
Understanding the Impact of GitHub Suggested Changes on
Recommendations between Developers
Chris Brown

dcbrow10@ncsu.edu
North Carolina State University
Raleigh, North Carolina, USA

Chris Parnin
cjparnin@ncsu.edu

North Carolina State University
Raleigh, North Carolina, USA

ABSTRACT
Recommendations between colleagues are effective for encouraging
developers to adopt better practices. Research shows these peer in-
teractions are useful for improving developer behaviors, or the adop-
tion of activities to help software engineers complete programming
tasks. However, in-person recommendations between developers in
the workplace are declining. One form of online recommendations
between developers are pull requests, which allow users to propose
code changes and provide feedback on contributions. GitHub, a
popular code hosting platform, recently introduced the suggested
changes feature, which allows users to recommend improvements
for pull requests. To better understand this feature and its impact
on recommendations between developers, we report an empirical
study of this system, measuring usage, effectiveness, and percep-
tion. Our results show that suggested changes support code review
activities and significantly impact the timing and communication
between developers on pull requests. This work provides insight
into the suggested changes feature and implications for improving
future systems for automated developer recommendations, such as
providing situated, concise, and actionable feedback.

CCS CONCEPTS
• Human-centered computing → Open source software; • Soft-
ware and its engineering→Collaboration in software devel-
opment.

KEYWORDS
Empirical software engineering, GitHub, suggested changes, online
programming communities, developer recommendations
ACM Reference Format:
Chris Brown and Chris Parnin. 2020. Understanding the Impact of GitHub
Suggested Changes on Recommendations between Developers. In Proceed-
ings of the 28th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE ’20), No-
vember 8–13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3368089.3409722

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409722

1 INTRODUCTION
Recommendations between peers is essential for workers to gain
knowledge and improve the quality of their work. Boud and col-
leagues suggest adults predominantly learn from others at work [11].
Software engineering is no exception, as developers frequently
learn and share information with each other. For example, studies
show software engineers find collaborative development activi-
ties, such as peer code reviews and pair programming, beneficial for
learning [3, 17]. Furthermore, research shows that peer interactions,
or face-to-face recommendations between colleagues during nor-
mal work activities, are effective for improving tool adoption [43]
and code comprehension [35]. While prior work shows in-person
recommendations benefit developers, research also shows these
interactions occur infrequently in practice [44]. This is due to a vari-
ety of factors, such as the physical isolation of remote programmers
and distributed development teams [43].

Pull requests (PRs) are the primary method for developers to
contribute to projects [26], and consequently, a mechanism through
which developers provide recommendations to each other virtually.
On GitHub, review comments allow developers to provide feed-
back on PRs submitted by contributors.1 Review comments provide
ample opportunities for recommendations, such as suggestions for
refactoring or conforming to code style guidelines. GitHub recently
introduced a new system to facilitate virtual peer interactions called
suggested changes.2 This feature allows reviewers to make sugges-
tions to programmers on specific lines of code in pull requests,
where developers can easily apply, reject, or edit changes suggested
by peers (see Figures 1a-b). After a PR reviewer notices a line of code
can be improved, they click on the plus (+) sign on the line of code
in question to write a comment and enter their proposed change.
Figure 1a shows a reviewer typing their suggested code change for
the pull request into the text box. Once the reviewer is finished with
their suggestion, clicking on the “Start a review” button submits
the suggested change. Finally, the developer who created the pull
request sees the suggested change on their code, which is shown in
Figure 1b. From here, the developer can commit the change, edit the
suggestion, or ignore the proposed modifications. If the developer
accepts the change, the suggestion will automatically be integrated
into their pull request as a new commit.

We examined GitHub suggestions because it allows us to retro-
actively examine the impact of a design change for making devel-
oper recommendations inside pull requests.3 The suggested changes

1 https://help.github.com/en/github/collaborating-with-issues-and-pull-
requests/commenting-on-a-pull-request#adding-line-comments-to-a-pull-
request

2 https://github.blog/changelog/2018-10-16-suggested-changes/
3 https://help.github.com/en/github/collaborating-with-issues-and-pull-
requests/incorporating-feedback-in-your-pull-request

1065

https://doi.org/10.1145/3368089.3409722
https://doi.org/10.1145/3368089.3409722
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/commenting-on-a-pull-request#adding-line-comments-to-a-pull-request
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/commenting-on-a-pull-request#adding-line-comments-to-a-pull-request
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/commenting-on-a-pull-request#adding-line-comments-to-a-pull-request
https://github.blog/changelog/2018-10-16-suggested-changes/
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/incorporating-feedback-in-your-pull-request
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/incorporating-feedback-in-your-pull-request

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Chris Brown and Chris Parnin

feature is very popular and well-accepted by the GitHub commu-
nity, with the GitHub Blog noting that developers were “quick to
adopt suggested changes” and integrate them into the code review
process for projects. Additionally, the blog post reports over 100,000
suggested changes were made within a few weeks of the initial
public beta release of the feature, accounting for approximately
4% of pull request review comments and 10% of code reviewers.4
While suggested changes are increasing in popularity and usage
on GitHub, little is known about how developers use them to make
recommendations to each other and what impact they have on soft-
ware development processes. We aim to discover the impact of this
feature on developer recommendations and provide implications
for increasing the effectiveness of future recommender systems for
improving the behavior of software engineers.

To explore the impact of suggested changes on developer recom-
mendations, we seek to answer the following research questions:
RQ1 What types of recommendations do developers make with

suggested changes?
RQ2 How effective are recommendation systems on pull requests?
RQ3 What impact do suggested changes have on pull requests?
RQ4 How useful are suggested changes for recommendations

between developers?
To answer these questions, we divided our methodology into two

phases. The first phase answers the first three research questions by
mining repositories to empirically analyze the suggested changes
feature on GitHub. The second phase investigates the final research
question by collecting qualitative data from developers on their
experiences with the system. Our results show this feature effective
for recommending a variety of changes to programmers and sup-
ports developers in the code review process by helping them make
suggestions and decisions on proposed changes quicker. Users also
find it useful because for supporting clear communication and easy
integration. The main contribution of this work is the first study to
empirically analyze the GitHub suggested changes feature.

2 BACKGROUND
2.1 Developer Behavior Recommendations
Research explores making effective recommendations to improve
developer behavior, or the adoption of useful tools and practices
to help software engineers complete development tasks more ef-
ficiently. For example, studies show developer behaviors such as
using static analysis tools [2] and performing code reviews [39] are
useful for improving code quality. Prior work suggests in-person
recommendations between programmers are effective for improv-
ing developer behavior. For example, research shows that knowl-
edge sharing and learning are benefits of pair programming [17]
and peer code reviews [3]. Murphy-Hill explored seven methods
software engineers discover new development tools and found
that peer interactions, or the process of learning about tools from
colleagues during work, are the most effective mode of tool discov-
ery [43]. Likewise, research shows peer interactions are effective
for improving program comprehension [35] and recommending
security tools [62].

4 https://github.blog/2018-11-01-suggested-changes-update/

Researchers have also explored using systems to make recom-
mendations to improve developer behavior. Robillard and colleagues
discuss the importance of Recommender Systems for Software Engi-
neering (RSSEs) for supporting developers and improving decision-
making [49]. Additionally, Fischer and colleagues argue that passive
help systems, which require users to explicitly seek help, are less
useful than active help systems that can automatically make rec-
ommendations to users completing tasks [22]. For example, Tool-
Box [36], C-3PR [15], and Spyglass [59] are automated systems
designed to help programmers discover Unix commands, fix static
analysis bugs, and search code more efficiently.

Finally, prior work shows integrating recommender systems in
the code review process is effective for improving developer behav-
ior. Singh and colleagues suggest static analysis tools can support
developers during code reviews [51]. Balachandran discovered Re-
view Bot, a system that automates static analysis and reviewer
recommendations, improved code quality and reduced reviewer
effort at VMWare [4]. Furthermore, researchers at Facebook found
running development tools at diff time, or on code submitted to be
reviewed before merging, increased the fix rate of reported bugs
approximately 70% [19]. Suggested changes incorporate recommen-
dations into the code review process, and this research aims to
discover how this feature influences developer behavior.

2.2 Making Recommendations on GitHub
The GitHub platform has a variety of methods for developers to
make recommendations to each other. For example, pull requests
allow developers to “propose and collaborate on changes to a repos-
itory.”5 There were over 87 million pull requests merged to GitHub
projects in 2019 [23], and research shows this system is effective for
making suggestions to improve repositories [24]. Similarly, GitHub
issues are useful for tracking a variety of information for reposi-
tories, with over 20 million closed last year [23].6 Bissyandé and
colleagues suggest that, while the majority of issues are reported
“bugs”, those labeled as “feature” or “enhancement” are “equally
important for issue reporters” [7, p. 193]. Furthermore, GitHub has
explored automated recommendations to developers, such as gen-
erating alerts for potential security vulnerabilities7 and automating
security fixes.8 To analyze the impact of recommendations on pull
requests, we compare suggested changes with another system for
suggestions between developers: pull request review comments.

