
Chris Brown: Research Statement

Research Statement

Dwayne “Chris” Brown, Jr.
North Carolina State University

Research Overview
Decision-making plays a vital role in software engineering, and the choices developers make
impact the technology we use everyday. Unfortunately, software engineers frequently make
bad decisions. For example, studies show software engineers often ignore development tools,
ethical programming guidelines, and other useful developer behaviors, which is costly for
software users and producers. The motivating question of my research is: “How do we
encourage software engineers make better decisions in their work?”

My research interests lie in the intersection of empirical software engineering, human
factors, and automation. To improve developer decision-making, my work spans disciplines
to incorporate concepts from behavioral science into software engineering. Nudge theory is a
framework for improving human behavior by influencing the environment surrounding deci-
sions, or choice architecture, without 1) providing incentives to adopt the target behavior and
2) banning alternative choices [6]. My research introduces developer recommendation
choice architectures, a framework for creating automated recommendations that nudge
developers towards better software engineering behaviors and practices.

My research philosophy is two-fold, to: 1) perform empirical studies characterizing soft-
ware engineering problems; and 2) develop tools and techniques to overcome these problems.
In my dissertation work, I explore what makes effective recommendations, construct a frame-
work to improve automated recommendations, examine existing systems through the lens of
this framework, and develop bots integrating developer recommendation choice archi-
tectures . To provide evidence supporting this framework, I conducted multi-methodological
studies collecting quantitative and qualitative data observing the behavior of CS students,
open source software developers, and software engineers in industry. As a researcher, I will
continue using this framework to observe developer actions and motivate the design of future
tools for improving the productivity, decision-making, and behavior of software engineers.

Effective Developer Recommendations: To determine what makes effective recommen-
dations to developers, I analyzed peer interactions, or the process of learning from colleagues
during work activities, and the naive telemarketer design. To discover what makes peer
interactions effective, we observed 13 pairs of participants completing data analysis tasks.
For each session, we determined if interactions contained characteristics such as politeness,
persuasiveness, and receptiveness, and if each recommendation was effective. Overall, we
analyzed 142 peer interactions and found receptiveness, or desire and familiarity, was the
only significant characteristic (Wilcoxon, p = 0.0002, α = .05) [1]. To analyze automated
recommendations, I developed the naive telemarketer design , a baseline approach which
“calls” users to recommend and add tools to projects without the ability to customize mes-
sages or respond to users (Figure 1). We evaluated this approach in tool-recommender-bot

on 52 GitHub repositories, and found only two recommendations (4%) were effective due to
its poor social context and developer workflow [2].

Page 1 of 4



Chris Brown: Research Statement

(a) naive telemarketer design recommendation (b) Adding tools to configuration files

Constructing a Framework: To improve automated recommendations to developers, I
introduce developer recommendation choice architectures, a framework for creating
effective recommendations that nudge developers towards better behaviors and practices in
their work. This framework consists of three principles: 1) actionability, or the ease with
which developers can adopt the target behavior, 2) feedback, or the clarity and relevance of
the information provided, and 3) locality, or the placement and timing of recommendations.
In a preliminary evaluation, I surveyed professional software engineers and found 100% of
participants prefer actionable recommendations over static ones [4].

Figure 2: Suggested changes tool recommen-
dation

Evaluating Existing Tools: To evalu-
ate my framework, we studied recommenda-
tion styles and developer impact of GitHub
suggested changes. This recently intro-
duced feature allows users to recommend
code improvements to pull requests, and
incorporates developer recommendation
choice architectures. To study recom-
mendation style, I conducted a think-aloud
study where 14 professional developers in-
teracted with static analysis tool recommen-
dations from emails, issues, pull requests,
and suggested changes (see Figure 2). We
found developers significantly preferred the
suggested changes recommendation (Kruskal-Wallis, p = 0.00079) [3].

To examine developer impact, I designed a study divided in two phases. Phase 1 is an
empirical study analyzing suggested changes to discover types of suggestions, effectiveness
compared to PR review comments, and their impact on pull-based software development.
The results show most suggested changes are non-functional, not impacting code. Suggested
changes are also more accepted and, while reviews take longer, the time to make and respond
to recommendations is much faster than review comments. Furthermore, PRs with suggested
changes have more commits, code churn, review comments, discussion comments, and par-
ticipants in the review process. For Phase 2, we surveyed developers to qualitatively analyze
feedback on the system. 98% of respondents found suggested changes at least moderately
useful because of user-driven communication and workflow integration [5].

