
Sorry to Bother You: Designing Bots for
Effective Recommendations

Chris Brown, Chris Parnin
Department of Computer Science
North Carolina State University

Raleigh, NC, USA
dcbrow10@ncsu.edu, cjparnin@ncsu.edu

Abstract—Bots have been proposed as a way to encourage
developer actions and support software development activities.
Many bots make recommendations to users, however humans
may find these recommendations ineffective or problematic. In
this paper, we argue that while bots can help automate many
tasks, ultimately bots still need to find ways to interact with
humans and handle all of the associated social and cognitive
problems entailed. To illustrate this problem, we performed a
small study where we generated 52 pull requests making tool
recommendation to developers. As a result, we only convinced
two developers to accept the pull request, while receiving several
forms of feedback on why the pull request was ineffective. We
summarize this feedback and suggest design principles for bot
recommendations, including how psychology frameworks, such
as nudge theory, can be used to improve human-bot interactions.

Index Terms—software engineering, developer actions, tool
adoption, digital nudge

I. INTRODUCTION

Software robots, or bots, are useful for automating a variety
of tasks and can improve efficiency and effectiveness [12].
However, their interactions with humans can be inconvenient
due to limited responses from rule-based reasoning [11] and
poor UX design.1 For example, software developers found
bots relevant and useful for automatically running tests, but
they also reported facing numerous challenges, such as poor
decision support and non-comprehensive feedback [16]. Poor
interactions between humans and bots can lead to negative
responses toward automated suggestions generated by bots.
For instance, users expressed more inappropriate language and
negative emotions in conversations with Cleverbot2 compared
to humans [5].

To understand the impact of poorly behaving bots on
humans, we create a naive telemarketer design, where a bot
delivers actionable and technically sound recommendations to
software developers; however all interactions are static. In
many ways, our design is like a telemarketer: calling users
to deliver a static message. However, the interactions never
deviate from the script and lack the social intelligence required
to adjust the message or respond to questions. With this simple
design, our goal is to initiate and then identify reactions from

1https://chatbot.fail/
2https://www.cleverbot.com/

software developers. Future bots could then be designed to
account for these interactions with users.

To contextualize our design, we developed a bot, tool-
recommender-bot , which makes tool recommendations to
software developers by automatically configuring a software
project to use the tool. Using development tools, such as static
analysis tools to automatically check for programming errors
in source code, is a useful behavior for developers to adopt
for improving the quality of their work. For example, software
engineers at Google used the static analysis tool FindBugs3

to find thousands of warnings in their code [4]. Despite the
benefits of using static analysis tools, software engineers do
not use them often in practice [7]. In this study, we seek to
explore designing bots as recommender systems to improve
the tool adoption problem in software engineering.

We evaluate pull requests made by tool-recommender-bot
and categorize the responses from software developers. Our
results suggest that bots with simple technical knowledge
alone are ineffective in influencing human behavior. tool-
recommender-bot was only able to make two successful
recommendations out of 52 (4%). Analyzing these responses,
we found that tool-recommender-bot lacked the social context
required to interact with users and understand the contextual
factors to make effortless integration into a project’s devel-
opment workflow. To remedy this, we propose integrating
concepts from psychology and persuasion theory in bots to
improve human-bot interactions. For example, nudge theory
is a behavioral science concept that examines simple ways
to influence human decision-making and convince people to
adopt certain behaviors [13]. Long-term, we hope this research
provides a baseline that future designs can surpass.

II. MOTIVATING EXAMPLE

Cassius is a software developer maintaining several popular
open source Java projects on GitHub. He does not implement
any static analysis in his repositories because he is unaware
of tools that can analyze Java code to prevent bugs. One day,
he notices a new pull request on his repositories, similar to
the one shown in Figure 1.

The pull request introduces Cassius to ERROR PRONE, an
open source static analysis tool for Java code [1]. Reading

3http://findbugs.sourceforge.net/



Fig. 1. Example recommendation from tool-recommender-bot

the pull request comment (Fig. 1.A), he learns what the
tool does and how to use it. He also views a simple Java
function (Fig. 1.B1) with an example of an error reported by
ERROR PRONE (Fig.1.B2). Then, he realizes not only does
the pull request present information about the tool, but it
also automatically adds the tool to by modifying the build
configuration files! He just needs to simply merge the pull re-
quests to add the static analysis tool to his repositories. Cassius
merges the requests to successfully integrate ERROR PRONE
in his projects, preventing himself and other contributors from
adding programming errors in the future.

