the water to congratulate you on your victory!

world.win Noparamelers
No variables

world.gameOn set value to false more...

You win set isShowing to true more...

Boat Racing Game
Challenge #3

By Chris Brown
Under the direction of Professor Susan Rodger
Duke University, January 2013
Based off of the Boat Racing Game by Jenna Hayes

Challenge

* In this challenge, you will need to complete
the “average” function to calculate the speed
of the boat over time in meters per second,
and then modify the “win” method to display
the speed to the user once they have
completed the game. fin& —

properties ﬁ_.:m#:_n_um Tz__n__n.:m—

average time distancelist [gait]

create new functions

Boat Race

* Inthis world, you must =———
control a boat to travel ~Use the arrow keys to drive
through the 10 arches in the boat through the loops
the race course in order in a race against the clock.
to win the game. The This data will be collected
faster your time, the and used later in the game.

Um.ﬁ.ﬁmﬁ you S___ QO_ We Press w to “hm.vs.__
want you to add to this

game, so that in the end
you will know the speed
your boat travelled
throughout the race.

world.average

* When you play the game, we’ve already written
the code to complete the total time and collected
the distances between each pair of arches in a list.
You will need to fill in the average function to
compute the speed. In this function, you are given
the total time that the game took and a list of the
distances in meters between each hoop as
parameters.

world.average [1|time , [123] distanceList

world.average world.win

* First you will need to sum up the values in the world.gameOn is just a variable that is true
list to calculate the total distance*, then divide whenever the game is running and false when
H”mﬁ _o<:ﬁﬂm :Bm:; took to complete the run the game is over. To display a number as text,
through the arches. === This means you will need to use the “what as a string”

["® worldmy first method[i% world.average | pacyour function under the string section of the Alice
| world.average [123time , 123 distanceList return a world functions.
_ number!
=| string
a joined with b

*Hint: Use a loop and create a new variable to find the

sum of the values in a list! @mﬁ mf.m@

world.win

* Now, modify this method so that at the end of
the game, the text that once displayed the
timer displays the speed (meters/second) the
boat travelled throughout the game. Feel free
to use other Alice methods to creatively show
the data after the game has been won, for
example, making the boat do a backflip!

world.win No paramefers
No variables

world.gameOn set value to false more...

You win set isShowing to true more...

Boat Racing Game
Challenge #4

By Chris Brown
Under the direction of Professor Susan Rodger
Duke University, January 2013
Based off of the Boat Racing Game by Jenna Hayes

Average Time

* We want to find the average time it takes you to
complete one game out of as many games you
decide to play. Every time you finish a race, Alice will
ask you if you want to play again. If you select “Yes”,
then the values from the race you just completed will
be saved. If you click “No”, then we want Alice to
display the average time it took you to finish the
number of games you played.

Boat Race

* In this world, you must

Use the arrow keys to drive
the boat through the loops
in a race against the clock.
This data will be collected
and used later in the game.,
Press p to play!

control a boat to travel
through the 10 arches in
the race course in order
to win the game. Try to
complete the race as fast
as possible! We want you
to modify this game so
that you will know the
average time it takes you
to complete one game
over multiple games.

Average Time

E Do you want to play again?

Challenge Complete world.win

* This challenge is a more advanced version of * First, we will need to change the world
Challenge #1. In the boat race world, you will variable playAgain to see if the player wants to
need to complete the “average” function to try the game again to get a better score. To do
calculate the average time it ﬁm_Amm.«\o: to this, go under world functions and set
83_o_m.8 a series of games. You will also need olayAgain to the function “ask user for yes or
to modify the “win” method to prompt the ”
user and ask if they want to play again, then no-. = ask user
display the average time it took them to ask user for a number
no:_”_u_«mﬁma the mmm::m when they are done = I parhgsn - trve C askuserforyes orno >
_u_m.<_3m create new variable ask user for a string

Complete world.average Complete world.win (Part 2)

* You will be given timelist, a list of the total times
that each game took along with games, a variable * Now, add to this method so that if playAgain is
to keep track of the number of games. You will true, the world will add the current time to the

d to calculate th t of ti timeList and increment the number of games
needto calctlate the average amount ot time per played, then reset everything to start the game

game. over. Make sure to use the reset method already
[@ world my first method [@ worldwin [@ world averageSpeed [[1#% world.average | created for you. If playAgain is false, then have
world.average (123 games, | [123] timeList the boat say what the average time was for all of
S the games out of how many games you played
T . (i.e. “You completed the game in an average of
T seconds for games.”), and add your

own animation at the end.

