
Flower: Navigating Program Flow in the IDE
Justin Smith, Chris Brown, and Emerson Murphy-Hill

Department of Computer Science
North Carolina State University

Raleigh, North Carolina
Email: jssmit11@ncsu.edu, dcbrow10@ncsu.edu, emerson@csc.ncsu.edu

Abstract—Program navigation is a critical task for software
developers. State-of-the-art tools have been shown to support
effective program navigation strategies, and do so by adding
widgets, secondary views, and visualizations to the screen. In
this work, we build on prior work by exploring what types
of navigation can be supported with relatively few interface
elements. To that end, we designed and implemented a prototype
tool, named Flower, that supports structural program navigation
while maintaining a minimalistic interface. Flower enables de-
velopers to simultaneously navigate control flow and data flow
within the Eclipse Integrated Development Environment. Based
on a preliminary evaluation with eight programmers, Flower
succeeds when call graphs contained relatively few branches, but
was strained by complex program structures.

I. INTRODUCTION

Although integrated development environments (IDEs)
present code linearly in the order methods are defined in a
file, successful developers do not navigate source code line by
line starting at the top of the file. Instead, they methodically
navigate the code’s hierarchical semantic structures [1]. While
navigating programs, developers need information about con-
trol flow and data flow throughout the program [2], [3]. We
will jointly refer to these two concepts as program flow.

To realize their ideal program flow navigation strategies,
developers rely on navigation tools that expose the links
between sometimes distant locations in the source code. Many
existing tools do so by displaying call graph visualizations
or adding views to the screen. In general, evaluations have
demonstrated the effectiveness of such tools [4]–[7].

However, these tools rely on cumbersome user interface
widgets, views, and visualizations that occupy valuable screen
real estate and might induce disorientation via thrashing [8].
In this work, we explore whether relatively few interface
elements can enable similarly effective program navigation.
We present a prototype tool, Flower (pronounced flow-er), that
instantiates this minimalistic approach to program navigation.
Flower leverages accurate program analysis techniques, avoids
cluttering the IDE with superfluous interface elements, and
presents its results integrated within the code.

Consider the following motivating example involving Char-
lie, a professional Java developer. Charlie is fictional, but
this story is based on the experiences of real developers as
described in our previous study [3]. While maintaining some
old code, Charlie notices a static analysis warning: “This

variable contains user-provided data. If it is used in a sensitive
context before being sanitized, the code could be vulnerable.”

Charlie sets out to determine if the variable is sanitized on
all paths leading to the sensitive context. First, Charlie searches
for the variable’s name. Unfortunately, this search returns re-
sults mostly from comments and other documentation. Charlie
vaguely recalls using an Eclipse tool to help trace control flow
through a program, but is unsure how to invoke it or whether
that tool also traces data flow. Charlie looks through various
menus, tries out a few tools, but cannot locate the right tool.
Turning back to the code, Charlie begins scrolling through the
current file, unknowingly using Eclipse’s Mark Occurrences
tool while scanning for uses of the variable. After inspecting
all the occurrences in the current file, Charlie now searches
for methods that take the variable as input. Charlie stumbles
upon Eclipse’s Call Hierarchy tool, which seems helpful, but
is unable to specify a variable when invoking the tool.

Undeterred, Charlie finds a method that takes the variable
as a parameter and invokes Call Hierarchy on that method.
Charlie’s attention oscillates between the Call Hierarchy view
and the code. Charlie uses the Call Hierarchy view to navigate
chains of method calls and checks the code in each method for
sanitization. Charlie repeats this process for each call site in
the current file. Unsure of whether the variable gets sanitized
along all paths, Charlie decides to ignore the warning. Two
months later, an attacker exploits the vulnerability.

This work contributes an understanding of the essence of
program navigation, through the lens of a minimalistic tool,
Flower. This prototype tool addresses many of the issues that
Charlie faced by implementing four design principles (Section
II). For instance, Flower is easily invoked and enables devel-
opers to simultaneously trace data flow and control flow within
the code view. We evaluated Flower to identify the types of
tasks it effectively supports. Our preliminary findings failed
to identify significant differences in task completion time or
correctness between Flower and more complex navigation
tools within Eclipse. This suggests that the simple affordances
Flower implements may sufficiently aid developers.