Review comments differ from general pull request discussion
and issue comments because they are located on specific lines of
code during pull request reviews. Furthermore, reviewers can also
suggest code changes to developers in pull request review com-
ments by using code fences to start and end the proposed block of
code. For example, Figure 2 presents the same code recommenda-
tion as the suggested change in Figure 1b using a review comment.
Suggested changes are instances of pull request review comments
for developers to propose improvements to users on pull requests
during code reviews, however they also provide a user interface

5 https://help.github.com/en/articles/creating-a-pull-request
6 https://help.github.com/en/articles/about-issues
7 https://help.github.com/en/github/managing-security-vulnerabilities/about-
security-alerts-for-vulnerable-dependencies

8 https://help.github.com/en/github/managing-security-vulnerabilities/
configuring-automated-security-updates

1066

https://github.blog/2018-11-01-suggested-changes-update/
https://help.github.com/en/articles/creating-a-pull-request
https://help.github.com/en/articles/about-issues
https://help.github.com/en/github/managing-security-vulnerabilities/about-security-alerts-for-vulnerable-dependencies
https://help.github.com/en/github/managing-security-vulnerabilities/about-security-alerts-for-vulnerable-dependencies
https://help.github.com/en/github/managing-security-vulnerabilities/configuring-automated-security-updates
https://help.github.com/en/github/managing-security-vulnerabilities/configuring-automated-security-updates

Understanding the Impact of GitHub Suggested Changes ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

(a) Reviewer adds comment and suggested change to modified line of code (b) Developer can apply suggested change and commit to PR

Figure 1: GitHub Suggested Changes example

that allows users to automatically apply recommendations and
commit suggestions to the PR code. In this work, we compare both
pull request recommendation systems to analyze how they impact
recommendations between peers and improve specific portions of
code contributions from developers on open source repositories.

3 METHODOLOGY
To explore the impact of the GitHub suggested changes feature on
recommendations between developers, we divided our evaluation
into two phases for gathering data to answer our research questions.

3.1 Phase 1: An Empirical Study on GitHub
Suggested Changes

The first phase of this work mines public repositories to explore
the usage and effectiveness of suggested changes on GitHub.

3.1.1 Data Collection. To automatically detect suggested changes
on pull requests, we created a script to programmatically search
for instances of the md“‘suggestion tag in pull request review com-
ments (See Figure 1a). This indicates that a suggestion was proposed
by a reviewer on a pull request using this system. We used the Py-
Github API9 to sort projects by most recently updated pull requests
and parse comments in order to collect current uses of the suggested
changes feature. Then we compiled a list of pull request comments
with suggested changes to characterize the types of code changes
developers recommend with this system.

To examine the effectiveness of suggested changes and their
impact on pull requests, we analyzed the top-forked repositories on

Figure 2: Pull Request Review Comment example

9 https://pygithub.readthedocs.io/en/latest/

GitHub that contain pull requests with comments using suggested
changes to collect instances of suggestions and pull request review
comments with code. PyGithub provides an API to retrieve pull
request review comments and, similar to our suggested changes
detection technique, we searched for instances of the code fence to
determine if comments contain code snippets. To limit our search,
we only observed activity on pull requests after October 2018, which
is when the suggested changes feature was introduced as a public
beta release on GitHub. Overall, we analyzed a total of 152,030
pull request review comments and found 17,712 suggested changes
on 51,250 pull requests. The list of projects and activity collected
for this evaluation are presented in Table 1. The script used to
automatically detect suggested changes and our resulting dataset
are publicly available online.10

3.1.2 Categorizing Suggested Changes. To characterize types of
changes developers suggest for RQ1, we randomly sampled 100 re-
cently updated pull requests with an instance of the md“‘suggestion
tag in the comments. Two researchers performed an open coding
analyzing review comments and code modifications recommended
in suggested changes to identify types of changes recommended by
developers with this feature (inter-rater agreement = 71%, Cohen’s
κ = 0.5942). Then, the raters came together to discuss derived cate-
gories and come to an agreement. The main source of discrepancies
arose from determining the functionality of suggested changes and
deciding if suggestions were correcting or improving lines of code.

3.1.3 Determining Recommendation Effectiveness. To answer RQ2,
we evaluated effectiveness for recommendations between devel-
opers with suggested changes and pull request review comments
on GitHub by analyzing acceptance and timing. We further divide
these criteria into subcategories: contribution acceptance and recom-
mendation acceptance, and contribution time, recommendation time,
and recommendation acceptance time.

Acceptance. This criteria examines the impact of users incor-
porating proposed changes from another developer. Contribution
acceptance refers to how frequently contributions from developers
are merged into projects. In the pull-based software development

10 https://github.com/chbrown13/suggestions

1067

https://pygithub.readthedocs.io/en/latest/
https://github.com/chbrown13/suggestions

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Chris Brown and Chris Parnin

Table 1: Suggested Changes Study Data

Project Primary Lang. Suggested Changes Comments (w/ Code) PRs
qmk/qmk_firmware C 8525 9127 (675) 3600
nodejs/node JavaScript 2252 14364 (818) 5889
rust-lang/rust Rust 2615 24139 (1068) 8475
go-gitea/gitea Go 1317 6604 (338) 2822
rapid7/metasploit-framework Ruby 754 4057 (517) 1252
Qiskit/qiskit-terra Python 626 3505 (204) 1735
kubernetes/kuberbetes Go 556 52297 (2645) 12106
qgis/QGIS C++ 481 2893 (37) 2548
neovim/neovim Vim script 208 3087 (163) 1746
python-pillow/Pillow Python 156 354 (19) 650
mono/mono C# 134 6043 (182) 5821
lydiahallie/javascript-questions Markdown 49 43 (2) 231
jpmorganchase/quorum Go 10 192 (13) 193
firebase/quickstart-android Java 5 89 (6) 155
mavlink/qgroundcontrol C++ 5 261 (14) 863
qbittorrent/qBittorrent C++ 5 3966 (205) 486
ironhack-labs/lab-advance-querying-mongo Markdown 4 159 (12) 753
kenwoodjw/python_interview_question Markdown 3 2 (0) 38
lballabio/QuantLib C++ 3 57 (4) 146
Azure/azure-quickstart-templates PowerShell 2 2718 (2) 1630
h5bp/Front-end-Developer-Interview-Questions HTML 1 81 (2) 56
qunitjs/qunit JavaScript 1 77 (11) 55
Total: N/A 17712 134318 (6937) 51250

model, merged pull requests indicate that a contribution from an
external developer was integrated into the main code base for a
repository [24]. Research suggests contribution acceptance is a
useful metric for measuring the success of GitHub projects [38]
and is vital for the maintenance and evolution of open source soft-
ware [40]. We use this to determine if the existence of recommen-
dation comments impacts the outcome of pull requests. To analyze
the impact of the recommendations on contribution acceptance,
we compare the percentage of merged pull requests containing a
code suggestion (suggested change or review comment with fenced
code) compared to those without code recommendations.

Recommendation acceptance. This refers to how often the recom-
mendations are approved by developers. To determine how effective
developers find code suggestion systems, we measured the per-
centage of suggested changes and fenced code review comments
incorporated into pull requests from our dataset. For suggested
changes, we programmatically analyzed pull request comments by
creating a script to detect suggested changes and extract code be-
tween md“‘suggestion and the ending md“‘ to determine the status
of suggested changes since this feature is currently not supported
by the GitHub API.11 Then, we checked whether the extracted code
existed further changes to the file by analyzing subsequent commits
to the pull request. If so, we consider the suggestion accepted by the
developer. Similarly, we used this process to determine acceptance
for pull request review comments by examining code inside fence
tags in future commits on the pull request.

11 https://github.community/t5/GitHub-API-Development-and/Accessing-the-
new-quot-GitHub-Suggestions-quot-via-API-public/td-p/13922

Time. This criteria explores the impact of pull request recommen-
dations on overall development time. Contribution time is defined
by the amount of time to accept contributions from developers. Yu
and colleagues analyzed characteristics that influence pull request
evaluation latency, or the amount of time to review pull requests
on GitHub [63]. We aim to determine if the presence of code sug-
gestions impacts the latency of contributions from developers. To
measure contribution time, we used the PyGithub API to calculate
the difference between the pull request creation time and when the
time it is merged into the repository by a project maintainer based
on whether the review comments contain a code suggestion or not.