This scenario is an example of how bots can be useful
for helping users adopt new behaviors. In this case, using a
bot effectively automated tasks, such as updating the build
configuration file, and was able to make recommendations on
multiple projects more efficiently than manual suggestions.

III. TOOL-RECOMMENDER-BOT

tool-recommender-bot is a bot designed to recommend soft-
ware engineering tools to developers on GitHub. Our system
suggests tools to GitHub users by automatically modifying
build configuration files and generating pull requests with
the tool. Many companies use build systems to automatically
integrate, compile, test, and deploy their software more ef-
ficiently [10]. While this is not the only context in which
software engineering tools can be used, it allows developers to
easily integrate and run new tools within their normal work-
flow. tool-recommender-bot generates automated pull requests
because they are the preferred method for suggesting changes
to repositories,4, have been used by bots in prior work [8],
and create actionable recommendations for users.

Our goal is for tool-recommender-bot to be extendable to
recommend a wide variety of software engineering tools to
developers. The initial implementation for this study naively
recommends ERROR PRONE to Java developers on GitHub
by adding it to repositories that use Maven, a popular build

4https://help.github.com/articles/about-pull-requests/

automation and dependency management tool for Java ap-
plications [2]. tool-recommender-bot automatically adds the
ERROR PRONE Maven plugin to the Project Object Model
(pom.xml) configuration file to run the tool when the code
compiles. The source code for our bot is publicly available
online.5

Our naive telemarketer design for this study provides a
generic message and a simple code snippet with a common
Java error to show users sample output from ERROR PRONE,
shown in Figure 1. This is not the best design for making
recommendations, however we implemented this naive ap-
proach to create a baseline describing how bots influence hu-
man behavior. tool-recommender-bot uses a human-presenting
account to make recommendations based on research showing
bots emulating human users are more effective [9]. In our
pilot, we quickly discovered bot accounts are ineffective after
our original GitHub account6 for tool-recommender-bot was
flagged within a few hours of making recommendations.

IV. METHODOLOGY

A. Projects

To evaluate tool-recommender-bot we used open source
software repositories on GitHub. We sampled projects from
the Repairnator evaluation7 to use for our study [14]. The
projects we selected met the following criteria:

• primarily written in Java 8+,
• successfully compile with Maven, and
• do not already use ERROR PRONE

Since ERROR PRONE can only analyze Java code, our
evaluation was limited to projects written in the Java pro-
gramming language. To collect projects that build with Maven,
we checked to see if repositories contained a pom.xml file
in the home directory and confirmed they could be validated
and compiled before adding the plugin. We also verified the
pom.xml file did not already contain the ERROR PRONE plugin
to avoid making recommendations to projects that already use
the tool and target developers less likely to know about it.

Our evaluation consisted of real-world Java applications
with a varying functionalities, number of source code files,
and lines of code. While our evaluation focuses on open source
projects, recommendations from tool-recommender-bot could
receive similar reactions from developers of proprietary soft-
ware in a large company setting. The list of projects used for
our evaluation is available online.8

B. Data Analysis

We categorized tool recommendations from our bot as
effective or ineffective based on the status of pull requests.
Developers of projects that receive a recommendation have the
option to merge the pull request into the source code, close
the pull request without merging, or ignore the pull request

5https://github.com/chbrown13/tool-recommender-bot/tree/pulls
6https://github.com/tool-recommender-bot
7https://github.com/Spirals-Team/repairnator/blob/master/resources/data/results-

buildtool.csv
8https://go.ncsu.edu/botse-projects



by leaving it open. Merging the automated pull request from
our system indicates an effective recommendation, since the
recommendee decided to adopt ERROR PRONE and showed
a willingness to integrate the static analysis tool into the
project’s build configuration to check for errors. Closing or
ignoring the pull request from tool-recommender-bot implies
an ineffective recommendation because recommendees did not
attempt to integrate the recommended tool.

We gathered quantitative and qualitative data to examine
the effectiveness of tool-recommender-bot over the course of
a week [19]. We observed merged pull requests from tool-
recommender-bot to calculate the bot’s rate of effectiveness for
tool recommendations. Additionally, we aggregated comments
from GitHub users on pull requests to analyze how developers
reacted to receiving a recommendation. In the pull request,
we encouraged developers to provide feedback on whether
they found the recommendation useful or not. Additionally,
GitHub also allows users to provide feedback on pull requests
and comments using emoji reactions.9 We analyzed responses
and reactions to gather insight into how developers felt about
receiving automated recommendations from a bot.

