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ABSTRACT
Understanding the nature of regular expression (regex) issues is
important to tackle practical issues developers face in regular ex-
pression usage. Knowledge about the nature and frequency of var-
ious types of regular expression issues, such as those related to
performance, API misuse, and code smells, can guide testing, in-
form documentation writers, and motivate refactoring efforts. How-
ever, beyond ReDoS (Regular expression Denial of Service), little is
known about to what extent regular expression issues affect soft-
ware development and how these issues are addressed in practice.

This paper presents a comprehensive empirical study of 350
merged regex-related pull requests from Apache, Mozilla, Face-
book, and Google GitHub repositories. Through classifying the root
causes and manifestations of those bugs, we show that incorrect
regular expression behavior is the dominant root cause of regular
expression bugs (165/356, 46.3%). The remaining root causes are
incorrect API usage (9.3%) and other code issues that require regular
expression changes in the fix (29.5%). By studying the code changes
of regex-related pull requests, we observe that fixing regular ex-
pression bugs is nontrivial as it takes more time and more lines of
code to fix them compared to the general pull requests. The results
of this study contribute to a broader understanding of the practical
problems faced by developers when using regular expressions.

CCS CONCEPTS
• General and reference→ Empirical studies; • Software and
its engineering→ Software defect analysis.
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1 INTRODUCTION
Regular expression research in software engineering has explored
performance issues [18], comprehension [17], translation between
languages [21, 22], and test coverage [46]. These efforts are mo-
tivated by the assumption that regular expressions are pervasive
in systems. For example, through the lens of GitHub issues, a sim-
ple search for “regex OR regular expression” yields 227,474 results
(and growing), with 25% of those still being open. Yet, the nature
of these issues related to regular expressions, aside from ReDoS
vulnerabilities [20], is largely unknown.

Knowledge about the frequency of various types of regular ex-
pression issues, such as those related to performance, API misuse,
and code smells, can guide testing, inform documentation writers,
and motivate refactoring efforts. This work aims to uncover the na-
ture of the issues that relate to regular expressions, and in particular,
the nature of the issues that developers end up addressing.

As a lens into issues developers face and fix, we explore merged
pull requests (PRs) related to regular expressions (regex-related pull
requests). The assumption is that pull requests that are merged
represent issues in code that developers find worthy of fixing. We
target large open-source projects – specifically Apache, Mozilla,
Google, and Facebook – that use the pull request model for code
contributions. This allows us to study the problem, solution, and dis-
cussions in multiple programming languages. Prior work suggests
that there are significant differences in some regex characteristics
across programming languages [22], and our findings echo this: we
likewise find differences in bug characteristics across languages.

Our main findings are a classification of the regular expression
bugs addressed by developers. For example, developers write regu-
lar expressions that are too constrained three-times as often as they
write regular expressions that are too relaxed. This has implica-
tions for test case generation research, indicating the importance of
generating strings that are outside the regular expression language.
The contributions of this work are:

• The first comprehensive empirical study on regular expres-
sion bugs in real-world open-source projects.

• Identification of root causes and manifestations of regular
expression bugs with 350 merged pull requests related to
regular expressions.
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• Analysis of regular expression bug fix complexity and the
connection between root causes and the changes in a fix.

• Ten common patterns in regular expression bug fixes.

2 RESEARCH QUESTIONS
The goal of this study is to understand the regular expression bugs
developers address in practice. We obtain our data via purposely
selected GitHub pull requests and carefully analyze these pull re-
quests to achieve this goal. Specifically, this study asks and answers
the following questions:

RQ1: What are the characteristics of the problems being ad-
dressed in regex-related PRs?
We use an open card sort to categorize the root causes of
the problems that pull requests deal with. Three root causes
emerge: 1) the regex itself; 2) regex API; and 3) other code.
Within each type of root cause, we further characterize dif-
ferent manifestations of the addressed problem and provide
more details about each manifestation (see Section 4).

RQ2: What are the characteristics of the fixes applied to regex-
related PRs?
In analyzing the fixes in regex-related PRs, we measure fix
complexitywith four PR features proposed in priorwork [25]:
1) minutes between PR opening and merging; 2) the number
of commits in the PR; 3) the number of lines changed in the
fixes; and 4) the number of files touched in the fixes. We
then zoom in to study the four types of regex-related code
changes: 1) regex edit; 2) regex addition; 3) regex removal;
and 4) API changes. For each PR root cause and manifesta-
tion, we identify the dominant type of change. Finally, we
identify ten common fix patterns to fix either a regex bug or
a regex API bug (see Section 5).

3 STUDY
This section describes the data collection process and analyses to
address RQ1 and RQ2.

3.1 Dataset
Our dataset is a sample of merged GitHub pull requests. We chose
merged GitHub pull requests for two reasons: 1) our study is ori-
ented towards the existing solutions of regular expression issues.
Compared to GitHub issues, merged pull requests provide us with
both the problem description and a solution; and 2) merged pull
requests indicate the priority of the regular expression issues and
the feasibility to fix them, which are not always satisfied by GitHub
issues since they may cover very general regular expression discus-
sions or Q&As and thus do not embody a direct solution.

3.1.1 Artifact Collection. As we aim to focus on real resolutions to
real bugs, we examined repositories from established organizations
with relatively mature development processes and active projects.
These repositories have many commits, contributors, and culture
around pull request use. We targeted four large active GitHub orga-
nizations: Apache [7], Mozilla [13], Google [11], and Facebook [9].
Using the GitHub GraphQL API [10], we searched for merged pull

Figure 1: Example of Regex Addition from a pull request in
JavaScript (mozilla/zamboni#1442)

1 gettext(format('Changes in {0} {1}',
2 this.app.trans[this.app.guid],
3 - this.app.version.substring(0,1)))));
4 + /\d+/.exec(this.app.version)))));

requests1 with “regular expression" or “regex" in the title or de-
scription with the last update time before February 1st, 2019. We
selected only repositories that have Java, JavaScript, or Python as
the primary language, as these are the three most popular program-
ming languages used on GitHub [4]. This resulted in 664 merged
pull requests from 195 GitHub repositories in the 4 organizations.

3.1.2 Pruning. We limited our focus to pull requests that are regex-
related. A PR is called regex-related only if there are changes to a
regular expression or a regular expression API method. In regex-
related PRs, there is at least one regular expression that is added,
removed, or edited, or there is at least one modification to regex
APIs. For example, Figure 1 shows an example of the regex /\d+/
being added on line 4. We manually inspected the 664 merged PRs
and identified 350 of them (52.7%) as regex-related PRs.