Recommendation time. Recommendation time examines the amount
of time it takes developers to make recommendations with a given
system. Research shows that minimizing development time is im-
portant because the longer a defect exists in code the more expen-
sive and difficult it becomes to fix [32]. To determine the impact of
code suggestions on time, we compared how quickly developers
make recommendations with suggested changes and code in pull
request review comments. To measure impact of time on review-
ers, we calculated the recommendation time as the amount of time
between pull request creation and for a developer to add a code
recommendation comment with the md“‘suggestion or md“‘ tags.

Similarly, recommendation acceptance time refers to the amount
of time it takes developers to decide on recommendations on pull
requests. For code suggestions, we measured the acceptance time
as the amount of time between a reviewer commenting on a pull
request using a suggested change or pull request review comment
with fenced code until the time a subsequent commit adding the
recommended line of code was added to the pull request.

1068

https://github.community/t5/GitHub-API-Development-and/Accessing-the-new-quot-GitHub-Suggestions-quot-via-API-public/td-p/13922
https://github.community/t5/GitHub-API-Development-and/Accessing-the-new-quot-GitHub-Suggestions-quot-via-API-public/td-p/13922

Understanding the Impact of GitHub Suggested Changes ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

3.1.4 Evaluating Pull Request Impact. For RQ3, wewere specifically
interested in the impact of suggested changes on pull requests. To
study this, we calculated a variety of pull request metrics used in
existing software engineering literature.

Pull Request Characteristics. To further analyze the impact of
suggested changes on development processes, we used metrics
introduced by Gousios and colleagues for the pullReqs dataset ex-
ploring the impact of pull requests on projects [25]. Their dataset
analyzed approximately 350,000 pull requests on 900 GitHub reposi-
tories, and also provides a suite of characteristics to describe GitHub
pull requests and quantify their impact on code repositories. To
discover the impact of suggested changes on pull requests, we used
the PyGithub API to collect metrics for the following characteristics
to analyze pull requests:

• lifetime_minutes: Number ofminutes between pull request
opening and closing (if closed)

• mergetime_minutes: Number of minutes between pull re-
quest opening and merging (if merged)

• num_commits: Total number of commits for a pull request
• src_churn: Total number of lines changed
• files_changed: Total number of files touched by pull request
• num_commit_comments: Number of review comments
• num_issue_comments: Number of discussion comments
• num_participants: Number of discussion participants

We selected these characteristics from the original pullReqs
dataset because they describe development activity and feedback
during the code inspection process. We were primarily interested
in these metrics to help better understand how suggested changes
influence contributor and reviewer behavior on pull requests. To
determine the impact of suggested changes, we compare these
characteristics for pull requests with suggested changes and pull
requests without suggested changes.

3.2 Phase 2: Developer Feedback on Suggested
Changes

The second phase of this evaluation consists of a survey to analyze
developer experiences and perceptions on the usefulness of the
suggested changes feature.

3.2.1 Data Collection. To answer RQ4, we surveyed developers
who interacted with suggested changes on GitHub. Surveys were
emailed to users with publicly available email addresses who ei-
ther received a suggested change on their pull request or made a
suggested change on another developer’s pull request within the
last six months. Our survey asked users how useful they found this
feature using a 5-point Likert scale. We also included free response
questions for participants to provide additional feedback on what
specifically they find useful or unuseful about the system as well
as how they integrate this feature into their projects.

3.2.2 Determining the Usefulness of Suggestions. We emailed sur-
veys to a total of 580 GitHub users who interacted with suggested
changes and received 43 responses (7.4% response rate). Through-
out the remainder of this paper, we use the C- prefix to describe a
suggestee, or a contributor who received a suggested change on their
pull request, and the R- prefix to indicate a suggester, or a reviewer

who made a comment with the suggested changes feature on a
pull request. We aggregated Likert scores to quantitatively examine
usefulness, then two experts open coded the open-ended responses
from developers on the useful aspects of suggested changes (72%,
Cohen’s κ = 0.6828). The researchers discussed derived categories
and came to an agreement on themes found in developer comments.

4 RESULTS

(a) Corrective:

(b) Formatting:

(c) Improvement:

(d) Non-Functional:

Figure 3: Categories of Suggested Changes

4.1 RQ1: Types
4.1.1 Categories. We derived four categories to describe types of
suggested changes. Each of the categories identified is presented
with examples below:

Corrective: The corrective category refers to using suggested
changes to fix issues found in code. Bacchelli and colleagues found
that fixing defects is the primary motivation for code reviews re-
ported by developers at Microsoft [3]. Additionally, Chillarege and
colleagues found that algorithm errors are the most common type
of defects discovered during code inspections [1]. Algorithm errors
include those that deal with correctness or bugs in code imple-
mentations. In Figure 3a, we observed an instance of a corrective
suggested change by a developer on a pull request. The contributor
referred to a variable as a global variable instead of a class variable,
and the reviewer proposes a fix by adding the self keyword.12

Formatting: This category represents code changes that solely
impact the presentation of the code without changing the function-
ality. This also includes refactoring, or the process of restructuring
code without changing its behavior, which research shows is ben-
eficial for improving code quality [55]. Bacchelli and colleagues
also reported developers find code reviews useful for ensuring code

12 https://github.com/zeit/next.js/pull/7696#discussion_r302333269

1069

https://github.com/zeit/next.js/pull/7696#discussion_r302333269

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Chris Brown and Chris Parnin

styles and standards are consistent for development teams [3]. Fi-
nally, Mäntylä et al.’s evolvability defects contain the subcategory
of visual representation, which refers to the formatting of code [37].
An example formatting suggestion is presented in Figure 3b.13 In
this case, the reviewer suggests improvements to the spacing of the
code to adhere to Python Enhancement Proposal (PEP 8) coding
style guide and whitespace standards [47].

Improvement: Improvement suggested changes occur when de-
velopers recommend a code change to refactor or optimize a user’s
code. Greiler notes that developers at Microsoft reported that im-
provements to code quality is the most important benefit of code
reviews.14 Chillarege finds that even correct algorithms may have
additional concerns, such as the implementation’s efficiency, that
may need improvement during reviews [1]. Similarly, Mäntylä’s
evolvability defects include problems in the structure and organi-
zation of the code that can be optimized [37]. Figure 3c presents
an example of an improvement suggested change, where the re-
viewer recommends an improvement to the readability of the code
by renaming a variable from x to manifest.15

Non-Functional: This category represents changes developers
suggest that don’t impact code, including suggestions to reword and
fix spelling and grammar problems in documentation and code com-
ments. Non-functional documentation issues are prevalent in soft-
ware, for example Beller et al. found that documentation changes
are the most frequent type of fix applied for code reviews in open
source software [6]. Similarly, Mäntylä and colleagues found that
evolvability defects, or problems with the understandability and
maintenance of software, including documentation errors, are the
most common type of defects found during code reviews [37]. An
example of a non-functional defect is presented in Figure 3d. In
this case, the reviewer discovers a typo misspelling deserialize and
makes a suggestion to fix the error.16

4.1.2 Usage. Out of 100 randomly sampled uses of the suggested
changes feature, we found the most popular suggestions were non-
functional changes. Table 2 presents our results for each category.
While non-functional changes were the most frequent type of
change suggested, we also found that this feature is often used
for general code improvements to optimize code. This shows that
suggested changes are an effective system because of their ability
to recommend a wide variety of code changes to developers during
reviews, specifically for recommendations for non-functional and
code improvement changes to contributions from developers.

Table 2: Suggested Change Categories

n Percentage
Non-Functional 36 36%
Improvement 34 34%
Corrective 16 16%
Formatting 14 14%

13 https://github.com/numba/numba/pull/4204#discussion_r310598073
14 https://www.michaelagreiler.com/code-reviews-at-microsoft
15 https://github.com/gatsbyjs/gatsby/pull/13471#discussion_r277948539
16 https://github.com/microsoft/terminal/pull/1258#discussion_r293932790

4.2 RQ2: Effectiveness
To determine the effectiveness of recommendation systems on pull
requests, we evaluated their impact on acceptance and timing.

4.2.1 Acceptance.

Contribution Acceptance. In total, 69% of pull requests analyzed
in our dataset (n = 35,521) were merged. We analyzed the merge
rate for pull requests with and without code suggestions, presented
in Table 3. Our results suggest that both groups have approximately
the same merge rate, and using a chi-squared test we found no
significant difference in the existence of code suggestions (sug-
gested changes or review comments with code) on the outcome of
pull requests (χ2 = 0.0182, p = 0.8928, α = .05). These results show
that, while suggestions are useful for helping developers resolve
problems in code reviews, they do not have a major influence on
whether contributions are accepted and merged into repositories.