V. RESULTS

A. Bot Effectiveness

Out of 52 recommendations, only two were accepted by
developers. The remaining were categorized as ineffective rec-
ommendations: 10 closed and 40 never received any response.
Table I presents the results of our preliminary evaluation.

n Percent
Merged 2 4%
Closed 10 19%

No Response 40 77%

TABLE I: Pull Request Results

An overwhelming 96% of tool-recommender-bot recom-
mendations were ineffective. Of the 12 recommendations
that did receive developer feedback, 83% were rejected by
developers who closed the pull request. Two recommendations
were merged, however in one case another contributor created
a GitHub issue because our pull request caused problems with
the project build. The changes made by the bot were then
reverted in a later pull request, removing ERROR PRONE from
the project. Even though the tool was eventually removed, we
still categorize this as an effective recommendation because
the developers accepted the pull request to try the tool.

B. Developer Reactions

Our qualitative data also shows developers did not find
automated recommendations from our bot effective. We found
24 comments made on 17 unique projects. Of the 24 total re-
sponses, six were automated comments made on pull requests
that provided information to first-time contributors, requested
Contributing License Agreement signatures, and presented

9https://developer.github.com/v3/reactions/

code coverage updates. We received 18 developer responses
from 15 different GitHub users and no emoji reactions on
automated pull requests from tool-recommender-bot . There
were five positive statements on recommendations, including
on pull requests that were not merged:

“lgtm, Good Contribution” (P9, merged)
“Thanks for sharing it” (P13, merged)
“Thanks for helping spread this wonderful tool that
is Error Prone” (P14)
“ErrorProne itself is something I could see us
adding.” (P7)

However, most of the feedback we received from developers
was negative. We categorized the remaining comments into
two main cardinal sins we committed in the design of our
bot, which led to ineffective tool recommendations.

1) Cardinal Sins:
a) Formatting: One issue developers found with our

automated recommendations was inconsistent file formatting.
In some cases, the format of the modifications to the pom.xml
file in our automated pull requests was different from rest of
the file in terms of whitespace, such as indentation, tab length,
and line breaks. Several developers noted this, providing
responses such as:

“You messed up the formatting of the pom.xml
pretty bad.” (P3)
“The automated tool you use messed up the pom.xml
formatting to an extent that I could not see it.” (P5)
“This change removes quite a lot if important things
from the POM file.” (P7)

There were five comments mentioning the pom.xml file for-
matting. Despite P7’s comment, we did not remove anything
from the configuration file and only added the plugin to it.
For our evaluation, we attempted to use a general format when
updating the build configuration file for repositories but did not
exactly follow the format for each individual project, which
prevented some developers from merging pull requests.

b) Breaking builds: Another major problem participants
faced was that adding ERROR PRONE often broke project
builds in Maven. Ironically, this was primarily due to errors
reported by the tool itself in the projects’ source code. Many
comments were made regarding this, including the following:

“Given the number of errors, I think it would cause
more harm than good ;)” (P11)
“Introduced erroneous behavior to the build.” (P10)
“Your PR breaks the CI.” (P1)

Eight comments mentioned failing builds on recommenda-
tions from tool-recommender-bot . While we hoped integrating
tools into build configuration would make them easier to
adopt, we found that developers did not appreciate it when our
changes broke the build with errors. This was a major reason
users closed automated pull requests from tool-recommender-
bot , however not generating pull requests updating pom.xml
files could lead to increased adoption friction.10

10https://www.awh.net/resources/blog/reduce-product-friction-to-increase-
user-adoption/



VI. DISCUSSION

Our results suggest that bots alone are not effective for
influencing developer behavior. The majority of tool rec-
ommendations from our naive telemarketer bot design were
ineffective, ignored or rejected by developers. This points to a
need for design changes and improvements in order for bots
to make better recommendations. Based on our experience
implementing and evaluating tool-recommender-bot to impact
human behavior, we propose design principles for researchers
to consider when developing future bots.

