Does money motivate software engineers to improve the
quality of their work?

Chris Brown
Department of Computer Science
North Carolina State University
Raleigh, NC
dcbrow10@ncsu.edu

ABSTRACT

Motivation, although difficult to quantify, is consid-
ered a key factor in software development quality.
Motivating software engineers is becoming increas-
ingly important as our society becomes more de-
pendent on technology and the problems we need to
solve become more complex. This paper describes
an observational study to discover how financial in-
centives influence the performance of software engi-
neers. The results also give some intriguing insights
into whether money is equally the same motivating
factor for different tasks that vary in cognitive lev-
els and require different problem-solving strategies
to solve.

Keywords

Motivation; Software Development; Software Engineers

1. INTRODUCTION

One of the most significant problems that companies are
facing today is finding good workers and then keeping them
motivated after they are hired. Bowditch and Buono noted
that one of the most important problems for organizations
concerns why workers perform and behave the way they do
at their jobs [4]. Companies want to know what makes peo-
ple work hard and how they can influence the people to have
positive attidues about their jobs, which is directly corre-
lated to their performance and the quality of the product
or service produced from their work. Vroom writes in Work
and Motivation that there is a strong relationship between
humans and their work, noting that it is necessary for em-
ployees to prefer working over not working, and created a
model to present a given person’s performance as a func-
tion of how motivated they are and their individual ability
(Performance = f(Ability x Motivation) [17].

Career analyst and best-selling author Dan Pink argues
that science has shown that the current methods of moti-
vating employees, such as offering raises or bonuses, do not

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

© 2016 ACM. ISBN 978-1-4503-2138-9.
DOI: 10.1145/1235

Effat Farhana
Department of Computer Science
North Carolina State University
Raleigh, NC
efarhan@ncsu.edu

work and a new approach is needed [11]. He notes that fi-
nancial incentives are not only outdated and ineffective, but
can actually be harmful to the workplace environment and
the overall economy as 21st century businesses have increas-
ingly complex and difficult problems to solve that require
more creative solutions.

The software engineering industry specifically has become
a vital part of our society with a variety of programmed
technology playing a crucial role in our everyday lives. The
National Institute of Standards and Technology notes that
software has become a crucial part of developing, producing,
marketing, and supporting products and services for nearly
every business sector in the U.S. [15]. Gartner Research
estimates that a total of $3.54 trillion dollars will be spent
on the IT industry worldwide in 2016 and that number will
continue increasing as the demand for software rises [19].

Unfortunately, software engineers are also one of the hard-
est groups of workers to keep motivated. The Software En-
gineering Institute reported that for a given software engi-
neering project, an average of 70% of the total costs goes
towards human resources and keeping the developers happy.
In 2008, the turnover rate for software engineers was above
20% and a typical programmer would stay at a company for
an average of only 23 months [16]. Our research will look to
see if monetary incentives can motivate computer program-
mers and improve their performance in completing software
engineering tasks as our society becomes increasingly reliant
on technology.

2. RELATED WORK

Motivation has been identified as a key factor affecting
many important aspects of software development such as
productivity, adherence to budgets, increases in staff reten-
tion, and reduced absenteeism [13]. Previous studies have
found that people working in the software industry are mo-
tivated by the nature of the job [5], technical challenge [14],
and problem solving. In addition, a predominant perspec-
tive in motivation research is that of the organization focus-
ing on issues such as turnover [1], performance [6], working
in a renowned company, and creating a meaningful prod-
uct [8]. These factors were found to be highlighted by more
programmers than financial incentives. Whitaker noted the
difficulty of motivating and keeping software developers and
concluded that clearly defined roles and rewards can help
keep developers happy, emphasizing companies should use
rewards after a goal has been met rather than giving incen-
tives such as bonuses or raises that are expected [18].

Many studies have also been performed across various dis-

ciplines to uncover the relationship between motivation and
performance. Economist Dan Ariely performed a set of ex-
periments where subjects were split into three groups that
would either receive small, moderate, or large rewards for
completing different tasks [2]. His study concluded that
“higher incentives led to worse performance”. In contrast,
Human Resources Management did a study demonstrating
the gap between what people say and what they do with
respect to pay [12]. When asked directly about the impor-
tance of pay, people tend to list it as the fifth most important
motivating factor in lists of potential motivators, but when
behavioral responses to changes in pay were taken into ac-
count salary was found to be the most crucial incentive.

Our project is based on a 1962 psychology study per-
formed by Sam Glucksberg, who wanted to determine the
influence of incentives on problem solving [9]. Glucksberg
divided participants into two groups for two different ex-
periments, a "high-drive” group that was told ahead of time
that they would receive a monetary reward and a "low-drive”
group that would not be compensated. He found that the
high-drive group performed well in a basic version of task
that did not require much critical thinking, but they per-
formed much worse than the low-drive group in a problem
solving task that required a creative solution. Our exper-
iment implements a theoretical replication of Glucksberg’s
study to discover how monetary incentives specifically im-
pact the performance of software engineers and their ability
to complete software development tasks requiring creative
and non-creative solutions.