II. DESIGN PRINCIPLES

In this section we describe the guiding design principles
behind Flower. We derived these design principles from the
information needs described in a study by Smith and col-
leagues [3] and by examining existing program navigation
tools.978-1-5386-0443-4/17/$31.00 c©2017 IEEE

LOW BARRIERS TO INVOCATION — Some tools are easier to
invoke than others. Take, for example, Charlie’s case. Charlie
easily invoked Mark Occurrences, but initially struggled to
locate and invoke Call Hierarchy. Tools with high barriers
to invocation require users to sift through menus and include
unintuitive widgets. Barriers to invocation inhibit adoption [9].
As developers navigate multiple program paths concurrently,
difficulties repetitively invoking tools compound, especially
if barriers are high. Once initially configured, Flower is
automatically invoked as the user navigates.

ACCURACY — Simple textual analysis may lead to inaccurate
results in many scenarios. For example, such analysis fails
when programs include duplicated variable names that refer
to different variables in different scopes [10]. Textual analysis
also falls short when programs contain inheritance and when
variable names are included in comments, documentation, or
other syntactically irrelevant locations, as in Charlie’s case.
By leveraging program analysis techniques, navigation tools
can provide more accurate information than simple textual
analysis. Flower analyzes abstract syntax trees (ASTs) and
call graphs to make accurate references to relevant variables
and methods.

FULL PROGRAM NAVIGATION — Developers are not only
interested in traversing programs’ call graphs, but also how
data flows through the call graph [3]. To simultaneously
navigate the flow of data through call graphs, developers
must inspect the relationship between methods, as well as the
methods themselves. Often the methods of interest span across
multiple source files. For Charlie, Mark Occurrences helped
with navigation within a single file, but fell short while being
used to inspect methods in other files. Furthermore, program
navigation tools should support this traversal both upstream
and downstream. That is, tools should highlight variable
assignments and also subsequent variable uses. Flower allows
for upstream and downstream navigation across files.

IN SITU NAVIGATION — Switching between views in “bento
box” style IDEs [11] can cause disorientation [8]. As develop-
ers navigate through code, navigation tools should present their
results in that context. This was a problem for Charlie, who
had to constantly switch between the Call Hierarchy view and
the code view. When navigation tools present results outside
the code, developers are burdened with the cognitive load of
translating those results back to the code. Flower displays its
results within the code to enable in situ navigation.

III. RELATED WORK

The need for better navigation tools has been well re-
ported [12]. Here we discuss some of the existing tools that
help developers navigate code. We also relate the existing tools
back to Design Principles described in Section II.

Many modern IDEs provide tools that help developers
navigate source code. For example, Eclipse [13] includes Call
Hierarchy and Find References. When users invoke either of

these tools, Eclipse opens a new view to display the results.
For Call Hierarchy, this view contains a list of the selected
method’s callers and callees, whereas Find References only
lists callers. Similarly, IntelliJ [14] provides Analyze Data
Flow, which also displays its results in an external view.
These tools enable users to navigate through their code with
ACCURACY. However, unlike Flower, the separate views do
not enable IN SITU NAVIGATION.

There are also several tools that reside strictly within
the code editor, enabling a form of IN SITU NAVIGATION.
Two examples of these tools are Eclipse’s Mark Occurrences
and Open Declaration. Eclipse automatically invokes Mark
Occurrences whenever a user clicks on a variable or method
name in the code. The tool then highlights occurrences of
that element elsewhere in the current file. Mark Occurrences
epitomizes LOW BARRIERS TO INVOCATION. These tools are
similar to Flower in that they display the results within the
editor rather than a separate view or panel. However, they do
not enable FULL PROGRAM NAVIGATION.

Many other tools help developers navigate code by rep-
resenting the code graphically and allowing developers to
navigate those graphs [4]–[6], [15]–[18]. These works provide
various views of control flow graphs, class and UML-like
diagrams, trees, call graphs, and other images to describe
the hierarchy and relationship between different variables or
functions within the code. These tools utilize program analysis
to generate visualizations with ACCURACY. Moreover, most
of these tools implement some aspects of FULL PROGRAM
NAVIGATION. Flower differs from these tools in the way it
presents results (IN SITU NAVIGATION) and because it has
LOW BARRIERS TO INVOCATION.

IV. FLOWER

Flower was designed to realize all of the principles de-
scribed in Section II. We implemented Flower as a plugin to
the Eclipse IDE [13]. We chose Eclipse because it is one of the
most widely used open source IDEs for Java development and
it provides many extension points for plugins. Flower extends
Call Hierarchy, using its search functionality to track the
flow of data across methods. Leveraging Eclipse’s incremental
compiler and JDT core, Flower also implements several AST
visitors to detect proper and up-to-date variable references.