A. Social Context

One disadvantage of the design of tool-recommender-bot
is that it lacks social context. We refer to social context
as the practices and activities standard for interacting with
developers and contributing to open source software. Examples
include formatting guidelines, Contributor License Agree-
ments, README11 and CONTRIBUTING12 files, identifying
unmaintained projects, participating in conversations during
code reviews, and more. Furthermore, Wessel et al. found
developers faced challenges interacting with bots and desired
improved social interactions and smarter bots when making
contributions to open source software [16].

One method to accomplish this is to provide better exam-
ples within the project context. P7 desired more details on
how ERROR PRONE could “actually help us” and suggested
we “could attach a report with actual findings in our code
base instead of just some generic example.” Using relevant
examples can contextualize tools and improve recommenda-
tions on projects. Another solution is integrating chatbots
into automated recommendations to answer questions from
developers about the proposed tool. For example, AnswerBot
was able to successfully automate answering Java questions
from developers on the Q&A site Stack Overflow [18].

B. Developer Workflow

Many users found tool-recommender-bot interrupted exist-
ing processes, most notably by breaking builds, and were dis-
couraged from merging pull requests from our system. While
social context deals with user interactions, developer workflow
refers to interactions with the code and software development
practices. Several developers expressed additional information
needs that impact their workflow: P3 desired to know if bugs
were “worth fixing” and how to “configure the plugin so as to
ignore false positives”; P7 noted “it’d be good to analyse the
impact in terms of build time”; and P17 asked “Can you fix
the errors reported by your tool in the build?”. Additionally,
Johnson and colleagues found that tools’ inability to integrate
into developer workflow is a key barrier for adoption [7].

To improve recommendations, bots should suggest tools
without breaking existing infrastructure. One solution is to
change how potential users interact with tools. For instance,
rather than fully integrating tools with automated pull requests,

11https://help.github.com/articles/about-readmes/
12https://help.github.com/articles/setting-guidelines-for-repository-

contributors/

allow developers to incrementally use them, i.e., modifying the
ERROR PRONE plugin to report errors as warnings instead of
compilation errors or implementing a demo-mode for users
to try the tool in a sandbox environment without impacting
builds. Another solution is to help developers further by fixing
issues introduced in the build. For instance, the program
repair bot Repairnator presents developers with patches for
errors [14]. Automatically fixing reported bugs can improve
recommendations within developer workflows.

C. Nudge Theory

Psychology research studies many ways to impact human
behavior. One example of this is nudge theory, which examines
any factor that affects how people make decisions without
incentives or constraints [13]. Nudges influence common
everyday decisions such as encouraging people to recycle
more [3], and much larger choices like improving civic behav-
ior and reducing crime [6]. Using technology to send nudges in
digital environments is referred to as digital nudging [15]. For
example, FitBit13 digital watches encourage users to increase
physical activity [15]. We envision, when given a developer
who is unaware of a useful tool, using bots to digitally nudge
developers to adopt the tool. To accomplish this, we propose
researchers integrate concepts from nudge theory to improve
how bots mesh with social context and development workflows
when making recommendations.

Nudge theorists Thaler and Sunstein note nudges “must be
easy and cheap” [13, p. 6]. However, we found the naive
telemarketer design was cumbersome and expensive for devel-
opers by avoiding interactions and complicating project builds.
Designing bots to make easy and cheap recommendations can
improve their effectiveness by showing the value of tools sim-
ply and clearly. For example, with tool-recommender-bot we
found modifying build configuration files was costly, creating
additional build errors needing to be fixed. An example nudge
would be notifying developers about bugs reported by tools
without impacting the build. To do this, our design needs to
modify how recommendations are presented. Nudge theory
suggests that location impacts decisions (i.e., placing healthier
foods at eye level encourages people to eat better [17]). Instead
of automated pull requests, making comments on lines of code
with errors may simplify recommendations to users. Analyzing
more nudge theory examples and applying them to bot design
can improve human-bot interactions for influencing behavior.

VII. CONCLUSION

We implemented tool-recommender-bot , a bot that rec-
ommends static analysis tools to developers, using a naive
telemarketer design approach. We evaluated our system by
suggesting ERROR PRONE to GitHub users with automated
pull requests. Our results show this approach is insufficient
for making recommendations, ignoring social context and
integrating poorly with development workflows. To make more
effective recommendations, we propose using nudge theory to
improve bot designs for impacting human behavior.