3. METHODOLOGY

We aimed to investigate how monetary incentives affected
the performance of software developers in performing tasks.
Our study is a theoretical replication of a psychology study
by Glucksberg geared specifically towards software engineers
and programming tasks [9]. We wanted to determine:

RQ1: Do financial incentives impact the performance
of software engineers? and

RQ2: Do monetary rewards have a different impact
on software developers when solving more creative
problems?

We had participants perform two debugging tasks and mea-
sured if financial incentives had an impact on their perfor-
mance in completing the tasks.

3.1 The Two Tasks

Glucksberg performed two different experiments to exam-
ine how incentives impacted two different types of problem
solving strategies, functional fixedness and perceptual recog-
nition. Functional fixedness was a term introduced by Karl
Duncker used to describe a cognitive bias that prevents peo-
ple from using an object other than the way it is traditionally
used [7]. People must overcome functional fixedness in order
to find a solution to more complex and creative problems.
On the other hand, perceptual recognition involves using
perception and the senses to solve a problem.

For our study, we decided to use pseudocode debugging
tasks for the evaluation rather than have participants solve
programming problems by writing code. Pseudocode was
used to avoid any bias and prevent the participants’ previ-

ous experiences and knowledge of a particular programming
language from impacting the results. We decided to use de-
bugging because it has become the most important activity
in software development, with finding, comprehending, and
fixing bugs taking up 70-80% of software engineers’ time [10].
Additionally, debugging is a programming activity that can
require both of the types of problem-solving examined by
Glucksberg in his study. Perceptual recognition is required
to search through the source code and find a mistake. Func-
tional fixedness can also be used to find bugs in the code
in unexpected places and can help developers come up with
an efficient solution to fix the error without breaking other
parts of the program.

One of our tasks was categorized as non-creative because
it was a simple debugging task with a very straight-forward
solution (Appendix B). The error is easy to find perceptu-
ally, but it was also very easy to overlook if subjects did
not look carefully enough. Participants could go through
the code linearly and, based on the specifications we gave
them, would find that there is a typo in line 5 when the
program checks the length of the password. The program
should return false when the password length is less than 8,
but instead there is a greater than sign.

The other task was more creative debugging task, which
required a deeper understanding of the program logic to find
and fix the bug (Appendix A). The error is not as easy to
discover, and appears in line 20 of the code. Functional
fixedness comes into play here because count++ is an oper-
ation normally used for incrementing the value of a number
in computer programming. However, the ++ operator is a
postfiz increment operator which is used correctly in this
program. Bloch and Gafter point out in Java Puzzlers that
running a similar program in Java will always return zero
because count = count++ is equivalent to doing

int tmp = count;
count = count + 1;
count = tmp;

or saving the initial value of count, incrementing the value of
count, and then resetting count back to the original value [3].
There is also an extra factor in that undergraduate students
taking classes towards an accelerated master’s degree are
counted as graduate students. Participants would not be
able to easily figure out the error using perception alone,
and would have to work through the code and possibly try
an example to see the error. There are also multiple possible
solutions to fix the bug in the code, but the simplest one is
to replace line 20 with just count++. We designed these two
debugging tasks to find out if financial incentives drive the
quality of problem solving and if it also had an impact on
the type of strategies required to solve the problem.

3.2 Participants

Six participants showed interest in taking part in our study.
We conducted a pre-survey for each participant before per-
forming our study in order to get demographic and back-
ground information for each person. All of the subjects
graduate students at NC State University with previous
computer programming and debugging experience, and have
worked in various roles such as software developer, tester,
architect, and manager for different companies such as Am-
docs, Bank of America, Wells Fargo, Samsung, Synopsis,
WeightWatchers, NC State, creating a start-up, and more.

Table 1: Participant Demographics

Academic Industry
Participant | Exp. (years) | Exp. (years) Group
P1 [§ 6 1
P4 8 2 2
P5 5 2 1
P6 [§ 2 2
pP7 6 0 1
P8 5 14 2

* P2 and P3 did not come at scheduled time for study.

Table 1 provides additional information about of the partic-
ipants who took part in our study.

All of our participants had a technical undergraduate bach-
elor’s degree in computer science or electrical engineering.
Participants had mean professional experience of 4.3333 years
(SD=5.1251) ranging from 0 to 14. After filling out the
pre-survey, participants were placed into one of two differ-
ent groups to complete the study. Group 1 performed the
non-creative task first and then were offered a monetary re-
ward to complete the creative task, and Group 2 completed
the creative task first and was then offered money for the
non-creative task. We did this to determine if financial in-
centives not only had an impact on the performance of soft-
ware developers, but also if it influenced how they use differ-
ent problem-solving strategies to solve software engineering
problems.