Recommendation Acceptance. We also observed acceptance for
suggested changes and review comments with fenced code among
GitHub users. Overall, we observed 10,556 out of 17,712 (60%) sug-
gested changes and 65 out of 6,937 (1%) pull request review com-
ments with markdown code were accepted by developers. Table 4
presents our results for acceptance for each system. Using a chi-
square test to analyze the outcome of recommendations for each
group, we found that the difference in the acceptance of suggested
changes and pull request review comments was statistically signifi-
cant (χ2 = 6961.3765, p < 0.00001, α = .05). While code suggestions
do not significantly increase, nor decrease the overall acceptance
of contributions from developers, suggested changes facilitate re-
finements to those contributions when compared to other recom-
mendation methods, such as review comments.

Table 3: Contribution Acceptance Rate

Pull Requests n Rate
with suggestions 6982 69.4%

without suggestions 44268 69.3%

Table 4: Recommendation Acceptance Rate

Type n Rate
suggested changes 17712 59.6%

review comments with code 6937 0.9%

4.2.2 Timing.

Contribution Time. To measure the impact of pull request code
suggestions on time, we examined the amount of time to accept code
contributions for PRs with suggested changes or review comments
with fenced code compared to thosewith neither system. The results
of this analysis are presented in Table 5. On average, we discovered
that pull requests with suggestions take over twice as long to merge
into repositories. Using theMann-Whitney-Wilcoxon test, we found
that pull requests with code suggestions take significantly longer
to be accepted than non-suggestion pull requests (W = 87857043, p
< 0.00001, α = .05). Contributions with recommendations may take

1070

https://github.com/numba/numba/pull/4204#discussion_r310598073
https://www.michaelagreiler.com/code-reviews-at-microsoft
https://github.com/gatsbyjs/gatsby/pull/13471#discussion_r277948539
https://github.com/microsoft/terminal/pull/1258#discussion_r293932790

Understanding the Impact of GitHub Suggested Changes ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

longer to be accepted due to increased discussions and comments
from reviewers to fix issues in pull requests.

Recommendation Time. We analyzed the amount of time for re-
viewers to comment with recommendations to determine their
impact on overall development time. Recommendation time refers
to the amount of time for reviewers to comment with suggestions.
Our results, displayed in Table 6, found a significant difference be-
tween suggested changes and pull request review comments with
code using the Mann-Whitney-Wilcoxon test (W = 49186174, p <
0.00001, α = .05). This indicates that reviewers are able to make
recommendations significantly faster using the suggested changes
feature compared to code within review comments, and this system
allows them to efficiently provide feedback to developers on pull
requests during the code review process.

Recommendation Acceptance Time. We also found that suggested
changes have a major impact on the amount of time to accept rec-
ommendations. Table 7 presents the average acceptance time for
developers for each type of recommendation.We found a significant
difference in the amount of time taken to accept a recommendation
for each system (W = 256013, p = 0.0001, α = .05). This shows that
developers are able to make decisions to accept recommendations
significantly faster with suggested changes than with only mark-
down code in pull request review comments. Overall, our timing
results show that, although contributions take longer overall to
get merged, suggested changes facilitate recommendations on pull
requests better by decreasing the amount of time needed to provide
feedback and accept recommendations during reviews.

Table 5: Contribution Time (in days)

Type n Average Median
with suggestions 6982 16.4 5.0

without suggestions 44268 6.4 1.1

Table 6: Recommendation Time (in days)

Type n Average Median
suggested changes 17712 10.5 0.7

review comments with code 6937 14.6 1.9

Table 7: Recommendation Acceptance Time (in days)

Type n Average Median
suggested changes 17712 5.4 0.3

review comments with code 6937 8.0 0.7

4.3 RQ3: Pull Request Impact
We were also interested in the impact of the suggested changes
feature on GitHub pull requests. Our dataset included 4,319 PRs
with suggested changes and 46,931 without them.

4.3.1 Pull Request Characteristics. To further understand the im-
pact of suggested changes on pull requests, we measured existing
metrics used to examine PRs on GitHub [25]. These results are
presented in Table 8. We used the Mann-Whitney-Wilcoxon test
(α = .05) to compare pull request characteristics for PRs containing
suggested changes to those that do not. We discovered that pull
requests with suggested changes take significantly longer to be
closed (lifetime_minutes) and accepted (mergetime_minutes).
This may be due to the fact that pull requests with suggested
changes have more complex development activity. For example,
pull requests utilizing suggested changes have significantly more
commits (num_commits) and modified lines of code (src_churn)
in contributions from developers. This is understandable, because
accepted suggested changes automatically apply additional com-
mits to pull requests. While this feature helps resolve problems
during reviews, it also adds more time to code inspection processes.

Additionally, we found that suggested changes significantly im-
pact feedback during code reviews. Our results show that pull re-
quests using the suggested changes feature have significantly more
review comments within the code (num_commit_comments),
general discussion about contributions (num_issue_comments),
and developers contributing to discussions about pull requests
(num_participants). This shows suggested changes are useful
for providing feedback to developers, facilitating communication,
and discussing improvements to pull requests.

4.4 RQ4: Usefulness
4.4.1 Likert Scale. Figure 4 presents the Likert scale question re-
sults on how useful the survey respondents found the suggested
changes feature. Of the 43 survey responses we received from
GitHub users, 24 responses from were from suggestees and 19
responses were from suggesters. Approximately 92% of suggestees
(n = 22) and 79% of suggesters (n = 15) who participated in the
survey responded that the suggested changes feature is Useful or
Very Useful. Furthermore, no GitHub users who interacted with
this feature and completed our survey reported that it was Not
at All Useful. The one suggester who ranked the system as Some-
what Useful complained about the suggested changes functionality
that incorporates suggestions as separate pull request commits and
desired a “force push” option to squash the commits and better
adhere to their team’s development workflow. Our survey results
suggest GitHub users find suggested changes to be an effective
system for both receiving recommendations from peers as well as
making recommendations to developers on GitHub.

4.4.2 Qualitative Feedback. To further examine this feature, we
asked participants to provide open-ended responses describing
what they find useful about suggested changes. The primary rea-
sons developers found them useful is that they are effective for
communication, provide concise information, and are presented at
convenient times to developers. We expand on these findings from
our open-ended feedback in the discussion when presenting design
principles for improving recommendation systems for software
engineering. Here, we define and provide examples of each cate-
gory derived from our qualitative coding to summarize developer
responses on what they found useful about suggested changes.

1071

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Chris Brown and Chris Parnin

Table 8: Pull Request Characteristics

Characteristic Dataset Mean Median p-value

lifetime_minutes*** with suggested changes 34799.26 8190.43 -
without suggested changes 18993.48 2489.12 p < 0.00001

mergetime_minutes*** with suggested changes 23645.15 5900.27 -
without suggested changes 10378.82 1776.32 p < 0.00001

num_commits*** with suggested changes 8.62 4 -
without suggested changes 6.72 1 p < 0.00001

src_churn*** with suggested changes 866.86 133 -
without suggested changes 3212.64 26 p < 0.00001

files_changed with suggested changes 7.71 2 -
without suggested changes 11.54 2 p = 0.5051

num_commit_comments*** with suggested changes 13.56 7 -
without suggested changes 2.00 0 p < 0.00001

num_issue_comments*** with suggested changes 8.63 5 -
without suggested changes 5.03 3 p < 0.00001

num_participants*** with suggested changes 3.18 3 -
without suggested changes 2.30 2 p < 0.00001

*** denotes statistically significant results (p-value < 0.05)

Actionability: One reason developers found suggested changes
useful was because of the actionability of the recommendations.
This refers to the ease with which users can act on recommenda-
tions. With suggested changes, developers can immediately commit
proposed code changes to their on pull requests. Survey partici-
pants frequently mentioned suggested changes are useful because
they can be automatically applied to their code.

“the fact that small changes can be applied immediately, and
the fact that they can be described by the reviewer in a way
that a button fixes it instead of going to your code” (C3)
Communication: We also discovered that suggested changes

are effective for communication in our survey feedback. This theme
refers to the understanding and clarity in transferring knowledge
between peers through the recommendation system. Participants
reported that suggested changes provide clear communication be-
tween developers and reviewers during the code review process.

“We can understand reviewer’s intention more. If not using
this feature, there are only pull request comment text, so we
may misunderstand reviewer’s intention” (C16)
Code: Another reason participants found the suggested changes

feature useful is because reviewers can propose changes as code.
Several participants mentioned they preferred the ability to give
and receive recommendations as code rather than writing out sug-
gestions as text in comments.

“It is very convenient that the reviewer can write what they
suggest to change in code instead of formulating it in words
(which will often be longer)” (R6)
Conciseness: This category refers to the brevity of recommenda-

tions with suggested changes. Many developers found the concise
code recommendations to be useful when using this system. Exam-
ples of this can found in responses such as the one below where a
suggester found suggested changes useful because they can:

“Suggest small one line changes directly and concisely” (R9)

Ease of Use: In our feedback from developers, many participants
stated that suggested changes are effective because they are easy
for suggesters and suggestees to use. GitHub users commended this
feature for its intuitive interface and ability to effortlessly integrate
into the code review process for pull requests.