3.1.3 Final Dataset Description. The final dataset of 350 regex-
related PRs comes from 135 GitHub repositories. Of these, 86 are
from Apache repositories, 162 are from Mozilla repositories, 66 are
from Facebook repositories, and 36 are from Google repositories.
When analyzing regex-related code changes, we considered the
overall code differences before and after the PR, hence avoiding is-
sues from reworked commits (Peril VII [27]). Because a pull request
can handle multiple independent regular expression problems, six
PRs are split, creating a final dataset with 356 bugs addressed by
pull requests, or pull request bugs. Our final data are available [8].

3.2 RQ1 Analysis: Bug Characteristics
With the 356 pull request bugs, two authors performed an open card
sort with two raters. The dataset is categorized in two dimensions,
root cause and manifestation, based on the pull request descrip-
tion, comments, linked GitHub issues, or linked bug reports from
other systems (e.g., JIRA, Bugzilla). For example, PRmozilla/feedthe-
fox#43 addresses two problems. One is a typo of a variable shown
in the title of this pull request, the other problem is an unused regex
shown in the description of this pull request. We ignore the typo
problem because the fix to the typo does not involve any regex or
API changes. In the analysis of this PR, the fix is to remove the
regular expression, and the problem it addresses is unused regex
which is a type of regex code smells. PRmozilla/addons-server#10352
addresses a problem is described in a GitHub issue, which identifies
an error caused by the incorrect flag in regex API with the mani-
festation of exception handling 2. In a JIRA bug report related to
PR apache/ambari#760, the problem being addressed is incorrect
regex behavior because valid URLs are rejected and the scope of the
regular expression needs to be expanded.

1While we avoid many perils of mining GitHub [27] through our selection of orga-
nizations and projects (i.e., Perils II, III, IV, V, and VI), evaluating only merged pull
requests is Peril VIII and thus a threat to validity, as discussed in Section 7.
2The specific error message is “ValueError: cannot use LOCALE flag with a str pattern".
Since Python version 3.6, re.LOCALE can be used only with bytes patterns.
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After card sorting is complete, eight manifestations of three root
causes of regex-related bugs are identified. Four of the eight man-
ifestations are further broken into categories and sub-categories
according to the common characteristics shared by the bugs. The
hierarchy of the 356 pull request bugs is presented in Table 1.

3.3 RQ2 Analysis: Fix Characteristics
To answer RQ2, we explored regex fix characteristics compared to
general software bugs, the nature of the changes in the fixes, and
identify common fix patterns.

3.3.1 Complexity of Regex-related PR Fixes. To understand if regex-
related bugs are similar in complexity to other software bugs, we
compare our regex-related PRs (regexPRs) with a public dataset of
PRs from GitHub projects that use PRs in their development cy-
cle [25] (allPRs). We selected four features from the prior work that
represent the complexity of the fix or the complexity of reviewing
the PR. For the complexity of reviewing the PR, we chose the num-
ber of minutes from PR initialization to merge (mergetime_minutes).
For measuring the complexity of the fix in the PR, we chose the
number of commits (num_commits), the number of modified lines of
code (code_churn), and the number of files changed (files_changed).
Note that code_churn is a combined feature which is the sum of
two originally proposed features, src_churn and test_churn. This is
because regular expressions are not only in source code but also in
testing frameworks and configuration files, which makes it hard to
distinguish the code of fixing a regex bug from the testing code.

The metrics for bug fix complexity in our dataset (regexPRs) are
obtained through the PyGithub [14] library, which provides APIs
to retrieve GitHub resources. The allPRs dataset [25] contains over
350,000 PRs; as a matter of fairness, we filtered out the unmerged
pull requests and retained 300,600 merged ones for analysis. We
used the Mann-Whitney-Wilcoxon Test [12] to investigate whether
our dataset, regexPRs, and the allPRs dataset have the same distri-
bution. These comparison results are presented in Table 2.

3.3.2 Changes to Regexes in PRs. We take into consideration four
types of regex-related changes: 1) regular expression addition (𝑅𝑎𝑑𝑑 ),
2) regular expression edit (𝑅𝑒𝑑𝑖𝑡 ), 3) regular expression removal
(𝑅𝑟𝑚), and 4) regular expression API changes (𝑅𝐴𝑃𝐼 ).

Before counting the number of regex-related changes, we first
identified regular expressions being used in the code. Because the
regular expression is often represented as a string or a sequence of
characters, we treated each quoted regex string as a normal string
until we find it is parsed with regular expression syntax and a reg-
ular expression instance or object is created consequently. Strings
wrapped by regular expression delimiters are straightforward and
treated as regular expressions. For example, slash / in JavaScript is
a regex delimiter. Hence /\d+/ in Figure 1 is identified as a regex.

A regular expression addition (𝑅𝑎𝑑𝑑 ) is counted when the PR
shows a new regular expression string. In the code snippet shown
in Figure 1, there is no regex string prior to the PR whereas line 4
introduces regular expression /\d+/.

A regular expression edit (𝑅𝑒𝑑𝑖𝑡 ) is a content change to the regu-
lar expression string directly or indirectly used in regex API meth-
ods. These are the type of regular expression changes studied in
prior work on regular expression evolution [45].

Figure 2: Example of RegexAPI Changes from a pull request
in Java (google/ExoPlayer#3185)

1 currentLine = subripData.readLine();
2 - Matcher matcher = SUBRIP_TIMING_LINE.matcher(currentLine);
3 - if (matcher.matches()) {
4 + Matcher matcher = currentLine == null ? null :
5 SUBRIP_TIMING_LINE.matcher(currentLine);
6 + if (matcher != null && matcher.matches()) {

Similar to regex addition, a regular expression removal (𝑅𝑟𝑚) is
counted when the code before a PR contains more regexes than after
the PR. A pull request could directly remove a regex object (e.g.,
mozilla/feedthefox#43) or replace the regex and the code where it
is used with other types of code (e.g., google/graphicsfuzz#167).