Calculator Challenge

* Functions are chunks of

1. Starting Functions Challenge

world "s details
properties —«Emﬁomm T_.Enud:m_

code that return a value
when they are called. All of
the functions that you need
have already been built, but | add x ¥y [eqi]
right now they don’t do biract —=
anything except return the > 1Y) [ou]
value 1. Finish the program | diide x y [eqi]
by filling in these functions

using Alice built-in an | Y) [cae]

e

|

functions so that they will squareRoot X [eqi]
By: Chris Brown return the correct values and
Under the direction of Professor Susan Rodger %w_ﬂmwoﬁ%w _om_o&mﬁoﬁ rn
Duke University, January 2013
Introduction 2. Log Challenge

In this world, you will be able to use Alice as a
calculator to evaluate expressions. However, it is
not complete. It is your job to create the functions
that you want your calculator to be able to
accomplish so that when you enter the values and
click a button on the calculator, the program will
know what to do. You will be able to enter the
numbers that you want to use, and click on “CE”
to clear the screen and “ENT” to compute the
final answer when you are finished.

e If you look through the Alice world advanced

math functions, you will see that there is not a
function to calculate the logarithm of a number
in base 10 (natural log 1s base e). You will need
to find a formula to calculate the log base 10 to
put into this function.

world.log 127 x

Mo variables

{ Do Nothing
~ Return 1

3. Exponents Challenge

 Right now, our calculator does not do
exponents. You will need to add a button, so
that when it is clicked the calculator will know
to raise the value to a certain power. The
button can be a new billboard object, and you
will have to create a new function with
parameters as well as an event to run the
function when the button is clicked.

3P

Other Challenge Ideas

Use loops to implement the exponent challenge,
rather than the “a raised to the b power” function.

Pretend that multiplication does not exist. Use loops
and addition to create the same affects of multiplying
two numbers together.

Make a function to calculate the factorial of a
number. (6 factorial = 6! = 6*5%4*3%*2*])

Build a +/- button to easily switch between positive
and negative numbers.

Create other buttons to go with all of the Alice’s
advanced math functions (cos, sin, tan,...) and add to
your calculator.

4. General Function Challenge

 Create a special button, y, that computes the value of
a function you specify and you can plug in any value
for x to solve for y. For example, if you specify in
world.y the function y = x?> — 3x + 10 and set the
value of x to be 5, this function computes 20, which
means y = 20.

world.y 123 x

Mo variables

Return 1

By: Chris Brown
Under the direction of Prof. Susan Rodger
Duke University, January 2013

Problem

We want to calculate this distance!

Problem

 It’s Jimmy’s first time in a new city, and we need
to help him find his way around! He knows
where he 1s located in the center at (0, 0) to start,
and he also knows the coordinates of each place
he wants to visit. Your job will be to fill in the
distance function, to calculate the distance from
Jimmy to his destination. You can move around
the city by clicking on the different places of
interest that you want to visit. . .

* | unit = 1 meter

Problem

* Now, Jimmy wants to go from the theme park
to the museum...

world.distance Bonus Challenge!

Each time the distance function is called, four * Go into the Alice Object
parameters are passed in with information you Gallery to add new
will need. It provides you with Jimmy’s x places, with an original

: \ o animation every time
value, Jimmy’s y value, the destination’s x Timmy visits that place.

value, and the destination’s y value. It is your Make sure to create
job to correctly return the distance from Jimmy variables for your
to his destination in this function. location’s x and y

position to be passed
into your distance

Hint: What is the distance formula? It can be derived from .
function later on.

Pythagorean’s Theorem.

world.distance

[@ worldmy first method [12% world.distance ||| G

world.distance .m:.:::..qx ; _mu_ jimmyY | Fm destX, __M desty

No variables

| Do Nothing

: Returm 1

IFill this im?

Appendix 4: SIGCSE poster

This appendix contains the “Integrating Computeesoe into Middle School
Mathematics” poster that we presented at the ACBpiscial Interest Group on Computer Science
Education (SIGCSE) conference on March 8, 2013anu@r, CO. It contains all of the work we
completed up to that point and displayed the madternals and resources we have created for

students and teachers to use.

157

Integrating Computer Science into Middle School Mathematics

Susan H. Rodger, Dwayne C. Brown, Jr.,

Our project is part of the Adventures in Alice
Programming Project at Duke University. In
particular, our project is integrating computer
science into middle school math using Alice. We
show several ways for students to improve their
math skills while engaging their interest in
programming.