When active, Flower makes two modifications to Eclipse’s
user interface. First, it highlights on-screen references to
selected variables. Second, when references to the selected
variable appear off-screen — either elsewhere in the current
method or in other methods — Flower adds links to those
locations above and below the code view as well as to the
code itself. Figure 1 depicts Flower invoked on a variable
participants were asked to inspect as part of our evaluation.
We also provide a video1 and virtual machine image2 demon-
strating Flower online. To visualize how a programmer would
interact with Flower, consider the following scenario, which
corresponds with Figure 1:

1Screen cast of Flower: https://figshare.com/s/39eadd74502a014ae018
2VM containing Flower: https://figshare.com/s/76aa260f21cf4233dc1c

https://figshare.com/s/39eadd74502a014ae018
https://figshare.com/s/76aa260f21cf4233dc1c

Fig. 1: Eclipse IDE with Flower invoked during Task 1. The left shows the tool running in the method parseAndCache. When
the user clicks on the link in the editor (B1 or B2), they are taken to getQueries, which is a caller of parseAndCache.

Suppose you are a programmer and you notice that
by tampering with the value of the fileName variable,
malicious users could gain access to sensitive information in
the database. You want to determine whether users can modify
fileName before it gets passed into parseAndCache.
First, you click on fileName (A). Much like Mark
Occurrences, Flower is automatically invoked. To help you
locate where the variable is modified and referenced, Flower
highlights occurrences of that variable in the code. Since
fileName is a formal parameter to parseAndCache, any
method calling parseAndCache could modify fileName.
Those methods reside in other files, so Flower provides
links to their locations (B1). Rather than move your
mouse up to the top of the editor window, you click on
parseAndCache (B2), which conveniently links to the
first call site, getQueries. Flower opens getQueries
and highlights the location in that method where fileName
passed to parseAndCache and shows that the value
is passed to getQueries from createTables,
createProcedures, executeSQLFile, and
dropTables as seen in Fig. 1.

V. PRELIMINARY EVALUATION

We performed a preliminary evaluation of Flower with eight
programmers performing two code navigation tasks.3 As a
baseline, we compare our tool against the existing suite of
Eclipse tools (Open Declaration, Mark Occurrences, and Call
Hierarchy). Our goals in this study were to (a) determine what
types of navigation activities Flower effectively supports and
fails to support and (b) get feedback on the usability of Flower.
To answer (a), we measured how quickly and accurately
participants completed different activities. The remainder of
this section describes our participants, study design, and task
selection, then concludes with our approach to answer (b).

All participants were graduate students at the time of the
study with a mean of five years of professional programming
experience. We recruited participants using a convenience
sampling approach. Each participant used Flower for one
task and Eclipse’s tools for the other task. To control for
learning and fatigue effects, we permuted the order participants
received each tool and performed each task. Before the study,
we asked participants to report whether they were familiar with

3Study materials at: https://figshare.com/s/49edec2b4810fbf5b2a0

the Eclipse IDE. This information helped us balance Eclipse
novices across groups.

We based our tasks in this study on two tasks (Tasks 1
and 3) from a prior study [3]. For these tasks, participants
navigated across several classes in an open source Java medical
records application containing over 50,000 lines of code. In
the previous study, participants used a think-aloud protocol to,
among other things, describe their program navigation strate-
gies. Here, we did not interrupt, prompt, or ask participants to
think aloud until after they had completed the tasks, as to not
distort their task completion time.

The two tasks we chose are complementary in that Task 1
required participants to navigate up the call graph, inspecting
the callers of the initial method. On the other hand, Task
2 required participants to inspect the methods called by the
initial method. For Task 1, we asked participants to tell us
whether a method ever receives user-provided input. For Task
2, we asked participants to tell us whether a form field is
validated before being sent to the database. To ensure all
participants had a baseline familiarity, we trained participants
on the appropriate tools preceding each task. To evaluate the
effectiveness of the navigation tools rather than participants’
familiarity with a particular code base, we asked participants
to navigate code they had not previously contributed to.

We collected screen and audio recordings of each partici-
pant’s tasks. To evaluate the usability of Flower, we adminis-
tered an adapted version of the Post-Study System Usability
Questionnaire (PSSUQ) [19]. We modified the questionnaire
by replacing “this system” with “this tool” and asked questions
from the System Quality and Interface Quality categories.
To prompt discussion about the usability of Flower, we also
asked participants open-ended questions based on applicable
categories from Nielsen’s usability heuristics [20].

