
Digital Nudges for Encouraging Developer Actions
Chris Brown

Department of Computer Science
North Carolina State University

Raleigh, NC, USA
dcbrow10@ncsu.edu

Abstract—Researchers have examined a wide variety of prac-
tices to help software engineers complete different programming
tasks. Despite the fact that studies show software engineering
practices and tools created to improve the software development
process are useful for preventing bugs, decreasing debugging
costs, reducing debugging time, and providing additional benefits,
software engineers rarely use them in practice. To persuade
humans to alter and adopt new behaviors, psychologists have
studied the concept of nudges. My research aims to investigate
how digital nudges, or the process of using technology to
automatically create nudges, can be beneficial in helping software
developers and teams adopt software engineering activities and
integrate them into their normal workflow.

Index Terms—software engineering, developer actions, tool
adoption, nudge theory

I. INTRODUCTION

To help developers write higher quality code, researchers
have created and evaluated a wide variety of useful practices
to help in completing programming tasks. For example, tool-
smiths have developed tools to aid developers in accomplish-
ing important aspects of the software development process
including code analysis (static and dynamic), debugging, refac-
toring, documentation, version control, continuous integration,
communication, and security. Studies show development tools
are useful for improving code [1], preventing errors [3], saving
money by lowering debugging costs [15], reducing fault fix
latency [14], or the time between a defect injection and it’s
removal, and making developers more efficient [11]. Other
examples of software engineering activities for improving
software quality are code reviews, testing, pair programming,
and continuous integration.

However, despite the fact that research provides evidence
these practices are beneficial for completing programming
tasks during software development, developers rarely use
them. For instance, continuing with the useful software en-
gineering practice of integrating tools into the development
process, prior work has examined barriers preventing software
engineers from adopting tools for debugging [6], static anal-
ysis [12], security [34], refactoring [21], documentation [9],
open source contribution [18], and build automation [25].
Additionally, Tilley and colleagues argue adoption is one of
the most important goals of software engineering research,
and present challenges for professional developers face with
programming tools created by researchers, or research-off-the-
shelf (ROTS) software [31]. There are many reasons develop-
ers ignore tools, yet this work focuses on the discoverability

barrier where users are unaware that a useful tool exists [20].
Increasing awareness of software engineering practices, such
tool adoption, can improve code quality and developer pro-
ductivity in industry.

Psychology researchers have examined how to persuade
humans to adopt new behaviors or ideas by studying choice
architecture, or the context of how people make decisions [30].
There are many aspects of choice architecture that can change
human behavior, and the one we chose to focus on is
nudge theory. A nudge is defined as any factor in decision-
making that can alter behavior without incentives or banning
alternatives, i.e. the arrangement of possible options [29].
Furthermore, using technology to create nudges that modifies
human behavior in digital environments is called to digital
nudging [33]. We hypothesize utilizing digital nudges to send
recommendations for development tools to programmers can
increase awareness and adoption of these systems.

Nudging developers to adopt software engineering actions,
or activities and processes designed to improve programming
tasks, can help avoid poor-quality applications, inconvenienced
users, increased debugging and maintenance costs, and wasted
time and effort for developers. This research will solve the
following problem: Given a developer who is unaware of
an applicable software engineering tool, identify the most
effective strategy for convincing them to adopt the tool. We
created digital nudges aimed towards software engineers, and
will evaluate their effectiveness by building and analyzing
systems to evaluate their performance. The contributions of
my research include:

• a conceptual framework building on research in nudge
theory to improve software engineer behavior

• a set of experiments to evaluate and provide evidence to
support our framework

• an automated recommender system to generate digital
nudges recommending software engineering actions to
developers

II. RELATED WORK

My research is based on prior work that explores making
recommendations to developers and technical approaches to
increasing software engineering action adoption.

Recommendation: Research has investigated how to make
effective recommendations to users in many different domains.
For software engineers, Murphy-Hill examined different ways
developers learn about tools and found that peer interactions,

or learning about tools from peers during work activities, was
the most effective [23]. Prior work has also proposed using
concepts such as diffusion of innovations [26], idea garden-
ing [5], and information foraging theory [24] to spread ideas
and make effective recommendations to software developers.
To our knowledge, our work is the first research to integrate
nudge theory into recommendations for software engineers.