The regular expression API change (𝑅𝐴𝑃𝐼 ) encapsulates changes
to the APIs being used statically and dynamically. This includes
modifying the method itself on a certain call site and reducing the
execution frequency of that call site. For modifying the API method,
we counted only when the regex object shows up both before and
after the PR. Therefore, API methods introduced with 𝑅𝑎𝑑𝑑 or re-
moved with 𝑅𝑟𝑚 are excluded. Take Figure 1 as an example. In this
example, the method exec is added as the side-effect of adding the
regex /\d+/ and thus exec is not accounted as 𝑅𝐴𝑃𝐼 . The modifica-
tion to the method itself could be on its method name or arguments.
If the modified argument is in the position for the regex string,
it is not counted as an 𝑅𝐴𝑃𝐼 but as an 𝑅𝑒𝑑𝑖𝑡 . API changes could
also be about how the API methods are executed in run-time. For
example, constructing regular expression objects statically rather
than on-the-fly. The PR in Figure 2 adds two checks of null object,
one for the argument passed into Pattern.matcher and the other
for the instance invoking Matcher.matches. Hence, it is counted
to have two regular expression API changes. Another way of re-
ducing call site execution frequency is to add guards (e.g., if-else
statements) on the path of executing regular expression matching
(e.g., mozilla/treeherder#61).

3.3.3 Recurring Patterns for Fixing Regular Expression Bugs. To find
the common fix patterns, we manually examined the code changes
in pull requests caused by either regex or API. Since we are more
interested in fixing regular expression bugs, the regex-related PRs
caused by other code are out of the scope of common fix patterns
of regex bugs. Each regex-related change is regarded as a different
pattern, and similar changes are grouped together. We chose ten
recurring patterns to represent fix strategies for common regular
expression problems.

4 RQ1: BUG CATEGORIES
As is done in prior work on categorizing software bugs, we identi-
fied the root cause and manifestation of the bugs [23, 30, 39, 42, 48].
The root cause is the location in the source code wherein the prob-
lem lies. The manifestation is the impact of the bug on the code.

Among the 356 pull request bugs related to regular expressions,
three root causes emerged: the regex itself (218, 61.2%), the regex
api used (33, 9.3%), and other code (105, 29.5%), as shown in the
Root Cause and Count (%) in Root Cause columns of Table 1. When
the root cause is the regex, the regex itself caused an issue; examples
include incorrect behavior, a compile error, or a code smell. When
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Table 1: The hierarchy for the 356 pull request bugs including root causes, manifestation, categories, and sub-categories.

Root Cause Manifestation Category (Sub-Category) Count (%) in
(sub)Category

Count (%) in
Manifestation

Count (%) in
Root Cause

Regex

Incorrect Behavior

Rejecting valid strings 102 (61.8%)

165 (75.7%)

218 (61.2%)

Accepting invalid strings 36 (21.8%)
Rejecting valid and accepting invalid 17 (10.3%)
Incorrect extraction 9 (5.5%)
Unknown 1 (0.6%)

Compile Error 8 (3.6%)

Bad Smells

Design Smells Unnecessary regex 11 (24.4%)

45 (20.6%)
Other 6 (13.3%)

Code Smells
Performance issues 10 (22.2%)
Regex representation 10 (22.2%)
Unused/duplicated regex 8 (17.8%)

Regex
API

Incorrect Computation 6 (22.2%)

33 (9.3%)Bad Smells

Design Smells Alternative regex API 2 (7.4%)

27 (81.8%)Code Smells

Unnecessary computation 9 (33.3%)
Exception handling 8 (29.6%)
Deprecated APIs 5 (18.5%)
Performance/Security 3 (11.1%)

Other
Code

New Feature
Data processing 22 (37.3%)

59 (56.2%)
105 (29.5%)

Regex-like implementation 19 (32.2%)
Regex configuration entry 18 (30.5%)

Bad Smells 19 (18.1%)
Other Failures 27 (25.7%)

Total 356 (100%)

the regex api is the root cause, this means the API was deprecated,
the wrong flags were used, the API call is unprotected from ex-
ceptions, or another issue related to the use of the API is present.
When the root cause is other code, the regex-related changes are
identified but the fault or root cause lies elsewhere in the code (i.e.,
the regex or API was modified in a fix, but are not the root cause of
the issue).

Each root cause is divided by the manifestation of the bug, which
describes how the bug was observed (Manifestation and Count (%) in
Manifestation columns of Table 1). For example, 45 PRs have Regex
as the root cause and manifest as a Bad Smell, representing 20.6%
of the regex root cause. Categories and sub-categories are used to
further subdivide the manifestations (Category (Sub-Category) and
Count (%) in Category columns in Table 1). For example, 11 PRs
have an Unnecessary Regex, representing 24.4% of the Bad Smells
for the Regex root cause.

Note that the manifestation of Bad Smells appears for each of
the root causes. This is because the PRs will frequently identify a
better way to accomplish a behaviorally equivalent task, making
the manifestation a bad smell rather than a fault. These bad smells,
in aggregate, account for 91 (25.6%) of the regex-related PR bugs.
Next, we describe each root cause category.

4.1 Bugs Caused by Regexes Themselves
When the regex is an issue (218 PR bugs), we observed three mani-
festations: incorrect behavior, compile error, and bad smells.

4.1.1 Regex: Incorrect Behavior. Incorrect Behavior is the dominant
manifestation for bugs with the regex as the root cause (75.7%,

165/218). Table 1 shows the four categories of this manifestation:
rejecting valid string, accepting invalid strings, both rejecting valid
and accepting invalid strings, and incorrect extraction. Rejecting
valid strings represents 61.8% of the incorrect behavior bugs. This
reinforces the observation that developers prefer to compose a
conservative regex to an overly liberal one [34] and tend to expand
the scope of regular expressions as software evolves [45].

Two primary factors seem to contribute to incorrect regex behav-
ior. One factor is incorrect regex escaping, including not escaping
characters and incorrectly escaping characters such as backslash (\)
and forward slash (/). The other is changing requirements. When
the inputs change and the regex is not updated, the regex behavior
may become obsolete (e.g., PR apache/cordova-ios#376). Other less
common problems are related to case sensitivity, Unicode compati-
bility, misuses of quantifier greediness, and lack of anchors.

4.1.2 Regex: Compile Error. Eight pull requests fix regex compile
errors. While the project code is compiled without errors, there
could exist uncaught invalid regular expressions until runtime. For
example, apache/nutch/#234 reports a compile error caused by
File.separator on Windows-based systems. Since \ is used for
escaping other characters, this PR reports an uncaught PatternSyn-
taxException.