VI. RESULTS

Here we present the results of our preliminary evaluation.
We tested whether participants performed differently — in
terms of task completion time and correctness — using the full
suite of Eclipse tools, compared with Flower. We tested overall
task completion time using two-tailed, unpaired, two-sample,
t-tests and task correctness using chi-squared tests. The tests
failed to identify a significant difference in completion time
and correctness between Flower and the Eclipse suite of tools.

https://figshare.com/s/49edec2b4810fbf5b2a0

In the remainder of this section, we present our observations
about the types of activities Flower seemed to support. We
organize these results thematically into three topics:

Approachable Interface: Compared to other PSSUQ ques-
tions, participants responded most positively to the three
questions about Flower’s simplicity, how easy it was to use,
and how easy it was to learn. These responses seem to indicate
that participants were most enthusiastic about Flower’s min-
imalistic interface. Participants reiterated these sentiments in
their responses to the open-ended questions. For the most part,
participants felt it was easy to remember how to use Flower
and that it featured a “consistent interface.”

Branchless Navigation: For Task 1, all participants cor-
rectly navigated up the call graph and did so faster with Flower
compared to the Eclipse tools. With Flower, participants’ mean
completion time was 276 seconds, compared to 402 seconds
with the Eclipse tools.

The first two steps in this task involved navigating a portion
of the call graph that did not include any branches. In other
words, participants started in the parseSQLFile method,
which was only called in one location, parseAndCache.
The parseAndCache method was only called in one
method getQueries. Participants equipped with our tool
were strictly faster in navigating the first step up this
branchless chain. The mean times for participants to reach
parseAndCache with Flower and the Eclipse tools were 8
seconds and 44 seconds, respectively. These two results sug-
gest that Flower successfully adhered to the LOW BARRIERS
TO INVOCATION design principle.

Branching and Backtracking: For Task 2, participants
were more accurate with Flower. Two participants (P3 and
P6) navigated to the correct validation method with Flower.
Only one (P8) did so with the Eclipse tools.

However, the mean completion time for Task 2 with Flower
was higher (385 seconds) compared to the Eclipse tools (251
seconds). Additionally, participants who used Flower for Task
2 scored the tool lower on the PSSUQ than those who
used it for Task 1. Based on open-ended responses and our
observations of participants, we provide one likely explanation
for this deficiency. Participants were required to sift through
more variable references and method calls to complete Task
2. In navigating this more complex program structure, when
participants took missteps they found it difficult to backtrack.
To a lesser extent, we observed this same difficulty during
Task 1. After navigating through several chains of method
invocations with Flower, P7 felt like she had reached a “dead
end” and was unsure of how to navigate back to where she
came from. Similarly, after reaching a top-level method, P1
asked, “How can I return back to where I came from?”

VII. DISCUSSION

A. Systematic Navigation

Participants completed simple navigation tasks quickly and
accurately with Flower, perhaps due to its minimalistic inter-
face. However, when the task required participants to navigate

more complex semantic structures, participants demanded fea-
tures that would allow them to navigate more systematically.
Many existing tools support systematic exploration through
the use of secondary views containing either hierarchically
structured lists of methods (e.g. Call Hierarchy and Analyze
Data Flow) or call graph visualizations (e.g. Reacher [4]). In
keeping with Flower’s minimalistic design and trying to pre-
serve Flower’s LOW BARRIERS TO INVOCATION, we envision
several design changes that might enable Flower to support
more systematic navigation. Similar to Whyline [5], Flower
could use animation to transition more smoothly between
locations, perhaps giving users a sense of naturally moving
through the code. By tracking developers’ progress, Flower
could also display already-visited locations differently than
unexplored methods either positionally or using colors:

B. Synergistic Tools

Navigation without tool support can be frustrating and
unfruitful. However, full-featured navigation tools might be
too cumbersome for simple navigation tasks and too complex
for unfamiliar users. We envision Flower serving as a stepping
stone to more sophisticated navigation tools. The design
principles of LOW BARRIERS TO INVOCATION and IN SITU
NAVIGATION enable users to quickly begin navigating using
Flower. We imagine that Flower could detect when users reach
“dead ends” or code that contains many complex branches.
Upon detecting one of these situations, Flower could facilitate
the user’s transition to a more heavy-weight tool by either
recommending or automatically invoking a tool that features
additional navigation visualizations.

VIII. STUDY LIMITATIONS

Our study had several limitations. Due to the preliminary
nature of this study, we recruited relatively few participants
and only had them perform two tasks. Although our study
materials do not indicate we created Flower, some participants
may have deduced it was our tool. As a result, participants
may have inflated their positive responses to the PSSUQ due to
social desirability bias. Accordingly, we focus on participants’
relative responses rather than their absolute values.

IX. CONCLUSION

We presented a new tool, Flower, that helps developers
navigate program flow with its minimalistic interface. Flower
explores the void between tool-less navigation strategies and
cumbersome flow visualization tools. Based on our prelimi-
nary evaluation, Flower was most effective when developers
wished to navigate program structures with few branches.