Adoption: Furthermore, prior work has proposed and eval-
uated methods to solve the software engineering adoption
problem. Examples include using automated pull requests
to encourage upgrading dependencies [19], screencasting to
improve tool discovery [20], crowdsourcing to enhance coding
tutorials [10], explorative and exploitative searching to recom-
mend tasks to developers [13], logging to recommend Unix
commands to users over a shared network [17], creating a
knowledge base to monitor developer action history to improve
code navigation [32], and gamification to encourage tool usage
by rewarding developers with points towards a leaderboard for
utilizing code navigation tools during development [2].

III. RESEARCH PLAN

This section outlines our conceptual framework (Section
III.A), completed study results (Section III.B), research in
progress at the time of this writing (Section III.C), future
projects (Section III.D), and research timeline (Section III.E).
A. Conceptual Framework

Nudge theory is a concept that has shown to modify human
behavior in many different domains. Digital nudges are effec-
tive in altering behavior through digital choice environments,
for example FitBit1 activity trackers prodding users to increase
physical activity and make healthier lifestyle decisions [33].
The creators of the term nudge provide two advantages to this
type of recommendation, it’s “easy and cheap” [29, p. 71].
Nudges are a viable option for making recommendations
because they do not incentivize users and do not prohibit
alternative options. This research aims to discover when de-
velopers are more likely to accept a recommendation based on
different factors such as visibility in the context of their work,
timeliness, trust, etc.

The conceptual framework will introduce and evaluate new
types of digital nudges for software engineers. Example nudge
types include: social nudges that suggest actions adopted by
friends or colleagues; public nudges which are visible and
may involve social pressure if behaviors aren’t adopted; just-
in-time nudges to make recommendations when a software
engineering action is appropriate and situated nudges to make
suggestions where the practice is applicable; apprehensive
nudges that provide multiple locations where software en-
gineering activities can be applied; automated nudges that
perform actions for developers and present output; tutorial
nudges which show developers how to complete a practice;
reminder nudges to periodically recommend actions to pro-
grammers; and positive nudges that commend developers to
encourage action adoption. This research will build new tools

1https://www.fitbit.com/home

and examine existing systems that implement these digital
nudge types, in the context of tool adoption, to evaluate their
effectiveness in impacting developer behavior and actions.

B. Preliminary Findings
How Software Users Recommend Tools to Each Other

Motivation: Using development tools is a useful software
engineering practice that the Software Engineering Body of
Knowledge says can achieve “desirable characteristics of soft-
ware products [28]. Previous software engineering research
shows peer interactions are the most effective way to learn
about tools [22], [23]. The goal of this study was to examine
peer interactions in an experimental setting to better under-
stand what makes user-to-user recommendations, a form of
social nudge, effective for recommending tools. Our results
provide implications for improving future automated recom-
mendation approaches to recommend software engineering
practices to developers.

Methodology: In this study, we designed an experiment to
observe peer interactions and determine what makes them an
effective method for learning about new tools in software. To
observe peer interactions, we recruited students from North
Carolina State University and professional workers from the
Laboratory for Analytic Sciences2 to work with a partner to
complete data analysis tasks. This project sought to investigate
the following research question:

RQ: What characteristics of peer interactions make rec-
ommendations effective?

The characteristics we analyzed are politeness, persua-
siveness, receptiveness, time pressure, and tool observability.
These characteristics were motivated by Murphy-Hill’s previ-
ous work on peer interactions and psychology research. Effec-
tiveness was measured by noting instances where participants
used or ignored suggestions when faced with opportunities to
use a tool recommended by their partner during the study.

Results: We analyzed 142 total recommendations between
participants and found that receptiveness was the only charac-
teristic that significantly impacts the outcome of a tool recom-
mendation between peers (Wilcoxon, p = 0.0002). Our results
suggest recommender systems should target users’ receptivity
when making tool suggestions. To define receptiveness, we
created criteria using Fogg’s work on designing persuasive
technology [8]. The criteria for receptiveness were: Demon-
strate Desire and Familiarity. The implications of this work
indicate that future automated recommendation approaches
can make more effective recommendations by prioritizing user
receptiveness and integrating these criteria. These results were
published in the 2017 Visual Languages and Human-Centric
Computing (VL/HCC) conference [4].

C. In Progress
tool-recommender-bot

Motivation: Research shows active help systems are more
effective than passive ones requiring users to explicitly seek
help [7]. To examine how developers respond to digital nudges,

2https://ncsu-las.org/

we developed tool-recommender-bot. tool-recommender-bot is
an automated recommender system that makes suggestions to
software engineers on GitHub, a popular code-hosting website.
tool-recommender-bot differs from existing tool recommender
systems, like [16], [17], [32], because it integrates a combi-
nation of digital nudge types and incorporates receptiveness,
targeting the desire of programmers to write high-quality code
and their familiarity with the code base, to suggest software
engineering actions to developers.