4.1.3 Regex: Bad Smells. The regex bad smells we observed can
be divided into two categories, as shown in Table 1: design smells,
such as whether to use regex solution or not, which data to use
for validation, and what the matching data and non-matching data
look like; and code smells referring to smells with the regex itself.
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Overall, 17 out of the regex bad smells are design smells and the
other 28 are code smells.

Most design smells were sub-categorized as unnecessary regex
(11/17). These PRs indicate that simpler solutions exist and a regex
is not needed. For example, using a regex for string replacement
is not necessary if the replaced string is a simple string literal in a
fixed location (e.g., mozilla/Snappy-Symbolication-Server#23).

The code smells are roughly evenly distributed among three
sub-categories. Performance issues means the execution of regex
could be optimized for speed or memory consumption. For example,
when the purpose of a regex is not to extract substrings from the
data input, defined capturing groups in the regex is unnecessary
since the captured values are saved in memory but not used in
later code (e.g.,apache/struts#156). Two of the performance issues
are about regular expression complexity (i.e., ReDoS [20] vulnera-
bility3). Regex representation means the regular expression string
fails to satisfy certain unspecified requirements, such as using the
raw string to describe regular expression in Python and following
the eslint rule of “No-regex-spaces" 4. Six of the ten regex repre-
sentation code smells can be detected by lint tools in Python and
JavaScript. The other four PRs fix one issue of escape characters in
regex strings and three issues of regex readability. Unlike the in-
correct behavior, the escape characters in this sub-category do not
cause a behavioral issue. Unused/duplicated regex refers to regexes
in code that are no longer needed (7/8) or that are duplicated (1/8),
with the former being more common.

Summary:Most incorrect regular expression behavior occurswhen
the regular expression is too conservative and needs to accept more
strings. Compile errors occur in eight of the PRs, representing 2.2%
of all regex-related PRs we studied; considering the severity of
compile errors in terms of disrupting the program execution, this is
worth noting. Among design smells and code smells, 11 PRs identify
the root cause as unnecessary regular expressions.

4.2 Bugs Caused by Regex APIs
Even with the correct regex, choosing the right API function is
important, as is placing the API call in an appropriate location in the
code. Bugs caused by regex APIs (33 PRs, 9.3%) refer to the incorrect
regex API usage manifesting as either incorrect computation (6, 1.7%)
or bad smells (27, 7.6%).

4.2.1 Regex API: Incorrect Computation. Six PRs were submitted
because the API being used in the program produced incorrect
results. For example, for a particular regular expression in (face-
book/jest#3001), RegExp.test(content) has some unexpected be-
havior if it runs over the same string twice. This is because, in its
context, the global matching flag ‘g’ was used so the second call
to this method starts matching from the position saved in the first
call. This is a unique feature in JavaScript stateful regex methods
(i.e., RegExp.test and RegExp.exec). Besides the stateful methods,
other incorrect API usage leading to incorrect computation includes

3Since ReDoS cares about the time complexity of running the regular expression, we
regard it as performance issue.
4https://eslint.org/docs/2.0.0/rules/no-regex-spaces

passing arguments into the wrong method, failing to process multi-
line inputs, and enforcing matching from the beginning or to the
end of an input string.

4.2.2 Regex API: Bad Smells. We found 27 PR bugs that stem from
bad smells in using regex APIs. Table 1 shows the breakdown of the
regex API bad smells. Two design smells are alternative regex API
problems, such as deciding which regex library should be chosen to
use (e.g.facebook/prepack#645). The other 25 (92.6%) are categorized
as code smells.

Unnecessary computation was the root cause of nine PRs. In
all cases, the issue is that the regex API is executed too many
times and can be reduced. For example, on the code path where
most of the jobs are a success, the regex parser for error messages
should not be used unless the message indicates a job failure (e.g.,
mozilla/treeherder#61). This is considered a regex API issue because
it pertains to how the API is used in the code. It is a code smell
because the code is behaving properly except for the performance.
The frequency of this sub-category has implications for the impact
regex API performance has on applications.

Exception handling refers to uncaught exceptions or errors in
running regex methods. These represent issues with the regex APIs
because developers did not account for the possible unexpected
behaviors from executing a regex API. Examples include invalid
regex syntax when the regex to compile is not hard-coded and un-
known to the API method until runtime, invalid regex API method
arguments (e.g., null values, unsupported regex flags), and invalid
method returns (e.g., null values or incorrect return types).

Deprecated APIs means an obsolete regex library is being used
or there were changes in the new version of a regex library. For
example, the old regex library org.apache.oro is replaced with
java.util.regex (apache/nutch#390) because org.apache.oro
has been retired since 2010 and users are encouraged to use Java
regex library instead 5. Similarly, when flags argument is no longer
supported 6 in JavaScript regexAPIs, input.replace('<', '&lt;',
'g') has to be changed into replace(/</g, '&lt;') (mozil-
la/bugherder#26).

Performance/Security refers to a change in the API method due
to performance or security concerns. For example, in JavaScript, de-
velopers found regexp.test to be more suitable than str.match
because the former only returns a boolean value while the latter re-
turns the matched results, which could create a leak of information
to the external environment (mozilla/hubs#457).

Summary: Understanding the regex API is as important as under-
standing the regex itself. PR bugs result from choosing the wrong
API (6), using deprecated or updated APIs (5), or improper excep-
tion handling (8). Additional PRs reduce the number of calls to the
regex API in the interest of performance (9).

4.3 Bugs Caused by Other Code
In these pull request bugs, regexes and their APIs are involved but
are not the root causes of the bugs; the root cause is other code (105
PRs, 29.5%). Regexes may be changed in these pull requests, but the

5https://jakarta.apache.org/oro/
6https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/String/replace
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Table 2: Comparing selected features of regex-related PRs (regexPRs) to merged PRs (allPRs) from prior work [25].
Feature Meaning Dataset 5% mean median 95% skewness p-value

mergetime_minutes Minutes from PR
initialization to merge

allPRs 0.00 10,529.07 405.00 43,685.05 10.99 -
regexPRs 11.93 10,212.00 1,307.46 47,589.74 6.73 8.139e-13***

num_commits Number of commits
in the PR

allPRs 1.00 3.94 1.00 11.00 16.75 -
regexPRs 1.00 2.67 1.00 8.00 7.97 0.3635

code_churn Modified lines of
code in the PR

allPRs 0.00 324.15 15.00 1,047.00 32.44 -
regexPRs 2.00 615.72 27.00 786.15 18.01 1.075e-08***

files_changed number of files
changed in the PR

allPRs 1.00 11.84 2.00 30.00 93.62 -
regexPRs 1.00 6.78 2.00 23.65 8.20 0.3068

*** p-value < 0.001 when comparing regexPRs and allPRs for that feature using the Mann-Whitney-Wilcoxon test.

regex is part of the solution, not part of the problem. For example, to
solve a filename comparison failure filename === 'jest.d.ts'
where the filename could be an absolute file path, a solution of
regex matching is used to take the place (facebook/react6804).