“It’s really easy to use, it’s really easy to accept the suggestion
so some works are really easy” (C15)
Location: The location category refers to where recommen-

dations are made to users. We found that developers found the
suggested changes feature useful because it makes recommenda-
tions directly on the line of code to be improved. For example, one
participant noted that with this feature there is:

“No need to leave the pull request page to make a suggested
change, [and it’s] easy to see what is being suggested” (R12)
Scalability: Another benefit of suggested changes reported by

developers is the scalability of this feature. This refers to the ability
to allow users to easily make and receive numerous recommen-
dations. GitHub allows users to suggest multiple changes on pull
requests with this feature, which respondents reported to be useful.

“It...gives me the ability to suggest multiple options during
review” (R11)
Timing: Developers also noted the timing of suggested changes

makes them useful. This category refers to the speed to which
users can make and address recommendations with this feature.
Many survey respondents commented on how effectively suggested
changes impact the time spent doing code reviews.

“Being allowed to add specific changes speeds up the review
process. Sometimes it is easier to make the changes yourself
rather than make a suggestion and wait for a change” (C17)
No Response: In some cases, participants did not respond on the

usefulness of suggested changes. This question was optional in the
survey and we cannot conclude the reason developers chose not to
respond is due to not finding anything useful about the feature.

1072

Understanding the Impact of GitHub Suggested Changes ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

0 5 10 15 20 25

Not at All Useful

Somewhat Useful

Moderately Useful

Useful

Very Useful

Number of Participants

Suggester
Suggestee

Figure 4: Survey Responses on the Usefulness of Suggested
Changes

5 DISCUSSION
Our results show that GitHub suggested changes are useful for
making a variety of recommendations to code contributors and
reviewers. This feature impacts the amount of time to make and ac-
cept suggestions during code reviews, facilitates recommendations
on pull requests, and improves development activity and communi-
cation between developers in the pull-based development model.
Based on these findings, we propose incorporating user-driven com-
munication and workflow integration to improve automated systems
for recommending developer behaviors.

5.1 User-Driven Communication
This principle refers to how information is conveyed to users.
We found one of the most useful aspects of suggested changes
is their ability to effectively communicate to developers. Prior
work suggests poor communication prevents static analysis tool
adoption [30] and frustrates developers during interactions with
bots [61]. To improve automated recommendations, we present
two themes derived from our results to implement user-driven
communication: communication and conciseness.

5.1.1 Communication. Participants found suggested changes effec-
tive for transferring knowledge and providing clear communication
between peers. For instance, users replied this system is useful be-
cause it “lets someone else directly make changes instead of writing
out instructions on how to make changes” (C10), “gives the suggestion
in a very clear way” (R5), and provides “easy information on what
to change in your pull request” (C5). We found suggested changes
improved communication on pull requests by allowing more feed-
back in comments and more developers to participate in discus-
sions. In prior work, Cerezo and colleagues note the importance
of clear communication to developers by proposing implementing
user-driven conversations as opposed to bot-driven techniques for
improving recommender chatbots [16]. We propose implement-
ing clear communication focused on users to improve automated
developer behavior recommendations. For example, using specific
and clear language to present benefits and educate developers on
utilizing security tools can help overcome barriers to adoption [62].

5.1.2 Conciseness. We also found users appreciated the brief and
compact nature of recommendations with suggested changes. R11
mentioned they liked “it uses less words.” Many developers also
preferred recommendations as code. For example, users noted this
feature “can quickly and precisely show what change they expect.
Describing the change with words is pretty annoying” (C12), “removes
guesswork from interpreting a prose explanation” (R4), and “removes
all ambiguity about what I’m asking for if I can just directly put the
code there” (R12). Prior work also suggests conciseness is impor-
tant. For example, Wasserman’s guidelines for designing interactive
software systems states “a much shorter message will frequently
suffice” [60, p. 388]. Blatt and colleagues also report software en-
gineers desire concise emails, and often prefer instant messaging
systems because they are shorter and quicker than emails [9]. To
increase developer behavior adoption, we suggest recommenda-
tions incorporate concise messages to potential users. For instance,
Johnson and colleagues propose using concise messages in a quick
fix design to automatically provide fixes to reported bugs and en-
courage developers to adopt code-checking systems [30].

5.2 Workflow Integration
This implication emphasizes the importance of integrating recom-
mendations effectively into developer workflows. Survey partici-
pants found suggested changes useful because they easily integrate
into development processes. Furthermore, studies show integrating
into developer workflows is vital for the adoption of static analysis
tools [30], automated recommendations [12], development tools at
large software companies [21], and program repair bots [57]. Here,
we present three categories developers reported made suggested
changes useful: timing, location, and actionability.

5.2.1 Timing. Many survey respondents commented on how sug-
gested changes impacted time during reviews. For example, par-
ticipants stated this feature “lets me do reviews much faster” (R3),
“accelerates getting pull requests accepted” (C4), “it’s great to be able
to quickly apply changes” (C23), and “it’s often quicker both to sug-
gest a minor change” (R8). We also found that, while suggested
changes lengthen the overall pull request review process, they help
developers make and decide on recommendations during reviews
significantly faster. Previous research also shows the importance of
timing in developer recommendations. For example, Viriyakattiya-
porn and colleagues found the inability to deliver suggestions in a
timely manner discouraged programmers from adopting code navi-
gation recommendations from Spyglass [58]. We suggest making
convenient and timely recommendations within the workflow of
developers to increase adoption of useful behaviors. For example,
researchers at Facebook found presenting static analysis tool output
at diff time encouraged developers to fix more bugs compared to
times outside of developers’ workflows, such as in overnight builds,
which had a nearly 0% fix rate [19].

5.2.2 Location. Our results suggest that location, or the placement
of notifications, are also important for developer recommendations.
For example, C24 praised the location of suggested changes saying
that there’s “no need to leave the pull request page to make a sug-
gested change.” C22 also added this feature is useful because it “shows
suggested code changes integrated with the actual source.” Software

1073

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Chris Brown and Chris Parnin

engineering research also shows the importance of recommenda-
tion location. For example, Smith and colleagues found that in situ
code navigation tools increased efficiency and was preferred by
developers [52]. Brown and colleagues also discovered developers
prefer tool recommendations situated in their projects, as opposed
to from external systems such as email [13]. We recommend placing
suggestions in advantageous locations for developers without in-
terrupting their workflows. For example, placing recommendations
within IDEs can minimize visual momentum and help programmers
feel less disoriented in their development environment [18].

5.2.3 Actionability. Actionability refers to the ease with which
users can act on recommendations. Participants noted the sug-
gested changes feature is useful because it allows developers to
immediately apply suggestions and commit proposed changes to
their code. For example, C8 stated they appreciated “the ability for
people to be able to suggest changes and to be able to incorporate those
changes immediately” and C9 mentioned they liked recommenda-
tions can be “accepted right away, without requiring copy pasting
and committing on my side.” Prior work by Heckman and colleagues
found actionable alert identification techniques (AAITs) in static
analysis tools help identify defects in code earlier [28]. Based on
our findings, we advise integrating actionability into automated
recommendations to allow users to conveniently adopt tools and
practices. One example of this is automating developer behaviors,
such as prior work by Evans et al. which shows that automatically
enabling security checks prevents security vulnerabilities better
than requiring users to explicitly turn them on [20].

6 LIMITATIONS AND FUTUREWORK
An external threat to this work is that we only examined public
open source repositories on GitHub. This may not generalize to
closed source software projects or repositories hosted on other code
hosting platforms. To mitigate this threat, we used a diverse set of
GitHub repositories varying in organization, size, language, etc. For
RQ1, we used a random sample to avoid bias from the same users
and projects in our data. For our RQ2 and RQ3 dataset, we analyzed
the top-forked repos to havemore opportunities to collect suggested
changes and review comments with fenced code since both require
pull requests and GitHub recommends forking projects to create
pull requests.17 Another limitation is we analyzed PR acceptance
using the GitHub Merged status, however research suggests pull
requests that appear as non-merged may actually be merged [31].
To overcome this, we observed additional metrics to study the
impact of suggested changes on pull requests. We acknowledge
there may be limitations to our technique for analyzing suggested
changes and review comments with fenced code, however neither
feature is supported by the GitHubAPI. Additionally, there are other
methods for recommendations between developers on GitHub, such
as discussion comments. In this work, we analyzed code suggestions
on pull requests to explore the impact of suggested changes on
facilitating recommendations between peers.