To identify a baseline for effective automated recommen-
dations, we conducted a preliminary evaluation using tool-
recommender-bot to make simple recommendations to de-
velopers on 52 GitHub repositories. We found that only
4% of these suggestions were successful, and the majority
of feedback and responses from developers were negative.
Our results suggest that our naive recommendations were
ineffective in influencing developer behavior because of their
lack of social context and difficulty integrating into developers’
workflow. These results are under review for submission to
the International Workshop on Bots in Software Engineering3

(BotSE) at ICSE 2019 at the time of this writing.
Methodology: We designed tool-recommender-bot to inte-

grate all our digital nudge types and to be extendable for
recommending a variety of software engineering actions to
developers. Our initial implementation recommends ERROR
PRONE, a static analysis tool for Java,4 to increase static
analysis tool adoption. In this study, we aim to improve on our
naive recommendation design by implementing concepts from
theory into recommendations sent to programmers from our
system. To evaluate our system, our study will observe GitHub
repositories, analyze changes made by developers, recommend
ERROR PRONE as a comment on pull requests, and observe
how developers respond to nudge types by placing a survey
link at the end of the recommendation comment. The survey
will consist of 5-point Likert scale and free response questions
to gather qualitative and quantitative data on the effectiveness
recommendations from tool-recommender-bot.

Hypothesis: We hypothesize that tool-recommender-
bot recommendations incorporating our new digital nudge
types will be more effective and useful for developers. For
instance, one digital nudge type we plan to evaluate in
this study are apprehensive nudges. We will study this by
varying whether or not developers receive recommendations
with other lines of code where ERROR PRONE reports a
bug. Nudge theory shows people make better choices when
they have good information in choice environments [29, p. 73].

GitHub suggestions
Motivation: GitHub recently introduced a new feature for

users to suggest code changes to developers in lines changed
during a pull request reviews.5 Early analysis shows these
situated nudges are very popular and effective among software

3https://botse.github.io/
4http://errorprone.info/
5https://help.github.com/articles/incorporating-feedback-in-your-pull-

request/#applying-a-suggested-change

engineers, already totaling over 100,000 uses with developers
“quick to adopt suggested changes” and integrate them into
the code review process.6 This research aims to discover
why GitHub suggestions, or situated nudges, are effective for
influencing developer actions and behavior.

Methodology: To analyze suggestions, we developed a script
to automatically analyze comments and search for suggested
lines of code on pull requests for the most popular GitHub
repositories. After gathering a corpus of code suggestions,
we will send a survey to developers who received a code
suggestion. The survey will be distributed via email to GitHub
users who receive a suggestion with an email address publicly
available on their profile. We will ask 5-point Likert scale
questions on the usefulness of the GitHub suggestions feature
and include open-ended free response questions for developers
to add more information about why they find this system effec-
tive. Our evaluation will provide quantitative and qualitative
data based on the responses from developers to characterize
how developers respond to situated nudges.

Hypothesis: We hypothesize developers will find situated
nudges effective because of their location within the code.
Nudge theory research suggests location is important, for
example the arrangement of food in a cafeteria or grocery store
can have a major impact on the type of food people purchase
and consume [29, p. 68]. Prior research in software engineer-
ing also shows in situ design is important for programming
tasks, such as code navigation [27].

D. Future Work

tool-recommender-bot 2.0
Motivation: We designed tool-recommender-bot to make

recommendations to developers using our new digital nudge
types. With the results from our research studies on peer
interactions, tool-recommender-bot, and GitHub suggestions,
we plan to improve our system to make recommendations
to software engineers. Future iterations of tool-recommender-
bot will further our work by recommending additional soft-
ware engineering tools, integrating different digital nudge
types, and examining when each nudge type is most effec-
tive for making better suggestions to developers for specific
situations and programming tasks.

Methodology: The first phase of this evaluation will conduct
a similar experiment to the first tool-recommender-bot study
with several changes. First, we plan to recommend a different
software engineering tool other than ERROR PRONE to GitHub
developers. Next, we will select additional digital nudge
types to vary in experimental recommendations to developers,
measuring effectiveness based on data gathered from surveys
to developers. The second phase will analyze results from our
research on all of the digital nudge types to create a framework
describing when each nudge type is useful to developers. For
example, the peer interactions study found that social nudges
are most effective when users are receptive to a receiving a
software engineering action recommendation.