The manifestations of the regex-related PRs caused by code
other than the regex or the regex APIs are categorized according
to how regex-related changes are involved in the solution. A PR
is categorized as a new feature if it implements new functionality
or improves existing features (59 PRs). Note that we also regard
feature improvement as a new feature. A PR is categorized as a bad
smell if the regular expression is employed to refactor the source
code and to remove the smells (19 PRs). A PR is categorized as other
failures if it reports any other failure (27 PRs).

4.3.1 Other Code: New Feature. Regular expressions are often in-
volved in the introduction of new features. For example, to prevent
malicious injection into logs, a regex is added to sanitize log mes-
sages (apache/accumulo#628), which means the root cause is un-
sanitized log messages, and sanitizing them is a new feature. Table 1
shows category the breakdown of the 59 PRs for new features.

Data processing, which accounts for 22 PRs, means the regular
expression is added to process a specific type of data (e.g., mozil-
la/bugbug#65). Regex configuration entry, which accounts for 18 PRs,
means the regex is user-provided so as to build regex-supported
features satisfying different user needs (e.g., apache/openwhisk-
utilities#16). Regex-like implementation adds new functionality for
performing regular expression execution. It requires both a regex
and an input string, but provides some unique features. For example,
a data query engine added query methods (e.g., regexp_matches)
so that it can perform regex-like string searching in SQL queries
(apache/drill#452).

4.3.2 Other Code: Bad Smells. When the root cause is a bad smell,
the solution is a refactoring; the regex or its API is involved with
the refactoring. For example, a switch statement of over 85 cases
can be refactored into less than 20 cases through the use of regexes
(apache/incubator-pinot#2894).

4.3.3 Other Code: Other Failures. Regular expressions can also be
added when the existing solution in the code does not work. For
example, a regex solution can be used as a fix when the code of
identifying browser type fails to identify a newer version of the
browser (mozilla/pdf.js#7800).

Summary: Regexes are involved in PRs even when the regex or
its APIs are not the root cause.

5 RQ2: BUG FIX CHARACTERISTICS IN
REGEX-RELATED PRS

While RQ1 describes the regex-related PR bugs, RQ2 describes the
associated fixes. We approach this from three perspectives: 1) the
complexity of the fix, compared to general PRs; 2) the types of
changes to the code; and 3) frequently recurring bug fix patterns.

5.1 Complexity of Regex-related PR Fixes
We hypothesize that regex-related PRs differ from most other PRs.
We evaluate this hypothesis by comparing characteristics of regex-
related PRs to PRs from a public dataset of representative PRs from
GitHub projects that use PRs in their development cycle [25]. Ta-
ble 2 shows the pull request feature distributions for our dataset
(regexPRs) and the merged PRs from prior work (allPRs), as de-
scribed in Section 3.3.1. We compare the distributions of each fea-
ture across the datasets using a Mann-Whitney-Wilcoxen test of
means. For each feature, we present the 5% percentile, mean,median,
95% percentile, and skewness score. The skewness score is calcu-
lated according to Pearson’s moment coefficient of skewness [1, 5].
For example, for the merged pull requests in allPRs, the median
num_commits is 1 and the skewness is 16.75. Although the median
number of commits is also 1 in regexPRs, the skewness of commits
is only 7.97. This means the distribution of num_commits has a
shorter tail in regexPRs, because of which the 95% percentile of
num_commits in regexPRs is smaller than that in allPRs.

As shown in Table 2, regexPRs has less skewed distributions than
allPRs on all features. Therefore, the characteristics of regex-related
PRs are less asymmetric than general PRs. The Mann-Whitney-
Wilcoxon tests between regexPRs and allPRs show that regexPRs
take longer to merge (mergetime_minutes) and involve more lines of
code (code_churn), and these differences are significant at 𝛼 = 0.001.
Our conclusion is that regex-related PRs are different than gen-
eral PRs.

Summary: The fixes in regex-related PRs are significantly different
from general PRs. Most regex-related PRs take a longer time to get
merged and involve more lines of code.

5.2 Changes to Regexes in PRs
In regex-related PRs, we observed four types of changes: a regex
addition (𝑅𝑎𝑑𝑑 ), edit (𝑅𝑒𝑑𝑖𝑡 ), or removal (𝑅𝑟𝑚), or a regex API is
modified (𝑅𝐴𝑃𝐼 ). Table 3 presents the distribution of regex changes
over the 356 PR bugs with noted dominant type of regex changes.
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Table 3: Distribution of the four types of regex-related changes over different root causes and manifestations. A (B) means A
PRs have B occurrences of the change, in total. • indicates the dominant type of regex-related changes in the corresponding
manifestation (or category) in each row.

Root Cause Manifestation (Category) #PR 𝑅𝑎𝑑𝑑 𝑅𝑒𝑑𝑖𝑡 𝑅𝑟𝑚 𝑅𝐴𝑃𝐼

Regex

Incorrect Behavior 165 22 (40) 139 (236)• 26 (48) 12 (13)
Compile Error 8 0 (0) 7 (10)• 1 (3) 3 (3)

Bad Smells Design Smells 17 4 (5) 4 (9) 12 (63)• 3 (4)
Code Smells 28 3 (3) 20 (49)• 8 (10) 3 (5)

Sum 218 29 (48) 170 (304) 47 (124) 21 (25)

Regex API

Incorrect Computation 6 1 (1) 1 (1) 0 (0) 6 (9)•

Bad Smells Design Smells 2 0 (0) 0 (0) 0 (0) 2 (2)•
Code Smells 25 2 (8) 3 (10) 1 (25) 23 (381)•

Sum 33 3 (9) 4 (11) 1 (25) 31 (392)

Other Code

New Feature 59 53 (110)• 3 (4) 0 (0) 4 (4)
Other Failures 27 23 (44)• 6 (7) 2 (4) 3 (6)
Bad Smells 19 11 (19)• 5 (21) 5 (20) 0 (0)