In future work, we aim to explore implementing an automated
recommendation system leveraging suggested changes. We envi-
sion this system suggesting bug fixes to programming errors based

17 https://help.github.com/en/articles/fork-a-repo

on the output of code analysis with suggested changes while rec-
ommending static analysis tools to developers. Additionally, we
hope to evaluate the impact of other novel systems, such as GitHub
Actions18 or GitLab AutoDevOps,19 on developer recommenda-
tions and behavior. Furthermore, while this work focuses on code
reviews, we are interested in discovering how integrating systems
into other software development processes, such as pair program-
ming, continuous integration, debugging, and testing, can impact
recommendations to software engineers and developer behaviors.

7 RELATEDWORK
This research builds on prior work related to peer learning and dev-
eloper recommendations among software engineers in other online
programming communities. For example, previous studies have ex-
amined various methods for software developers to learn and share
knowledge through platforms such as Stack Overflow [45],20 Twit-
ter [50],21 Hacker News [5],22 and Wikipedia [48]. Furthermore,
researchers and toolsmiths have proposed and examined virtual
recommendations between software developers through processes
such as live-coding [8], continuous social screencasting [42], gamifi-
cation [53], networked workstations [36], logs of user actions [34],
and crowdsourced socio-technical content on social media [54].
Our work aims to discover the impact of suggested changes on
recommendations between developers.

Additionally, prior software engineering research has empiri-
cally explored GitHub functionality. Researchers have explored
GitHub features such as pull requests [26], issues [7], issue tracker
labels [14], issue and pull request links [33], project forks [29], com-
mit comments [27], README files [46], stars [10], and badges [56]
for influencing developer behavior and software engineering prac-
tices. Software engineering researchers have also explored using
GitHub processes to recommend developer behaviors. For exam-
ple, Mirhosseini et al. used automated pull requests to encourage
developers to upgrade out-of-date software dependencies [41]. We
add to this work by analyzing a novel GitHub feature, suggested
changes, and exploring the impact of this system on pull requests,
code reviews, and recommendations between developers.

8 CONCLUSION
In this paper, we empirically evaluated the new suggested changes
feature on GitHub to discover its impact on recommendations be-
tween developers. We found that this system significantly impacts
the time, development activity, and review process of pull requests
and is effective for supporting reviewers in providing feedback
and developers in accepting recommendations quickly. Feedback
from developers provides insight into improving automated rec-
ommendations to software engineers by incorporating user-driven
communication and smooth workflow integration. As opportunities
for face-to-face recommendations between developers decline, we
propose incorporating these into automated systems to improve
adoption of developer behaviors.

18 https://github.com/features/actions
19 https://docs.gitlab.com/ee/topics/autodevops/index.html#auto-code-quality-
starter

20 https://stackoverflow.com/
21 https://twitter.com
22 https://news.ycombinator.com

1074

https://help.github.com/en/articles/fork-a-repo
https://github.com/features/actions
https://docs.gitlab.com/ee/topics/autodevops/index.html#auto-code-quality-starter
https://docs.gitlab.com/ee/topics/autodevops/index.html#auto-code-quality-starter
https://stackoverflow.com/
https://twitter.com
https://news.ycombinator.com

Understanding the Impact of GitHub Suggested Changes ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

ACKNOWLEDGEMENTS
This work was funded by NSF Grant #1714538. We thank all of the
developers who participated and contributed to this work. Addi-
tionally, we would like to thank Sarah Elder and Zhe Yu for their
efforts in the qualitative coding processes.

REFERENCES
[1] Gustavo Alonso and Claus Hagen. 2000. Exception Handling in Workflow Man-

agement Systems. IEEE Transactions on Software Engineering 18, 10 (oct 2000),
943–958. https://doi.org/10.1109/32.879818

[2] Nathaniel Ayewah and William Pugh. 2010. The Google FindBugs Fixit. In
Proceedings of the 19th International Symposium on Software Testing and Analysis
(ISSTA 2010). Association for ComputingMachinery, New York, NY, USA, 241–252.
https://doi.org/10.1145/1831708.1831738

[3] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-
lenges of modern code review. In 2013 35th International Conference on Software
Engineering (ICSE). 712–721. https://doi.org/10.1109/ICSE.2013.6606617

[4] Vipin Balachandran. 2013. Reducing human effort and improving quality in
peer code reviews using automatic static analysis and reviewer recommendation.
In 2013 35th International Conference on Software Engineering (ICSE). 931–940.
https://doi.org/10.1109/ICSE.2013.6606642

[5] Titus Barik, Brittany Johnson, and Emerson Murphy-Hill. 2015. I Heart Hacker
News: Expanding Qualitative Research Findings by Analyzing Social News Web-
sites. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2015). Association for Computing Machinery, New York,
NY, USA, 882–885. https://doi.org/10.1145/2786805.2803200

[6] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens. 2014. Mod-
ern Code Reviews in Open-Source Projects: Which Problems Do They Fix?. In
Proceedings of the 11th Working Conference on Mining Software Repositories (MSR
2014). Association for Computing Machinery, New York, NY, USA, 202–211.
https://doi.org/10.1145/2597073.2597082

[7] Tegawendé F. Bissyandé, David Lo, Lingxiao Jiang, Laurent Réveillère, Jacques
Klein, and Yves Le Traon. 2013. Got issues? Who cares about it? A large scale
investigation of issue trackers from GitHub. In 2013 IEEE 24th International
Symposium on Software Reliability Engineering (ISSRE). 188–197. https://doi.org/
10.1109/ISSRE.2013.6698918

[8] Alan Blackwell, Alex McLean, James Noble, and Julian Rohrhuber. 2014. Collab-
oration and learning through live coding (Dagstuhl Seminar 13382). Dagstuhl
Reports 3, 9 (2014), 130–168. https://doi.org/10.4230/DagRep.3.9.130

[9] Marion Blatt and Anthony Norman. 2013. Email, communication and more: How
software engineers use and reflect upon email at the workplace. Master’s thesis.

[10] Hudson Borges and Marco Tulio Valente. 2018. What’s in a GitHub star? un-
derstanding repository starring practices in a social coding platform. Journal of
Systems and Software 146 (2018), 112–129. https://doi.org/10.1016/j.jss.2018.09.016

[11] David Boud and Heather Middleton. 2003. Learning from others at work: com-
munities of practice and informal learning. Journal of Workplace Learning 15, 5
(2003), 194–202. https://doi.org/10.1108/13665620310483895

[12] Chris Brown and Chris Parnin. 2019. Sorry to Bother You: Designing Bots for
Effective Recommendations. In 2019 IEEE/ACM 1st International Workshop on Bots
in Software Engineering (BotSE). 54–58. https://doi.org/10.1109/BotSE.2019.00021

[13] Chris Brown and Chris Parnin. 2020. Comparing Different Developer Behavior
Recommendation Styles. In Proceedings of the 13th International Workshop on
Cooperative and Human Aspects of Software Engineering. ACM, ACM, 8.

[14] Jordi Cabot, Javier Luis Cánovas Izquierdo, Valerio Cosentino, and Belén Rolandi.
2015. Exploring the use of labels to categorize issues in open-source software
projects. In 2015 IEEE 22nd International Conference on Software Analysis, Evolu-
tion, and Reengineering (SANER). IEEE, 550–554. https://doi.org/10.1109/SANER.
2015.7081875

[15] Antônio Carvalho, Welder Luz, Diego Marcílio, Rodrigo Bonifácio, Gustavo
Pinto, and Edna Dias Canedo. 2020. C-3PR: A Bot for Fixing Static Analysis
Violations via Pull Requests. In Proceedings of the International Conference on
Software Analysis, Evolution, and Reengineering (SANER). IEEE, 161–171. https:
//doi.org/10.1109/SANER48275.2020.9054842

[16] Jhonny Cerezo, Juraj Kubelka, Romain Robbes, and Alexandre Bergel. 2019.
Building an Expert Recommender Chatbot. In 2019 IEEE/ACM 1st International
Workshop on Bots in Software Engineering (BotSE). 59–63. https://doi.org/10.1109/
BotSE.2019.00022

[17] Alistair Cockburn and Laurie Williams. 2001. Extreme Programming Examined.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, Chapter The
Costs and Benefits of Pair Programming, 223–243. http://dl.acm.org/citation.
cfm?id=377517.377531

[18] Brian de Alwis and Gail C. Murphy. 2006. Using Visual Momentum to Explain
Disorientation in the Eclipse IDE. In Visual Languages and Human-Centric Com-
puting (VL/HCC’06). IEEE Press, Brighton, UK, 51–54. https://doi.org/10.1109/
VLHCC.2006.49

[19] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn.
2019. Scaling Static Analyses at Facebook. Commun. ACM 62, 8 (July 2019),
62–70. https://doi.org/10.1145/3338112

[20] David Evans and David Larochelle. 2002. Improving security using extensible
lightweight static analysis. IEEE software 19, 1 (2002), 42–51. https://doi.org/10.
1109/52.976940

[21] Jean-Marie Favre, Jacky Estublier, and Remy Sanlaville. 2003. Tool adoption
issues in very large software company. In 3rd Workshop on Adoption Centric
Software Engineering, ACSE.

