

Applications for Robotics

Chris Brown

Duke University Class of 2013

Computer Science

Mentor: Chad Jenkins, Ph.D.

Robotics, Learning and Autonomy Lab

Department of Computer Science

Brown University

Providence, RI/Moss Beach, CA

1. Introduction

 The overall goal of this internship was to discover ways to make it easier to control

robots for users. I spent my summer doing research through the DREU program with Dr. Chad

Jenkins and the Brown University Robotics group. Most people do not know how to code in a

high-level programming language, so it would be difficult for them to operate a robot as it is

now. To help find solutions to this problem, we used rosbridge, a program that allowed users to

control robots through different programming interfaces that are easier to use, created by Brown

University researchers
1
. Rosbridge allows the ROS code to be translated into other languages

such as Processing, an art-based language; Scratch, an educational programming language for

children; XNA, the programming language used for XBOX to control a robot with an XBOX

controller; HTML/JavaScript to control a robot through a webpage; and even more. We were

able to work with the iRobot Create robot and the AR Drone Parrot Quadricopter, both which

use the same ROS programming for the most part.

2. Learning the Background Information

 At the beginning of this research experience, our mentor asked us to download all of the

software and a virtual machine necessary to run Robot Operating System (ROS) to control the

robots and create programs. Then we were asked to complete the first two assignments that he

gives his class “Building Intelligent Robots” (CS 148), to help us get familiar with the software.

After downloading all of the software, I had to go through tutorials and learn how to use the ROS

instructions, Linux commands which ROS runs from, and Python which was compatible with

ROS. There is a version of ROS that reads Java, which I am very experienced in, called

“rosjava”, but the VMware image that we downloaded with all of the Brown University Robotics

files saved on it only used “rospy” for Python. After becoming more familiar with these things, I

began to work on the two assignments that he gave us. The first assignment was entitled

“Enclosure Escape”
2
. We had to program an iRobot Create to turn in a different direction after it

bumps into an obstacle. Most of the code was provided for this project to help us learn about

importing packages from ROS and the robot itself such as the bump sensor. The second

assignment, “Object-Seeking”, I completed from scratch. The goal of this assignment was to

have an iRobot Create seek out a specific Augmented Reality tag, move toward it, then spin and

seek the next tag, move toward it, etc. until all of the tags have been found. This assignment was

much more difficult and took longer to finish than the first one. A PlayStation 3 camera was used

for the iRobot Create to see where it was going. After completing the second assignment, I

adapted my program so that it would work with the Drones. The code was basically the same but

some of the numbers had to be changed around.

3. Project

3.1 First Project Idea

 After completing the first two assignments, we were pretty much done with our time in

Providence, RI and I was able to go with my mentor and his family to Moss Beach, CA along

with the other summer interns and a postdoc student for the remainder of the internship. By this

time, I decided that I wanted to work on the ScratchROS project to build a better interface for

using ROS with Scratch. Scratch is an educational programming tool for children where the user

could just drag and drop an instruction into the editor and an animated cat called “Sprite” would

act out the code. I chose this because this would greatly simplify robot control by dragging and

dropping instructions and essentially anybody would be able to control a robot. I also chose it

because I am familiar with Alice, another educational programming tool for kids that uses the

“drag-and-drop” interface, but its animations use 3D objects and Scratch is in 2D. There was a

version of Scratch that worked with ROS, but it was the actual Scratch program. There were

many parts of the interface that were not used because there was no ROS command for them. I

was going to create a new interface that only contained the instructions that could be translated

into ROS, to get rid of all of the unused commands, and to possibly add some other ones that

were not present in Scratch. I became familiar with Scratch then I had to download a different

virtual machine image to use ScratchROS. It took a while to get it to work, but I was finally able

to control a Create with the ScratchROS program and I created a program to drive the robot with

the arrow keys and recreated the “Enclosure Escape” program, which was much faster and easier

that creating the code in Python. Below is a copy of the “Enclosure Escape” code in Python and

a copy of the same code in Scratch to show how much simpler creating code for robots would be

with a Scratch Interface.