Sum 105 87 (173) 14 (32) 7 (24) 7 (10)
Total 356 119 (230) 188 (347) 55 (173) 59 (427)

Across all root causes and manifestations, the most common change
is an edit, as 52.8% (188/356) of the PRs contain one or more edit.
Regexes were added in over twice the number of PRs (119) as they
were removed (55). Regex API changes occurred in 59 (16.6%) of the
PRs. Note that these numbers do not add up to 356 because a PR can
have multiple types of changes (e.g., 𝑅𝐴𝑃𝐼 and 𝑅𝑒𝑑𝑖𝑡 ); 14.9% (53/356)
of the regex-related PRs involve more than one type of changes.
Although 𝑅𝑒𝑑𝑖𝑡 is the dominant type of regex-related changes in
our dataset, the number of 𝑅𝑒𝑑𝑖𝑡 changes in those pull requests is
usually one or two. In contrast, the average number of changes for
𝑅𝐴𝑃𝐼 is above seven. Next, we examined the fixes applied to each
root cause.
Fixes for Regex Root Cause. When the regex is the root cause,
78.0% (170/218) of the PRs contain a regex edit. To fix design smells,
however, regex removal is more common; as 11 of the 17 design
smells PRs are related to unnecessary regexes (Table 1), removing
the regex is a natural response.

We note that a regex edit is not always the solution, even when
the regex itself is the root cause. For example, incorrect regex be-
havior could be fixed by replacing the regex with an existing parser
(See Pattern 4 in Table 4). When incorrect regex behavior relates to
the changed input data, the PR can either modify the regex or sim-
ply add a regex to the list of regexes (See Pattern 5 & 6 in Table 4).
When the incorrect regex behavior is related to case sensitivity
and Unicode characters, adding or modifying the regex flags in the
regex API method can also be found together with regex edits (e.g.,
apache/beam#6092).
Fixes for Regex API Root Cause. Most of the fixes for regex
API issues involve changes to the API (78.8%, 26/33). Of all the
API changes for all root causes (59 PRs, 427 instances), most fix
deprecated APIs (71.2%, 304/427). However, multiple changes are
sometimes required. For example, the PR mozilla/treeherder#198
handles an incorrect computation and contains an 𝑅𝐴𝑃𝐼 and an
𝑅𝑒𝑑𝑖𝑡 . While the fix moves the flag from re.search to re.compile,
the regular expression '.+ pgo(?:[ ]|-).+' is optimized into a
different representation '.+ pgo[ -].+', which is a hidden regex
representation code smell not mentioned in the PR description.

Fixes for Other Root Causes. The majority (75%, 173/230) of
𝑅𝑎𝑑𝑑 edits come from the other code root cause. This is fitting as
regexes are used in the solution for PRs in this category, but are
not the cause of any issues.

Summary: Suitably, each root cause has a common change type.
When regexes are the problem, edits are the most common, unless
it is a design smell that is resolved through removal. API problems
involve API changes, and regexes are often added to solve problems
caused by other code.

5.3 Recurring Patterns to Fix Regular
Expression Bugs

Table 4 presents the ten recurring fix patterns we identified
from the regex-related pull requests. Patterns 1-7 fix regex issues
and patterns 8-10 fix regex API issues. The column #PR shows the
number of pull requests that exhibit the pattern. However, this
is not an indication of pattern frequency because a fix pattern
can (and does) appear multiple times in the same PR. Pattern 7 is
language-specific, but the rest are general enough to apply to the
three languages: Python, JavaScript, and Java.
Escaping Issues (Patterns 1 & 7). Pattern 1 fixes incorrect regex
behavior and compile errors that result from improper escaping,
which we saw in Java, JavaScript, and Python. The domain knowl-
edge required in Pattern 1 is to distinguish a regex meta-character
from string escape character (e.g., \b can be a backspace or a regex
word boundary) and from plain text (e.g., ‘(’ can be a common
left parenthesis or the starting anchor of a regex capturing group).
Pattern 7 is specific to Python and can be used to distinguish regex
meta-character escaping (e.g., \.) from string character escaping
(e.g.,\n).
Regex Scope Issues (Patterns 2, 5 & 6). Pattern 2 adds characters
to a character class. Pattern 5 and Pattern 6 apply when additional
alternatives are needed. When the strings within the regex are
expressed in separate regular expressions, they can be combined
in a single regex using an OR operator | or grouped into a set of
regexes.
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Table 4: Recurring patterns to fix regular expression bugs. Pattern 1-7 are to solve regex issues and Pattern 8-10 are to solve
regex API issues. With the exception of Pattern 7 (as noted), each pattern can be applied to each of the languages studied:
JavaScript, Python, and Java.

ID Description #PR Example Before/After

1 Correctly escaping regex literals 17 Before: regex="a.png"

After: regex="a\.png"

2 Extend or shrink the character class 17 Before: value_regex = r'[_\w]+'

After: value_regex = r'[_\-\w]+'

3 Replace regex with string methods 15 Before: if re.match(".*error.*",message):

After: if "error" in message:

4 Replace regex with existing parser 11

Before: EMAIL_REGEX_PATTERN.matcher(email).matches();

After: import javax.mail.internet.InternetAddress;
InternetAddress emailAddr = new InternetAddress(email);
emailAddr.validate();

5 Add or remove a regex alternation 10 Before: regex="win32|windows"

After: regex="wind32|windows|win64"

6

Add or remove a regex to the regex
list

9

Before: 'regexes': [
re.compile('Ubuntu HW 12.04 x64 .+')

]
After: 'regexes': [

re.compile('Ubuntu (ASAN )?HW 12.04 x64 .+'),
re.compile('^Android 4\.2 x86 Emulator .+'),

]

7 Correct the type of regex represen- 6 Before: 'pattern': '\d{1,2}/\d{1,2}'

tation; Language = {Python} After: 'pattern': r'\d{1,2}/\d{1,2}'

8
Checking null values for regex

5
Before: Matcher matcher = regex.matcher(currentLine);

execution After: Matcher matcher = currentLine == null ? null :

regex.matcher(currentLine);↩→

9 Regex static compilation 4

Before: String BLACKLIST = "...";
boolean method(String name) {

return !(name.matches(BLACKLIST));
}

After: Pattern BLACKLIST = Pattern.compile("...");
boolean methodE(String name) {

return !(BLACKLIST.matcher(name).matches());
}

10

Conditional checking before regex

4

Before: Matcher m=Pattern.compile(regex).matcher(currentLine);

execution After: if currentLine.contains("error"){
Matcher m=Pattern.compile(regex).matcher(currentLine);