ACKNOWLEDGMENTS

We graciously thank our study participants for their time.
We also thank Tyler Albert, Shubham Goyal, and members
of the Developer Liberation Front for their thoughtful input.
This material is based upon work supported by the National
Science Foundation under grant number 1318323.

REFERENCES

[1] M. P. Robillard, W. Coelho, and G. C. Murphy, “How effective develop-
ers investigate source code: An exploratory study,” IEEE Transactions
on Software Engineering, vol. 30, no. 12, pp. 889–903, 2004.

[2] T. D. LaToza and B. A. Myers, “Hard-to-answer questions about code,”
in Evaluation and Usability of Programming Languages and Tools.
ACM, 2010, p. 8.

[3] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford, “Ques-
tions developers ask while diagnosing potential security vulnerabilities
with static analysis,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2015. ACM,
2015, pp. 248–259.

[4] T. D. LaToza and B. A. Myers, “Visualizing call graphs,” in Visual
Languages and Human-Centric Computing (VL/HCC), 2011 IEEE Sym-
posium on, Sept 2011, pp. 117–124.

[5] A. J. Ko and B. A. Myers, “Designing the whyline: A debugging
interface for asking questions about program behavior,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’04. New York, NY, USA: ACM, 2004, pp. 151–158.

[6] V. Sinha, D. Karger, and R. Miller, “Relo: Helping users manage
context during interactive exploratory visualization of large codebases,”
in Proceedings of the 2005 OOPSLA Workshop on Eclipse Technology
eXchange, ser. eclipse ’05. New York, NY, USA: ACM, 2005, pp.
21–25.

[7] T. Karrer, J.-P. Krämer, J. Diehl, B. Hartmann, and J. Borchers,
“Stacksplorer: Call graph navigation helps increasing code maintenance
efficiency,” in Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology, ser. UIST ’11. New York, NY, USA:
ACM, 2011, pp. 217–224.

[8] B. de Alwis and G. C. Murphy, “Using visual momentum to explain
disorientation in the eclipse ide,” in Proceedings of the Visual Languages
and Human-Centric Computing, ser. VLHCC ’06. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 51–54.

[9] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in Pro-
ceedings of the 35th ACM/IEEE International Conference on Software
Engineering, ser. ICSE ’13. IEEE, 2013, pp. 672–681.

[10] R. DeLine, A. Khella, M. Czerwinski, and G. Robertson, “Towards
understanding programs through wear-based filtering,” in Proceedings
of the 2005 ACM Symposium on Software Visualization, ser. SoftVis
’05. New York, NY, USA: ACM, 2005, pp. 183–192.

[11] R. DeLine and K. Rowan, “Code canvas: Zooming towards better
development environments,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 2, ser. ICSE
’10. New York, NY, USA: ACM, 2010, pp. 207–210.

[12] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Transactions on Software
Engineering, vol. 32, no. 12, pp. 971–987, Dec 2006.

[13] “Eclipse,” https://eclipse.org/.
[14] “IntelliJ,” https://www.jetbrains.com/idea/.
[15] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan,

C. Coleman, F. Adeputra, and J. J. LaViola, Jr., “Code bubbles: A
working set-based interface for code understanding and maintenance,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’10. New York, NY, USA: ACM, 2010, pp. 2503–
2512.

[16] R. DeLine and K. Rowan, “Code canvas: Zooming towards better
development environments,” in Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 2, ser. ICSE
’10. New York, NY, USA: ACM, 2010, pp. 207–210.

[17] P. Anderson and M. Zarins, “The codesurfer software understanding
platform,” in Proceedings of the 13th International Workshop on Pro-
gram Comprehension, ser. IWPC ’05. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 147–148.

[18] E. Hill, L. Pollock, and K. Vijay-Shanker, “Exploring the neighbor-
hood with dora to expedite software maintenance,” in Proceedings of
the Twenty-second IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE ’07. New York, NY, USA: ACM, 2007,
pp. 14–23.

[19] J. R. Lewis, “IBM computer usability satisfaction questionnaires: Psy-
chometric evaluation and instructions for use,” International Journal of
Human-Computer Interaction, pp. 57–78, 1995.

[20] J. Nielsen, “Finding usability problems through heuristic evaluation,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’92. New York, NY, USA: ACM, 1992, pp. 373–380.

https://eclipse.org/
https://www.jetbrains.com/idea/

	Introduction
	Design Principles
	Related Work
	Flower
	Preliminary Evaluation
	Results
	Discussion
	Systematic Navigation
	Synergistic Tools

	Study Limitations
	Conclusion
	References