#!/usr/bin/env python
import roslib; roslib.load_manifest('enclosure_escape')
import rospy
from geometry_msgs.msg import Twist
from irobot_create_2_1.msg import SensorPacket
global variables
bump = False

listen (adapted from line_follower
def processSensing(sensorPacket):
 global bump
 bump = sensorPacket.bumpLeft or sensorPacket.bumpRight
 #newInfo = True

def hello_create():
 pub = rospy.Publisher('cmd_vel', Twist)
 rospy.Subscriber('sensorPacket', SensorPacket, processSensing)
 rospy.init_node('hello_create')
 #listen
 global bump
 twist = Twist()
 while not rospy.is_shutdown():
 if bump:
 str = "hello create, you have bumped into something %s"%rospy.get_time()
 rospy.loginfo(str)
 twist.linear.x = 0; twist.linear.y = 0; twist.linear.z = 0
 twist.angular.x = 0; twist.angular.y = 0; twist.angular.z = 2
 ` bump = False
 else:
 str = "hello create, you can spin now %s"%rospy.get_time()
 rospy.loginfo(str)
 twist.linear.x = 0; twist.linear.y = 0; twist.linear.z = 0

 twist.angular.x = 0; twist.angular.y = 0; twist.angular.z = 0.1
 pub.publish(twist)
 rospy.sleep(1.0)
if __name__ == '__main__':
 try:
 hello_create()
 except rospy.ROSInterruptException: pass

Fig. 1- This is the “Enclosure Escape” program code in 40 lines of Python code.

Fig. 2- This is the “Enclosure Escape” program code using Scratch in only 8 lines.

As seen above, Scratch makes programming for robots much easier to code and understand for

people who are not familiar with coding. The differences in the code for the

“teleop_twist_keyboard” program to drive a robot with the user’s keyboard were even more

drastic. This program was created by the Brown University Robotics Group. In Python, the code

was 106 lines long, but my version with the Scratch code was just 15 lines long and can be seen

in Figure 3. The Scratch version, however, could not do all of the tasks that the Python version

could such as increasing/decreasing the linear speed and the turning speed. The Scratch version

can only move forward, backward, turn left and right, and move forward at an angle to the left

and right by pressing the designated keys on the keyboard.

Fig. 3- My version of the “teleop_twist_keyboard” program in Scratch code.

While the Python version of “Enclosure Escape” took me about a week to complete after

becoming familiar with Python and getting the code to work, learning how to code in Scratch

and then creating the Scratch versions of the “teleop_twist_keyboard” and “Enclosure Escape”

programs took only one day. An interface that used ScratchROS instead of rospy would be much

better for non-ROS users. The interface that I would have created would have most likely used

the Internet and Rosbridge to have the user click and drag an image or click a button to use a

specific instruction and control the robot. I was not, however, able to work much on the new

interface, but it is possible that I will continue to work on it throughout the semester or try to

return to Brown next summer to complete an interface that will use Scratch and Rosbridge to

program robots efficiently.

3.2 Final Group Project

 Before I was able to begin working on the new interface for Scratch and ROS, Dr.

Jenkins gave all of the summer interns a “Hack-a-Thon”, or a project to work on using

telepresence and it had to be completed within one week. Telepresence is the concept of being in

one place, while being able to observe and move around in a different environment

simultaneously. For example, if businessmen from around the world would need to have a

conference meeting, they could simply all use telepresence robots in one place to meet and look

around at each other. We were thinking about applications with rosbridge and we came up with

the idea to create a Virtual Waiting Service. The premise was that at a party or any other event,

someone can log on to our website and tell a teleoperator what he wants to drink and where he is

located. Then, the teleoperator tells the chef in the kitchen what drink to get. After the drink is

ready, the teleoperator drives the robot to where the customer is, delivers the drink, then he

drives the robot back to the kitchen to prepare for the next order. We separated the tasks, and my

job was to create the website interface and use rosbridge to control the robot through my

webpage. I was already familiar with HTML, but I had to read more about “rosjs”, a program

that connected JavaScript and Rosbridge to learn how to use them. Adding the appropriate