}

Removing Regexes (Patterns 3 & 4). Pattern 3 replaces the regex
using string API functions while Pattern 4 replaces the regex so-
lution with APIs provided in third-party libraries. The differences
between Pattern 3 and Pattern 4 lie in the matching strings. Pat-
tern 4 is used when the matching string has its own syntax grammar
(e.g., email address, IP address, URL) and its dedicated parser. Pat-
tern 3 is used when the use of string libraries is simpler or easier
to understand than the regex implementation, but further research
is needed to identify situations when a regex is better and when a
string implementation is better.
Exception Handling (Pattern 8). Pattern 8 prevents null values
from getting into or out of regex API methods. Another fix pattern
for regex exception handling uses try-catch code blocks, but this
can often be addressed by using smart editors to suggest exceptions
to catch, so we omit it from the table.
Unnecessary Computation (Patterns 9 & 10). Pattern 9 avoids
repeated regex compilation by pre-compiling regex objects and
making the pre-compiled objects sharable among various functions.

Pattern 10 reduces the execution frequency of regex methods by
conditionally checking the input strings prior to the regex matching.
Other Patterns. Other common patterns include transforming a
regex character class into a regex shortcut, adding or removing
regular expression anchors, changing regex API, splitting regu-
lar expressions apart or merging regular expressions together, or
switching from capturing groups to non-capturing groups. More
patterns could be observed, but those presented in Table 4 repre-
sent common ones that are candidates for automation based on our
careful exploration of the data.

Summary: For a regex issue, there are often multiple fix patterns
that can help, such as replacing a regex with string library oper-
ations or replacing it with external library calls. These patterns
provide a first step toward understanding common regex-related
code changes, which could enable automated program repair or
other automated regex support.
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6 DISCUSSION AND FUTUREWORK
We began this work to gain a better understanding of the issues
developers face when working with regular expressions, and the
lens we chose is the pull request. Here, we discuss our high-level
observations, implications, and future work possibilities. Based on
our analysis of the data, the following observations stand out:
Differences across programming languages. Prior work shows
that the regular expression representations have significant differ-
ences across programming languages [22] and porting regular ex-
pressions causes semantic and performance differences [21]. During
our analysis of regex bugs, we saw that some regex bugs are closely
related to a particular program language. The incorrect computa-
tion or incorrect regex behavior caused by stateful methods occurs
only in JavaScript. The Regex API code smell of Performance/Secu-
rity occurs in JavaScript and Python, but not Java (Section 4.2.2).
The language version also has an impact on regex bugs by changing
flags (e.g., re.L is no longer supported after Python 3), deprecating
APIs, and changing performance.
Regex issues when represented as string literals.When a reg-
ular expression is represented as a quoted string literal, it can be
tricky to get right. Regexes use backslashes for shortcuts (e.g., \d)
and to convert meta-characters to plain characters (e.g., a\.png).
However, backslashes themselves need to be escaped to make a
valid string sequence. The complicated escaping process and the
different escaping character support in different languages make
regular expression escaping fragile (see Pattern 1 in Table 4).
To regex or not to regex. Our study found 15 PRs of replacing
regex with string operations and 9 PRs of replacing string opera-
tions with regular expressions. When other code is the root cause
of the issue, regexes are added in 82.9% (87/105) of the PRs. The
problem of when regular expressions should and should not be
used [2, 3, 6] is also discussed in the PRs. One PR discussion sets
a boundary for when regexes should be used: “If the data and the
comparison only require you to test for equality, then I’d try to use
an Array. If whatever I’m testing can’t use equality then I’d use a
RegExp." (mozilla/fxa-auth-server#1743). This problem is regarded
to be one of the difficulties of regex programming [34]. Further
research efforts are needed to better understand when to use and
when not to use regexes.
Regex usage context matters. In this paper, we found that regex
errors go beyond just composing the intended regex. The issues we
observed also include incorrect usage of regular expression APIs
(Section 4.2), improper exception handling (Section 4.2.2), and un-
readable or inefficient regexes (Section 4.2.2). Thus, it is important
to consider regexes in their context when proposing solutions to
support developers. Online tools, which developers report to use
for regex composition and testing [16], cannot determine if a regex
is compiled too often (Pattern 9, Table 4), if a string library would
be more appropriate (Pattern 3, Table 4), or if a meta-character
should be escaped (Pattern 1, Table 4). While helpful for under-
standing matching behavior, developers could benefit from tool
support within the IDE that can consider the context.
Regex performance is about more than regex complexity.
Prior work on regex and ReDoS [20] focuses on the complexity
of executing a regular expression. In the PRs we studied, developers

demonstrated an interest in optimizing regex execution by refactor-
ing the surrounding code (e.g., adding conditional or null checking,
Patterns 8 & 10, Table 4) or by fine tuning the features in the regular
expression representation such as changing capturing groups to
non-capturing groups (e.g., apache/nutch#432). Automated perfor-
mance support would help developers identify these inefficiencies
sooner.
Testing Regexes. Prior work on regex testing [46] shows that only
17% regular expressions are tested. The PRs reveal that test code is
not typically committed with regex changes; over 50% of PRs do not
include test code edits. Providing test cases provides clarity on the
intended behavior of the regex and may reduce discussions about
what purpose a regex should serve. Among the 165 PRs causing
incorrect regex behaviors, 47.9% (79) contain regex testing code for
the regex and 49.7% (82) do not. The other four are not feasible to
test because the regular expression is in either the configuration
files or the testing framework itself specifying which tests to run
(e.g.,mozilla/amo-validator#320).

We note that regex testing statistics from prior work [46] may
be artificially low due to feasibility issues. Not all regexes can be
tested in context. Regular expressions written in configuration
files, for example, make testing more challenging (e.g., mozilla/amo-
validator#520). In that case, it is important to ensure the regexes
are not malicious and do not cause significant system slowdown.
Summary: Each of these observations opens the door for further
research. Our sample of PRs was not large, but the analysis was in-
depth. Opportunities for further, automated exploration and further,
automated support have been identified.

7 THREATS TO VALIDITY
Internal Validity. We manually labeled the PRs using two au-
thors as raters. To reduce misclassifications, all disagreements were
thoroughly discussed with a third author.