13https://www.fitbit.com/home



REFERENCES

[1] Error prone. http://errorprone.info.
[2] Maven. https://maven.apache.org/.
[3] A strategy for recycling: Change the recycling-bin-to-garbage-

bin ratio. Nudge Blog. http://nudges.org/2011/05/02/
a-strategy-for-recycling-change-the-recyling-bin-to-garbage-bin-ratio/.

[4] N. Ayewah and W. Pugh. The google findbugs fixit. In Proceedings
of the 19th international symposium on Software testing and analysis,
pages 241–252. ACM, 2010.

[5] J. Hill, W. R. Ford, and I. G. Farreras. Real conversations with artificial
intelligence: A comparison between human–human online conversations
and human–chatbot conversations. Computers in Human Behavior,
49:245–250, 2015.

[6] P. John, G. Smith, and G. Stoker. Nudge nudge, think think: two strate-
gies for changing civic behaviour. The Political Quarterly, 80(3):361–
370, 2009.

[7] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. Why Don’t
Software Developers Use Static Analysis Tools to Find Bugs? In Pro-
ceedings of the 2013 International Conference on Software Engineering
(ICSE), ICSE ’13, pages 672–681, Piscataway, NJ, USA, 2013. IEEE
Press.

[8] S. Mirhosseini and C. Parnin. Can automated pull requests encourage
software developers to upgrade out-of-date dependencies? In Proceed-
ings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, pages 84–94. IEEE Press, 2017.

[9] A. Murgia, D. Janssens, S. Demeyer, and B. Vasilescu. Among the ma-
chines: Human-bot interaction on social q&a websites. In Proceedings
of the 2016 CHI Conference Extended Abstracts on Human Factors in
Computing Systems, pages 1272–1279. ACM, 2016.

[10] A. A. U. Rahman, E. Helms, L. Williams, and C. Parnin. Synthesizing
continuous deployment practices used in software development. In Agile
Conference (AGILE), 2015, pages 1–10. IEEE, 2015.

[11] C. Stanfill and D. Waltz. Toward memory-based reasoning. Commun.
ACM, 29(12):1213–1228, Dec. 1986.

[12] M.-A. Storey and A. Zagalsky. Disrupting developer productivity one bot
at a time. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 928–931.
ACM, 2016.

[13] C. Sunstein, R. Thaler, et al. Nudge. The politics of libertarian
paternalism. New Haven, 2008.

[14] S. Urli, Z. Yu, L. Seinturier, and M. Monperrus. How to design a pro-
gram repair bot?: insights from the repairnator project. In Proceedings
of the 40th International Conference on Software Engineering: Software
Engineering in Practice, pages 95–104. ACM, 2018.

[15] M. Weinmann, C. Schneider, and J. vom Brocke. Digital nudging.
Business & Information Systems Engineering, 58(6):433–436, 2016.

[16] M. Wessel, B. M. de Souza, I. Steinmacher, I. S. Wiese, I. Polato, A. P.
Chaves, and M. A. Gerosa. The power of bots: Characterizing and
understanding bots in oss projects. Proc. ACM Hum.-Comput. Interact.,
2(CSCW):182:1–182:19, Nov. 2018.

[17] A. L. Wilson, E. Buckley, J. D. Buckley, and S. Bogomolova. Nudging
healthier food and beverage choices through salience and priming.
evidence from a systematic review. Food Quality and Preference, 51:47–
64, 2016.

[18] B. Xu, Z. Xing, X. Xia, and D. Lo. Answerbot: automated generation of
answer summary to developers’́ technical questions. In Proceedings of
the 32nd IEEE/ACM International Conference on Automated Software
Engineering, pages 706–716. IEEE Press, 2017.

[19] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu. Wait for it:
Determinants of pull request evaluation latency on github. In Mining
software repositories (MSR), 2015 IEEE/ACM 12th working conference
on, pages 367–371. IEEE, 2015.

http://errorprone.info
https://maven.apache.org/
http://nudges.org/2011/05/02/a-strategy-for-recycling-change-the-recyling-bin-to-garbage-bin-ratio/
http://nudges.org/2011/05/02/a-strategy-for-recycling-change-the-recyling-bin-to-garbage-bin-ratio/

	Introduction
	Motivating Example
	tool-recommender-bot
	Methodology
	Projects
	Data Analysis

	Results
	Bot Effectiveness
	Developer Reactions
	Cardinal Sins


	Discussion
	Social Context
	Developer Workflow
	Nudge Theory

	Conclusion
	References