Goal

Integrate computing into middle school
mathematics

— Students improve math skills
— Students learn about computing

Implementation

Teach programming with Alice
— Developed Alice tutorials on programming
concepts and animation concepts

— Tutorials for sample projects
Integrate math and programming

- Alice worlds to practice math concepts
— Tutorials to build such worlds

= Math challenge worlds

Create Animations, Interactive Stories
and Games with Alice

Alice is a 30 virtusl worlds programming environment
~ Hands-an!

= Interactivel

= Visuall

~ Drag and Dregl

= Less Error pronel

= Enciting Results right away]

Alice has the potential to excite kids about computer science
in the same way that experiments excite kids about
chemistry, physics and biology!

. wn.._n...ﬁ learn problem solving, logic and critical thinking
skills
Developed by Randy Pausch , CMU = Alice is Freel alice.org

Alice Programming Language

Has libraries of
3D objects

Objects have
multiple parts
that are
moveable

Select code, drag
and drop

Michael Hoyle, and Michael Marion

Free Curriculum Materials/Lesson plans

Duke University, Durham, NC USA

Adventures in Alice Programming

2-week Teacher workshops

= Over 200 teachers, middie
school, high school, some
elementary

— All disciplines.

= Teach Alice, Develop Lesson
Plans

— One-week follow-up workshop

— Summers 2008-2015, funding
for lodging

Main Sites:

— Duke University, Durham, NC
— Charleston/Columbia, S5C

— San Jose, California

Adventures in Alce Frogrammi
Dukn Ay, Durkam, NC

Example: Getting Started Tutorial teaches:

Over 60 free Alice Tuterlals [from getting started to

specific topics, sample projects)
Teacher lesson plans available

Maost use Alice for projects — instead of poster, report

Subject teachers using Alice
= Language Arts

= Mathematics

- Science

= History

= Forelgn Language

= Music, Art

— Media, Technology

— Business

Placing objects

Moving objects

Setting up Camera tripods
and moving between views
Using built in methods and
writing your own

Gluing objects together
Adding sound, 2D pictures
to enhance world

middle school and high schoal, some elementary

Operations on
Fractions

Order of Operations

Click on the operation that happens next.

Then compute the value of that operation. W

Asteroids Game

Tutorial for Astroids Game

* We're going to re-create the 1979 Atari classic

SIGCSE 2013
Denver, CO
March 8, 2013

Supported by NSF Grants DRL-1031351,
CRA, and 18M Faculty Awards IBM.

Exponents Challenge
Calculator

In this world, you will be able 10 use
Alice as a caleulator 1o evahuate
expressions, Howe 1s nod complete.
It 15 your job to create the functions that
calculator w be able o
so that when you enter the
k o bu .__ _”_.u i
rogra now what
be able 1o enmter the

* Right now, our calculator does not do
exponents. You need to add a button, so
that when it is clicked the calculator will know
to raise the value to a certain power. The
button can be a new billboard object, and you
will have to create a new function with
parameters as well as an event to run the

on “CE" to clear the screen and function when the button is clicked.

o nﬁm:u_._z.. the final arswer when yoo
are finished.

Math Challenge —
Calculate Distances
+ Compute the

distanceb
the boy and the
places to visit

Sample Project - Boat Race Game
= Timer/Score

- iables to keep
track
Move boat with

arrow keys

Math Challenges with Boat Race

* Add on after completing the boat race
— Modify the race to compute the average speed of
the boat as it travels through the hoops.
— Medify the game to calculate the average distance
between hoops
— Modify the race to run several times and calculate
the average race time

Asteroid Game Challenges

video game “Asteroids” in Alice.

* In the game, you pilot a ship around in any
direction and use the spacebar to shoota
laser at incoming asteroids.

* The incoming asteroids vary in size and speed
and fly in from off the screen.

= If you hit all of the asteroids, you win! If you
crashinto one, you lose.

Can you create a score object that counts the
number of asteroids that have been hit?

Can you create a billboard with instructions
for the game? Can you make it disappear
when the game starts?

Can you create 3D text that appears when you

win or lose that tells you whether you've won
or lost?

Fred told his prom date he would meet her
under the disco ball at midnight for a dance.
Mow the time has come but he needs your
help to find her!

Use what you know about trigonometry to get
him to his date!