Our analysis considers only the code changes present in merged
pull requests. Thus, and changes that proceed or follow the PR but
are not linked to the PR were not analyzed.
Construct Validity.We analyzed 356 merged PR bugs from 4 or-
ganizations, which may not be representative of all regex-related
PRs. These PRs are in three languages, which may not general-
ize. The dataset is from public GitHub repositories, which may
not generalize to projects hosted elsewhere or private repositories.
However, we did not observe any important differences in PRs be-
tween the selected organizations. Their distributions of root causes
and manifestations, are not statistically different from one another,
suggesting (though not proving) generalizability.

When comparing regexPRs and allPRs, we observed that 8 PRs
in regexPRs are present in allPRs. We believe the impact is minimal,
as there are over 800x more PRs in the allPRs dataset.

We split six PRs into multiple bugs because the issues were
independent. This has a subtle impact on the generalizability of the
results to other sets of regex-related PRs.

Where appropriate, we connected our results to prior work on
regular expressions to reduce mono-method bias.
External Validity. The PRs were sampled on February 1, 2019, and
thus reflect the PRs available at a specific date and time. Results
may not generalize to PRs sampled from a different period.
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We used GitHub’s merge status in selecting PRs, which poses a
threat to validity [27]. This threat is that additional pull requests
may have been merged, and the existence of such pull requests
would affect our results if they substantially differ from the ones
merged via GitHub. Further study is needed to assess the impact of
this threat.

Among the 16 PR features [25], we only select four of them to
evaluate RQ2. The comparison between regexPRs and the allPRs
dataset may not hold on the other features.

8 RELATEDWORK
This work is mostly related to research on regular expressions in
software engineering. The methodology is most related to research
on software bugs and classification.
Regular Expressions in SE. Empirical research on regular ex-
pressions in software engineering is emerging (e.g., [16, 17, 20–
22, 45, 46]). Previous research focuses on regex feature usage in one
language [16] and later on comparing regex characteristics across
languages [21, 22], with a specific focus on portability issues [21].
Previous research also explores regex characteristics (e.g., size, fea-
tures) at a moment in time [16, 21], or, more similar to this work,
on changes to the characteristics over time through the lens of
commit history [45]. Another dimension is context: some regular
expression studies extract regexes from their context for analysis
(e.g., [17, 45]), but others consider the execution environment (e.g.,
to measure test coverage [46] or identify actual ReDoS issues [20]).
In this work, we analyzed regexes in multiple languages using the
context from the PR, which is not available through commit history
alone, in addition to properties of the regex itself.

Regex comprehension has been studied using controlled exper-
iments [17] and composition strategies have been studied using
observational studies of developers [15]. This work is complemen-
tary to work in regex comprehension, as regex representation code
smells were found in this work. These are the byproduct, in part,
of regex readability issues (Section 4.1.3).

Complementary to our efforts here, prior work identifies the
presence of ReDoS vulnerabilities in thousands of JavaScript and
Python modules [20, 41]. While the prior work [20] took a deep dive
into a particular type of vulnerability, this work looks more broadly
at issues resulting from regular expressions (including ReDoS issues,
which were also present in two PRs in our dataset, Section 4.1.3).

Prior work has surveyed developers to identify pain points asso-
ciated with regular expression usage [16, 34]. Rather than surveying
developers, this work explored the discussions in regex-related PRs.
Pain points were revealed indirectly through the fix patterns (e.g., is-
sues with escaping literals are common and likely a pain point),
and bug characteristics.
Software Bugs and Classification. GitHub has become a pop-
ular hosting site for organizations large and small to make their
projects available to their teams and the public. Pull requests are
created when a developer wants their changes to be integrated into
a project; sometimes these are linked to a GitHub issue or another
bug reporting software. Pull requests are reviewed and discussed
before being merged.

The lens through which researchers study bugs is typically a
bug report [23, 31, 42, 48, 49]. GitHub pull requests [24, 25, 33, 38]

provide a different lens as they contain a proposed (or actual, in
the case of a merged PR) change.

Similar research to ours is bug classification [26, 32, 36]. Some re-
search targets emerging applications, such as TensorFlow bugs [48]
and Blockchain bugs [44], while others target distributed systems
such as node change bugs [29] and concurrency bugs [30]. More
specific bug types include bugs in exception-related code [19], bugs
in patches [47], numerical bugs [23], performance bugs [39], and
cross-project correlated bugs [31]. Our study joins this list with its
focus on regex-related bugs.

Bugs are often categorized in terms of root causes and man-
ifestations [23, 30, 39, 47, 48], bug patterns [30], and fix strate-
gies [30, 31, 39]. Tan and Liu et al. [42] conduct a temporal analysis
to study the trend of different types of bugs with software evolu-
tion. Zhong et al. [49] evaluate the differences between bug fixes by
programmers and the fixes by automatic program repair. Selakovic
et al. [39] measure the complexity of optimization code changes.
Wan et al. [44] evaluate the relationship between bug type and
bug fixing time. We adopt the approach of using root causes and
manifestations to describe regex-related bugs and the approach of
using fix strategies to describe bug resolution.

In addition to bug studies, there is also lots of research focused
on code refactoring to categorize or detect code smells and design
smells in source code [35, 37, 40] and to understand the mutual
impact between those bad smells and the software development
process [28, 43]. As many of the PRs were addressing code smells,
our work is related to this literature as well.

9 CONCLUSION
Most empirical studies on regular expression bugs are focused on
detecting or fixing ReDoS. The studied regular expressions are
often extracted from source code, and thus real, but the whole
empirical study is often separate from the environment where the
regexes are executed. There is little knowledge about what regular
expression problems could happen in real-world software code and
the consequences of those problems.

This paper presents a study of 350 merged regular expression
related pull requests from Apache, Mozilla, Facebook and Google
GitHub repositories where the regular expression problems are
studied carefully by bug descriptions and the source code. Our re-
sults provide not only the dominant regular expression problems
but also a spectrum of regular expression root causes and mani-
festations. Our study shows that regular expression bugs are not
independent of the source code it runs, but are influenced by the
software evolution and the code quality. Furthermore, by analyzing
the complexity of regular expression bug fixes, we demonstrate that
regular expression bugs are not trivial problems as they take more
time and more lines of code to fix compared to general bugs. We
also provide ten common patterns of regex bug fixes. Our results
and finding provides an overview of regular expression bugs and
motivates future work on techniques and tools to solve practical
regular expression problems.
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