6https://blog.github.com/2018-11-01-suggested-changes-update/

E. Timeline
The author is a fourth year computer science PhD student at
NC State University working with Dr. Chris Parnin. Table I
presents the proposed research plan timeline:

Milestone Target
Peer Interaction VL/HCC 2017

Preliminary Results BotSE* at ICSE 2019
tool-recommender-bot FSE 2019*

Suggestions VL/HCC 2019*
tool-recommender-bot2.0 ICSE 2020*

Defense Spring 2020

TABLE I: Research Plan Timeline

* These milestones depend on paper acceptances into confer-
ences. In case of rejection or delay, other potential venues for
submission include VL/HCC, RecSys, CSCW, ASE, TSE, and
other peer-reviewed conferences and journals.

REFERENCES

[1] N. Ayewah and W. Pugh. The google findbugs fixit. In Proceedings
of the 19th international symposium on Software testing and analysis,
pages 241–252. ACM, 2010.

[2] T. Barik, E. Murphy-Hill, and T. Zimmermann. A perspective on
blending programming environments and games: Beyond points, badges,
and leaderboards. In Visual Languages and Human-Centric Computing
(VL/HCC), 2016 IEEE Symposium on, pages 134–142. IEEE, 2016.

[3] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler. A few billion lines of code
later: using static analysis to find bugs in the real world. Communications
of the ACM, 53(2):66–75, 2010.

[4] C. Brown, J. Middleton, E. Sharma, and E. Murphy-Hill. How software
users recommend tools to each other. In Visual Languages and Human-
Centric Computing, 2017.

[5] J. Cao, I. Kwan, F. Bahmani, M. Burnett, S. D. Fleming, J. Jordahl,
A. Horvath, and S. Yang. End-user programmers in trouble: Can the
idea garden help them to help themselves? In 2013 IEEE Symposium
on Visual Languages and Human Centric Computing, pages 151–158,
Sept 2013.

[6] J. Cao, K. Rector, T. H. Park, S. D. Fleming, M. Burnett, and S. Wieden-
beck. A debugging perspective on end-user mashup programming.
In Visual Languages and Human-Centric Computing (VL/HCC), 2010
IEEE Symposium on, pages 149–156. IEEE, 2010.

[7] G. Fischer, A. Lemke, and T. Schwab. Active help systems, pages 115–
131. Springer Berlin Heidelberg, Berlin, Heidelberg, 1984.

[8] B. Fogg. Creating persuasive technologies: An eight-step design process.
In Proceedings of the 4th International Conference on Persuasive
Technology, Persuasive ’09, pages 44:1–44:6, New York, NY, USA,
2009. ACM.

[9] A. Forward and T. C. Lethbridge. The relevance of software documenta-
tion, tools and technologies: a survey. In Proceedings of the 2002 ACM
symposium on Document engineering, pages 26–33. ACM, 2002.

[10] M. Gordon and P. J. Guo. Codepourri: Creating visual coding tutorials
using a volunteer crowd of learners. In Visual Languages and Human-
Centric Computing (VL/HCC), 2015 IEEE Symposium on, pages 13–21.
IEEE, 2015.

[11] M. Jazayeri. The education of a software engineer. In Proceedings of the
19th IEEE international conference on Automated software engineering,
pages 18–xxvii. IEEE Computer Society, 2004.

[12] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. Why Don’t
Software Developers Use Static Analysis Tools to Find Bugs? In Pro-
ceedings of the 2013 International Conference on Software Engineering
(ICSE), ICSE ’13, pages 672–681, Piscataway, NJ, USA, 2013. IEEE
Press.

[13] M. R. Karim, Y. Yang, D. Messinger, and G. Ruhe. Learn or earn?-
intelligent task recommendation for competitive crowdsourced software
development. 2018.

[14] L. Layman, L. Williams, and R. S. Amant. Toward reducing fault fix
time: Understanding developer behavior for the design of automated
fault detection tools. In Empirical Software Engineering and Measure-
ment, 2007. ESEM 2007. First International Symposium on, pages 176–
185. IEEE, 2007.