JavaScript code to my website that communicated with Rosbridge would allow a connection to

be made, and a user could drive our iRobot Create using the webpage as well as receive a feed

from the PlayStation 3 camera that was connected to it through rosbridge signals. Other tasks for

the project were to create the hardware of the robot to hold a laptop and drinks, receive sensor

messages from the iRobot Create (made in XNA in a different interface), find a video chat

software that would work well, and documentation of our project. We were able to put all of the

parts together and run a successful demo of our project in one week’s time. After we finished,

there was so little time left for our internship that we just made improvements to our project. I

enhanced the website to make it look more professional by adding a template background for all

of the pages. I also added a page to contact all of the summer interns and another page for

pictures and videos. We also wanted to make a better video of our demo at a restaurant, but the

free Wi-Fi at all of the places we tried was not able to support the connection with rosbridge

between a laptop to a netbook connected to the robot. We determined that these networks were

port-blocking, and the only solution would have been to go to the restaurants’ ISP. Our group

ended up using our robot to check out a book at a local public library, where the Internet

connection allowed the connection that we needed. We used our telepresence robot to check out

a book in the library, as if we were unable to make it to the library. This also provides another

application for robotics and telepresence robots in our society.

4. Conclusion

 I really enjoyed being in the DREU program this summer. I was able to learn a lot about

robotics and I learned about programming in ROS, Linux, Python, and JavaScript, all of which I

had never used before this program. I was able to successfully create programs in Python and

implement JavaScript and Rosbridge in a website. Unfortunately, I was not able to create the

Scratch interface to Rosbridge to help simplify the coding for ROS and greatly improve the

human interaction for non-computer scientists. The skills that I learned will help later on in my

future with Computer Science. Our mentor and his grad students provided many different helpful

websites with tutorials, cheat sheets, and practice for different programming languages, and also

improved my ability to learn new aspects of computing in a short period of time. This REU also

helped me to be able to work with others better. For almost all of the summer, I worked with 4

other undergraduate summer interns on the first two assignments and our final project. The trips

that we took also helped me to realize what it takes to succeed in Computer Science field. Most

of the companies we went to maintained a very cool and an informal environment with game

rooms, gyms, etc., but they were very serious about their work. Whether it was finishing a

product before a deadline like a movie or video game, or just researching the next big idea. Both

the tour guides at ILM and EA Games said that work gets really intense before the release date of

the game or movie coming out. The one at Google said that if they haven’t come up with or

started working on anything new in about 3 months, they were behind, which he said applied to

the work ethic of the entire Silicon Valley. If I want to work in the Computer Science field, I will

have to keep working hard and keep learning more and evolving as new technologies arise to

compete with my co-workers. This internship has deeply helped me prepare for a future in

Computer Science in graduate school and in the work force.

References

Brown University Google Code Repository:

- Robotics Learning and Autonomy at Brown. “brown-ros-pkg: Brown University Repository for

 ROS Packages”. Google Code. Brown University. < http://code.google.com/p/brown-ros-

 pkg/>.

Brown University Summer Interns’ Google Code Repository:

- Robotics Learning and Autonomy at Brown. “brown-reu-interns: Development space for REU

 student interns at Brown Robotics”. Google Code. Brown University. < http://code.

 google.com/p/brown-reu-interns/>.

1. Christopher Crick, Graylin Jay, Sarah Osentosiki, Benjamin Pitzer, and Chad Jenkins.

 “Rosbridge: ROS for Non-ROS Users”. Brown University.

 <http://aduni.org/~chris/Crick11b.pdf>

2. Jenkins, Chad. “CS 148 Assignment Enclosure Escape”. MediaWiki. Brown University

 Computer Science. 5 October 2010. < http://brown-robotics.org/index.php?title =CS148_

 Assignment_Enclosure_Escape>

3. Jenkins, Chad. “CS 148 Assignment Object Seeking”. MediaWiki. Brown University

 Computer Science. 25 September 2010. < http://brown-robotics.org/index.php?title= CS

 148_Assignment_Object_Seeking>

http://code.google.com/p/brown-ros-
http://code.google.com/p/brown-ros-
http://code.google.com/p/brown-reu-interns/
http://code.google.com/p/brown-reu-interns/
http://code/
http://brown-robotics.org/
http://brown-robotics.org/index.php