[22] Gerhard Fischer, Andreas Lemke, and Thomas Schwab. 1984. Active help systems.
In Readings on Cognitive Ergonomics — Mind and Computers, Gerrit C. van der
Veer, Michael J. Tauber, Thomas R. G. Green, and Peter Gorny (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 115–131. https://doi.org/10.1007/3-540-
13394-1_10

[23] GitHub. 2019. The State of the Octoverse. https://octoverse.github.com/.
[24] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An Exploratory

Study of the Pull-Based Software Development Model. In Proceedings of the 36th
International Conference on Software Engineering (ICSE 2014). Association for
Computing Machinery, New York, NY, USA, 345–355. https://doi.org/10.1145/
2568225.2568260

[25] Georgios Gousios and Andy Zaidman. 2014. A Dataset for Pull-Based Develop-
ment Research. In Proceedings of the 11th Working Conference on Mining Software
Repositories (MSR 2014). Association for Computing Machinery, New York, NY,
USA, 368–371. https://doi.org/10.1145/2597073.2597122

[26] G. Gousios, A. Zaidman, M. Storey, and A. v. Deursen. 2015. Work Practices
and Challenges in Pull-Based Development: The Integrator’s Perspective. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
358–368. https://doi.org/10.1109/ICSE.2015.55

[27] Emitza Guzman, David Azócar, and Yang Li. 2014. Sentiment Analysis of Commit
Comments in GitHub: An Empirical Study. In Proceedings of the 11th Working
Conference on Mining Software Repositories (MSR 2014). Association for Comput-
ing Machinery, New York, NY, USA, 352–355. https://doi.org/10.1145/2597073.
2597118

[28] Sarah Heckman and Laurie Williams. 2011. A systematic literature review of
actionable alert identification techniques for automated static code analysis.
Information and Software Technology 53, 4 (2011), 363 – 387. https://doi.org/10.
1016/j.infsof.2010.12.007 Special section: Software Engineering track of the 24th
Annual Symposium on Applied Computing.

[29] Jing Jiang, David Lo, Jiahuan He, Xin Xia, Pavneet Singh Kochhar, and Li Zhang.
2017. Why and how developers fork what from whom in GitHub. Empirical
Software Engineering 22, 1 (2017), 547–578. https://doi.org/10.1007/s10664-016-
9436-6

[30] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to find bugs?.
In 2013 35th International Conference on Software Engineering (ICSE). 672–681.
https://doi.org/10.1109/ICSE.2013.6606613

[31] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.
German, and Daniela Damian. 2014. The Promises and Perils of Mining GitHub.
In Proceedings of the 11th Working Conference on Mining Software Repositories
(MSR 2014). Association for Computing Machinery, New York, NY, USA, 92–101.
https://doi.org/10.1145/2597073.2597074

[32] Lucas Layman, Laurie Williams, and Robert St. Amant. 2007. Toward Reducing
Fault Fix Time: Understanding Developer Behavior for the Design of Automated
Fault Detection Tools. In First International Symposium on Empirical Software
Engineering and Measurement (ESEM 2007). 176–185. https://doi.org/10.1109/
ESEM.2007.11

[33] Lisha Li, Zhilei Ren, Xiaochen Li, Weiqin Zou, and He Jiang. 2018. How Are Issue
Units Linked? Empirical Study on the Linking Behavior in GitHub. In 2018 25th
Asia-Pacific Software Engineering Conference (APSEC). IEEE Press, Nara, Japan,
386–395. https://doi.org/10.1109/APSEC.2018.00053

[34] Frank Linton, Deborah Joy, Hans-Peter Schaefer, and Andrew Charron. 2000.
OWL: A recommender system for organization-wide learning. Educational
Technology & Society 3, 1 (2000), 62–76.

[35] Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. 2014. On the
Comprehension of Program Comprehension. ACM Trans. Softw. Eng. Methodol.
23, 4, Article 31 (Sept. 2014), 37 pages. https://doi.org/10.1145/2622669

[36] Carlos Maltzahn and David Vollmar. 1994. ToolBox: a living directory for Unix
tools owned by the community. Technical Report. Citeseer.

[37] Mika V. Mäntylä and Casper Lassenius. 2008. What types of defects are really
discovered in code reviews? IEEE Transactions on Software Engineering 35, 3
(2008), 430–448. https://doi.org/10.1109/TSE.2008.71

[38] Nora McDonald and Sean Goggins. 2013. Performance and Participation in Open
Source Software on GitHub. In CHI ’13 Extended Abstracts on Human Factors in
Computing Systems (CHI EA ’13). Association for Computing Machinery, New
York, NY, USA, 13–144. https://doi.org/10.1145/2468356.2468382

[39] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. 2014. The
Impact of Code Review Coverage and Code Review Participation on Software
Quality: A Case Study of the Qt, VTK, and ITK Projects. In Proceedings of the 11th

1075

https://doi.org/10.1109/32.879818
https://doi.org/10.1145/1831708.1831738
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1109/ICSE.2013.6606642
https://doi.org/10.1145/2786805.2803200
https://doi.org/10.1145/2597073.2597082
https://doi.org/10.1109/ISSRE.2013.6698918
https://doi.org/10.1109/ISSRE.2013.6698918
https://doi.org/10.4230/DagRep.3.9.130
https://doi.org/10.1016/j.jss.2018.09.016
https://doi.org/10.1108/13665620310483895
https://doi.org/10.1109/BotSE.2019.00021
https://doi.org/10.1109/SANER.2015.7081875
https://doi.org/10.1109/SANER.2015.7081875
https://doi.org/10.1109/SANER48275.2020.9054842
https://doi.org/10.1109/SANER48275.2020.9054842
https://doi.org/10.1109/BotSE.2019.00022
https://doi.org/10.1109/BotSE.2019.00022
http://dl.acm.org/citation.cfm?id=377517.377531
http://dl.acm.org/citation.cfm?id=377517.377531
https://doi.org/10.1109/VLHCC.2006.49
https://doi.org/10.1109/VLHCC.2006.49
https://doi.org/10.1145/3338112
https://doi.org/10.1109/52.976940
https://doi.org/10.1109/52.976940
https://doi.org/10.1007/3-540-13394-1_10
https://doi.org/10.1007/3-540-13394-1_10
https://octoverse.github.com/
https://doi.org/10.1145/2568225.2568260
https://doi.org/10.1145/2568225.2568260
https://doi.org/10.1145/2597073.2597122
https://doi.org/10.1109/ICSE.2015.55
https://doi.org/10.1145/2597073.2597118
https://doi.org/10.1145/2597073.2597118
https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1007/s10664-016-9436-6
https://doi.org/10.1007/s10664-016-9436-6
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1109/ESEM.2007.11
https://doi.org/10.1109/ESEM.2007.11
https://doi.org/10.1109/APSEC.2018.00053
https://doi.org/10.1145/2622669
https://doi.org/10.1109/TSE.2008.71
https://doi.org/10.1145/2468356.2468382

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Chris Brown and Chris Parnin

Working Conference on Mining Software Repositories (MSR 2014). Association for
Computing Machinery, New York, NY, USA, 192–201. https://doi.org/10.1145/
2597073.2597076

[40] Justin Middleton, Emerson Murphy-Hill, Demetrius Green, Adam Meade, Roger
Mayer, David White, and Steve McDonald. 2018. Which Contributions Predict
Whether Developers Are Accepted into Github Teams. In Proceedings of the 15th
International Conference on Mining Software Repositories (MSR ’18). ACM, New
York, NY, USA, 403–413. https://doi.org/10.1145/3196398.3196429

[41] Samim Mirhosseini and Chris Parnin. 2017. Can automated pull requests en-
courage software developers to upgrade out-of-date dependencies?. In 2017 32nd
IEEE/ACM International Conference on Automated Software Engineering (ASE).
84–94. https://doi.org/10.1109/ASE.2017.8115621

[42] Emerson Murphy-Hill. 2012. Continuous social screencasting to facilitate soft-
ware tool discovery. In 2012 34th International Conference on Software Engineering
(ICSE). 1317–1320. https://doi.org/10.1109/ICSE.2012.6227090

[43] Emerson Murphy-Hill, Da Young Lee, Gail C. Murphy, and Joanna McGrenere.
2015. How Do Users Discover New Tools in Software Development and Beyond?
Computer Supported Cooperative Work (CSCW) 24, 5 (2015), 389–422. https:
//doi.org/10.1007/s10606-015-9230-9

[44] Emerson Murphy-Hill and Gail C. Murphy. 2011. Peer Interaction Effectively,
Yet Infrequently, Enables Programmers to Discover New Tools. In Proceedings of
the ACM 2011 Conference on Computer Supported Cooperative Work (CSCW ’11).
ACM, New York, NY, USA, 405–414. https://doi.org/10.1145/1958824.1958888

[45] Gustavo H. Pinto and Fernando Kamei. 2013. What Programmers Say about
Refactoring Tools? An Empirical Investigation of Stack Overflow. In Proceedings of
the 2013 ACM Workshop on Workshop on Refactoring Tools (WRT ’13). Association
for Computing Machinery, New York, NY, USA, 33–36. https://doi.org/10.1145/
2541348.2541357

[46] Gede Artha Azriadi Prana, Christoph Treude, Ferdian Thung, Thushari Atapattu,
and David Lo. 2019. Categorizing the content of GitHub README files. Empirical
Software Engineering 24, 3 (2019), 1296–1327. https://doi.org/10.1007/s10664-
018-9660-3

[47] Python. 2001. PEP 8 – Style Guide for Python Code. https://www.python.org/
dev/peps/pep-0008/#whitespace-in-expressions-and-statements.