Page 2 of 4



Chris Brown: Research Statement

Developing Bots: To further explore the impact of developer recommendation choice
architectures on behavior, I implemented class-bot, a system that automatically updates
GitHub issues to encourage students to follow software engineering processes on programming
projects. We conducted a preliminary evaluation of this bot on projects for an introductory
Java course and mined GitHub repositories to observe programming behaviors on projects
with and without class-bot notifications. Our early results show automated nudges improve
code quality by increasing student grades and enhanced student productivity by increasing
code churn and preventing procrastination.

Future Work

My career goal is to continue exploring ways to improve the behavior and productivity of
software engineers. The following research areas highlight future directions of my prior work:

• Developer Nudges: One limitation of this work is the generalization of “developers”
when exploring recommendations. In reality, developers are extremely diverse and have
individual preferences for effective recommendations. To increase the effectiveness of auto-
mated nudges encouraging developers to adopt useful practices, I aim to study customized
developer nudges that use different types recommendations based on user characteristics
such as recent development activity, project contributions, and experience.

• Proactive Recommendations: Most of my work is reactive, in that recommendations
occur after developers complete programming tasks. To improve the effectiveness of auto-
mated nudges, I will develop proactive nudges that predict developer actions and suggest
useful behaviors before bad decisions are made. To accomplish this, I will apply ma-
chine learning techniques, such as collaborative filtering, to anticipate poor decisions and
proactively recommend better practices to increase adoption of beneficial behaviors.

• Nudge Bots: To continue exploring effective recommendation approaches for software
engineers, I aim to create an exhaustive nudge-bot system. This will consist of a suite
of bots that: recommend various software engineering behaviors and practices; implement
diverse interventions, such as GitHub Project boards, IM platforms like Slack, and au-
tomatically repairing programming mistakes; and make recommendations to developers
on online programming communities such as code-hosting platforms (i.e. GitLab and
BitBucket), Q&A sites (i.e. StackOverflow), and blogs and social media.

Broader Impact

My research has been published at peer-reviewed ACM and IEEE conferences and workshops.
I have also presented at industry conferences such as Red Hat QECampX and DevConf.
Furthermore, the tools created for this research, including tool-recommender-bot1 and
class-bot2, are publicly available online and future systems will be made open source
for developers and researchers to use, evaluate, and extend. Lastly, as a researcher from
an underrepresented minority group, I plan to enable participation and increase diversity
in computing research by recruiting and mentoring a diverse team of students to further
explore software engineering problems.

1https://github.com/chbrown13/tool-recommender-bot
2https://github.com/chbrown13/nudge-bot

Page 3 of 4



REFERENCES Chris Brown: Research Statement

References

[1] Chris Brown, Justin Middleton, Esha Sharma, and Emerson Murphy-Hill. How soft-
ware users recommend tools to each other. In 2017 IEEE Symposium on Visual Languages
and Human-Centric Computing, VL/HCC 2019, pages 129–137, Raleigh, NC, USA, Oct
2017. IEEE Press.

[2] Chris Brown and Chris Parnin. Sorry to bother you: Designing bots for effective
recommendations. In Proceedings of the 1st International Workshop on Bots in Software
Engineering, BotSE 2019, pages 54–58, Montreal, QC, Canada, May 2019. IEEE Press.

[3] Chris Brown and Chris Parnin. Comparing different developer behavior recommenda-
tion styles. In Proceedings of the IEEE/ACM 42nd International Conference on Software
Engineering Workshops, ICSEW’20, page 78–85, New York, NY, USA, 2020. Association
for Computing Machinery.

[4] Chris Brown and Chris Parnin. Sorry to bother you again: Developer recommendation
choice architectures for designing effective bots. In Proceedings of the IEEE/ACM 42nd
International Conference on Software Engineering Workshops, ICSEW’20, page 56–60,
New York, NY, USA, 2020. Association for Computing Machinery.

[5] Chris Brown and Chris Parnin. Understanding the impact of github suggested changes
on recommendations between developers. In Proceedings of the ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engi-
neering, ESEC/FSE 2020, Sacramento, CA, 2020. ACM.

[6] Richard H Thaler and Cass R Sunstein. Nudge: Improving decisions about health, wealth,
and happiness. Penguin, 2009.

Page 4 of 4