[15] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A systematic
study of automated program repair: Fixing 55 out of 105 bugs for
$8 each. In M. Glinz, G. C. Murphy, and M. Pezzè, editors, 34th
International Conference on Software Engineering, ICSE 2012, June
2-9, 2012, Zurich, Switzerland, pages 3–13. IEEE Computer Society,
2012.

[16] F. Linton, D. Joy, H. peter Schaefer, and A. Charron. Owl: A
recommender system for organization-wide learning, 2000.

[17] C. Maltzahn. Community help: Discovering tools and locating experts in
a dynamic environment. In Conference Companion on Human Factors
in Computing Systems, CHI ’95, pages 260–261, New York, NY, USA,
1995. ACM.

[18] C. Mendez, H. S. Pedala, Z. Steine-Hanson, C. Hilderbrand, A. Horvath,
C. Hill, L. Simpson, N. Patil, A. Sarma, and M. Burnett. Open
source barriers to entry, revisited: A tools perspective. Technical report,
Corvallis, OR: Oregon State University, Dept. of Computer Science,
2017.

[19] S. Mirhosseini and C. Parnin. Can automated pull requests encourage
software developers to upgrade out-of-date dependencies? In Proceed-
ings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, pages 84–94. IEEE Press, 2017.

[20] E. Murphy-Hill. Continuous social screencasting to facilitate software
tool discovery. In Proceedings of the 34th International Conference
on Software Engineering, ICSE ’12, pages 1317–1320, Piscataway, NJ,
USA, 2012. IEEE Press.

[21] E. Murphy-Hill and A. Black. Breaking the barriers to successful
refactoring. In 2008 ACM/IEEE 30th International Conference on
Software Engineering, pages 421–430, May 2008.

[22] E. Murphy-Hill, D. Y. Lee, G. C. Murphy, and J. McGrenere. How
do users discover new tools in software development and beyond?
Computer Supported Cooperative Work (CSCW), 24(5):389–422, 2015.

[23] E. Murphy-Hill and G. C. Murphy. Peer interaction effectively, yet
infrequently, enables programmers to discover new tools. In Proceedings
of the ACM 2011 Conference on Computer Supported Cooperative Work,
CSCW ’11, pages 405–414, New York, NY, USA, 2011. ACM.

[24] D. Piorkowski, S. Fleming, C. Scaffidi, C. Bogart, M. Burnett, B. John,
R. Bellamy, and C. Swart. Reactive information foraging: An empirical
investigation of theory-based recommender systems for programmers. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’12, pages 1471–1480, New York, NY, USA, 2012. ACM.

[25] A. Rahman, A. Partho, D. Meder, and L. Williams. Which factors
influence practitioners’ usage of build automation tools? In Proceedings
of the 3rd International Workshop on Rapid Continuous Software
Engineering, pages 20–26. IEEE Press, 2017.

[26] L. Singer. On the diffusion of innovations: How new ideas spread, Dec.
2016.

[27] J. Smith, C. Brown, and E. Murphy-Hill. Flower: Navigating program
flow in the ide. In 2017 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pages 19–23, Oct 2017.

[28] I. C. Society, P. Bourque, and R. E. Fairley. Guide to the Software
Engineering Body of Knowledge (SWEBOK(R)): Version 3.0. IEEE
Computer Society Press, Los Alamitos, CA, USA, 3rd edition, 2014.

[29] C. Sunstein, R. Thaler, et al. Nudge. The politics of libertarian
paternalism. New Haven, 2008.

[30] R. H. Thaler, C. R. Sunstein, and J. P. Balz. Choice architecture. 2014.
[31] S. Tilley, S. Huang, and T. Payne. On the challenges of adopting rots

software. In Proceedings of the 3rd International Workshop on Adoption-
Centric Software Engineering, pages 3–6, 2003.

[32] P. Viriyakattiyaporn and G. C. Murphy. Improving program navigation
with an active help system. In Proceedings of the 2010 Conference of
the Center for Advanced Studies on Collaborative Research, CASCON
’10, pages 27–41, Riverton, NJ, USA, 2010. IBM Corp.

[33] M. Weinmann, C. Schneider, and J. vom Brocke. Digital nudging.
Business & Information Systems Engineering, 58(6):433–436, 2016.

[34] S. Xiao, J. Witschey, and E. Murphy-Hill. Social influences on secure
development tool adoption: Why security tools spread. In Proceedings
of the 17th ACM Conference on Computer Supported Cooperative Work
& Social Computing, CSCW ’14, pages 1095–1106, New York, NY,
USA, 2014. ACM.