[48] Martin P. Robillard and Christoph Treude. 2020. Understanding Wikipedia as
a Resource for Opportunistic Learning of Computing Concepts. In Proceedings
of the 51st ACM Technical Symposium on Computer Science Education (SIGCSE
’20). Association for Computing Machinery, New York, NY, USA, 72–78. https:
//doi.org/10.1145/3328778.3366832

[49] Martin P. Robillard, Robert Walker, and Thomas Zimmermann. 2010. Recom-
mendation Systems for Software Engineering. IEEE Software 27, 4 (July 2010),
80–86. https://doi.org/10.1109/MS.2009.161

[50] Leif Singer, Fernando Figueira Filho, and Margaret-Anne Storey. 2014. Software
Engineering at the Speed of Light: How Developers Stay Current Using Twitter.
In Proceedings of the 36th International Conference on Software Engineering (ICSE
2014). Association for Computing Machinery, New York, NY, USA, 211–221.
https://doi.org/10.1145/2568225.2568305

[51] Devarshi Singh, Varun Ramachandra Sekar, Kathryn T. Stolee, and Brittany
Johnson. 2017. Evaluating how static analysis tools can reduce code review effort.
In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC). 101–105. https://doi.org/10.1109/VLHCC.2017.8103456
[52] Justin Smith, Chris Brown, and Emerson Murphy-Hill. 2017. Flower: Navigating

program flow in the IDE. In 2017 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE Press, Raleigh, NC, 19–23. https:
//doi.org/10.1109/VLHCC.2017.8103445

[53] Will Snipes, Anil R. Nair, and EmersonMurphy-Hill. 2014. Experiences Gamifying
Developer Adoption of Practices and Tools. In Companion Proceedings of the
36th International Conference on Software Engineering (ICSE Companion 2014).
Association for Computing Machinery, New York, NY, USA, 105–114. https:
//doi.org/10.1145/2591062.2591171

[54] Margaret-Anne Storey, Leif Singer, Brendan Cleary, Fernando Figueira Filho,
and Alexey Zagalsky. 2014. The (R) Evolution of Social Media in Software
Engineering. In Proceedings of the on Future of Software Engineering. Association
for Computing Machinery, New York, NY, USA, 100–116. https://doi.org/10.
1145/2593882.2593887

[55] Konstantinos Stroggylos and Diomidis Spinellis. 2007. Refactoring–Does It
Improve Software Quality?. In Fifth International Workshop on Software Quality
(WoSQ’07: ICSE Workshops 2007). 10–10. https://doi.org/10.1109/WOSQ.2007.11

[56] Asher Trockman, Shurui Zhou, Christian Kästner, and Bogdan Vasilescu. 2018.
Adding Sparkle to Social Coding: An Empirical Study of Repository Badges in the
Npm Ecosystem. In Proceedings of the 40th International Conference on Software
Engineering (ICSE ’18). Association for Computing Machinery, New York, NY,
USA, 511–522. https://doi.org/10.1145/3180155.3180209

[57] Rijnard van Tonder and Claire Le Goues. 2019. Towards s/engineer/bot: Principles
for Program Repair Bots. In 2019 IEEE/ACM 1st International Workshop on Bots in
Software Engineering (BotSE). 43–47. https://doi.org/10.1109/BotSE.2019.00019

[58] Petcharat Viriyakattiyaporn and Gail C. Murphy. 2009. Challenges in the
user interface design of an IDE tool recommender. In 2009 ICSE Workshop
on Cooperative and Human Aspects on Software Engineering. 104–107. https:
//doi.org/10.1109/CHASE.2009.5071421

[59] Petcharat Viriyakattiyaporn and Gail C. Murphy. 2010. Improving Program
Navigation with an Active Help System. In Proceedings of the 2010 Conference
of the Center for Advanced Studies on Collaborative Research (CASCON ’10). IBM
Corp., USA, 27–41. https://doi.org/10.1145/1923947.1923951

[60] Anthony I. Wasserman. 1981. User Software Engineering and the Design of
Interactive Systems. In Proceedings of the 5th International Conference on Software
Engineering (ICSE ’81). IEEE Press, 387–393.

[61] MairieliWessel, BrunoMendes de Souza, Igor Steinmacher, Igor SWiese, Ivanilton
Polato, Ana Paula Chaves, and Marco A Gerosa. 2018. The power of bots: Charac-
terizing and understanding bots in oss projects. Proceedings of the ACM onHuman-
Computer Interaction 2, CSCW (2018), 182. https://doi.org/10.1145/3274451

[62] Shundan Xiao, Jim Witschey, and Emerson Murphy-Hill. 2014. Social Influences
on Secure Development Tool Adoption:Why Security Tools Spread. In Proceedings
of the 17th ACM Conference on Computer Supported Cooperative Work & Social
Computing (CSCW ’14). Association for Computing Machinery, New York, NY,
USA, 1095–1106. https://doi.org/10.1145/2531602.2531722

[63] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bogdan
Vasilescu. 2015. Wait for It: Determinants of Pull Request Evaluation Latency on
GitHub. In 2015 IEEE/ACM 12th Working Conference on Mining Software Reposito-
ries. 367–371. https://doi.org/10.1109/MSR.2015.42

1076

https://doi.org/10.1145/2597073.2597076
https://doi.org/10.1145/2597073.2597076
https://doi.org/10.1145/3196398.3196429
https://doi.org/10.1109/ASE.2017.8115621
https://doi.org/10.1109/ICSE.2012.6227090
https://doi.org/10.1007/s10606-015-9230-9
https://doi.org/10.1007/s10606-015-9230-9
https://doi.org/10.1145/1958824.1958888
https://doi.org/10.1145/2541348.2541357
https://doi.org/10.1145/2541348.2541357
https://doi.org/10.1007/s10664-018-9660-3
https://doi.org/10.1007/s10664-018-9660-3
https://www.python.org/dev/peps/pep-0008/#whitespace-in-expressions-and-statements
https://www.python.org/dev/peps/pep-0008/#whitespace-in-expressions-and-statements
https://doi.org/10.1145/3328778.3366832
https://doi.org/10.1145/3328778.3366832
https://doi.org/10.1109/MS.2009.161
https://doi.org/10.1145/2568225.2568305
https://doi.org/10.1109/VLHCC.2017.8103456
https://doi.org/10.1109/VLHCC.2017.8103445
https://doi.org/10.1109/VLHCC.2017.8103445
https://doi.org/10.1145/2591062.2591171
https://doi.org/10.1145/2591062.2591171
https://doi.org/10.1145/2593882.2593887
https://doi.org/10.1145/2593882.2593887
https://doi.org/10.1109/WOSQ.2007.11
https://doi.org/10.1145/3180155.3180209
https://doi.org/10.1109/BotSE.2019.00019
https://doi.org/10.1109/CHASE.2009.5071421
https://doi.org/10.1109/CHASE.2009.5071421
https://doi.org/10.1145/1923947.1923951
https://doi.org/10.1145/3274451
https://doi.org/10.1145/2531602.2531722
https://doi.org/10.1109/MSR.2015.42

	Abstract
	1 Introduction
	2 Background
	2.1 Developer Behavior Recommendations
	2.2 Making Recommendations on GitHub

	3 Methodology
	3.1 Phase 1: An Empirical Study on GitHub Suggested Changes
	3.2 Phase 2: Developer Feedback on Suggested Changes

	4 Results
	4.1 RQ1: Types
	4.2 RQ2: Effectiveness
	4.3 RQ3: Pull Request Impact
	4.4 RQ4: Usefulness

	5 Discussion
	5.1 User-Driven Communication
	5.2 Workflow Integration

	6 Limitations and Future Work
	7 Related Work
	8 Conclusion
	References