3.3 Procedure

To complete the tasks, participants were provided pens
and paper with a pseudocode program to figure out their
solution and use sketches if needed. We wanted our study
to represent a real-world situation, so the researchers acted
as managers of a software company developing an educa-
tional application to store information about the students in
a school. We handed over the tasks to each participants and
then instructed each participant to debug two pseudocode
programs and come up with a solution to fix it. Partici-
pants were given a maximum of 10 minutes to complete the
task and were unaware that rewards were provided as part
of out study. For each person we asked them to complete
the first task without offering them any incentives. Before
completing the second task, participants were told that the
top performer would get $25 and the participants who fin-
ished in the top 25% would get $5 based on the efficiency
and accuracy of completing the task.

3.4 Analysis Methodology

After completion of the two tasks, each participant com-
pleted a semi-structured post-interview session to get more
information on specifically how the monetary incentives in-
fluenced how they solved the first problem compared to the
second one and discover what their motivations were as a
software developer. Task completion time and a correct so-
lution were used to determine the best participant and the
top 25% of performers. Statistical analysis was performed
based on two performance measures, efficiency and accu-
racy, to help determine how financial incentives impacted
the performance in completing our tasks.

4. RESULTS

This section will present the results of our evaluation di-
vided into quantitative results analyzing the difference in
times of the subjects between the two tasks and qualitative
results based on the post interviews with each participant.

4.1 Quantitative Results

The time to complete the tasks were measured in minutes.
For each task category, we define the two ”"Drive” levels as
follows:

Drive=High: Offered money for performance.
Drive=Low: No monetary incentive for performance.

The mean, standard deviation of solution time for each
drive levels and the total number of failures are presented in
Table 2.

Table 2: Solution Time to Solve Tasks
Task Drive | No of | Solution Time (Mins.)
Category Failure | Mean SD
Creative | High 1 6.267 2.646
Low 0 5.842 0.335
Non High 0 4.606 2.852
Creative Low 0 0.999 0.311

We also performed unpaired t-test on solution time for
both task categories. The null hypothesis was:

Hy: Monetary incentive is unrelated to performance
of software engineers.

Table 3: Unpaired t-test Result
Task t-value P Accept/ Reject
Category value Hy
Creative 0.276 | 0.796 Accept Hp

Non 2.177 | 0.095
Creative

Accept Hp

From Table 2, it is evident that offering money actually
had degraded the performance of participants of both task
categories. The result of t-test also aligns with post inter-
view result responses. We have to accept the null hypothe-
sis Hp, that offering monetary benefit has no impact on the
quality of performance.

4.2 Qualitative Results

After completing the experiment, we conducted a short
semi-structured interview with each participant in order to
get more information about their computer science back-
ground and ask about the study itself. All of the partici-
pants mentioned they had previous experience with debug-
ging code and solving creative problems using computer pro-
gramming. Additionally, all of the participants that had pro-
fessional development experience received a raise or bonus
while they were employed. None of the participants thought
that our debugging tasks were unfair or too difficult to solve.

Most participants mentioned that offering a financial in-
centive had some impact on their ability to solve the de-
bugging task we provided. The most popular response we

received was that the monetary reward made the participant
work faster than they wanted and not at their own pace (P1,
P4). P6 said that it made her “more focused”. P8 also men-
tioned that the reward had an impact on how he solved the
second task and he was faster. Money put more pressure on
participants to perform and solve the problem quicker but
impacted their performance.

Our interviews also showed that money is not one of the
main motivators for software developers. We asked partici-
pants what motivated them to study computer science and
work as a software engineer, and only one subject said his
main motivation for working in industry was “to earn a liv-
ing” (P8). Most of the answers we received were interest in
technology and programming, a desire to work on interest-
ing projects, creating cool products, working with “cutting
edge technology” (P5), an ability to learn and apply specific
computer science concepts such as machine learning (P1)
and artificial intelligence (P5), etc. This shows us that the
most important motivating factor for software engineers is
the work itself rather than extrinsic motivators such as mon-
etary incentives.

5. DISCUSSION

Our study gave some insights into our research questions,
but we were unable to reject our null hypothesis or get sig-
nificant results.

5.1 Do financial incentives impact the perfor-
mance of software engineers?

Our first research question wanted to discover if offering
money had an impact on the performance of developers per-
forming software engineering tasks. RQ1 would have im-
plications in industry because most companies use financial
incentives such as raises or bonuses to encourage their em-
ployees to perform at a higher rate and keep them happy,
but that may not be the best method for motivation. Our
results showed that, on average, monetary rewards had a
negative impact on the performance of our participants.

The total average time to complete the high-drive tasks
was 5.437 minutes while low-drive tasks took 3.421 minutes,
however this difference in the times was not statistically sig-
nificant. The most important contribution to this research
question comes in the qualitative results, where four par-
ticipants mentioned that offering the monetary reward had
some type of impact on how they solved the second task.
Additionally, only one person cited money as a motivation
to work in industry while everyone else was more motivated
by the projects themselves and products they would develop.

5.2 Do monetary rewards have a different im-
pact on software developers when solving
more creative problems?

For the second research question, we wanted to deter-
mine if money had an impact on performance when differ-
ent strategies were needed to solve the problem. We at-
tempted to create two different tasks, one that required per-
ceptual recognition and one that required a more creative
solution using functional fixedness. Problems today are be-
coming more complex and require more creative solutions,
and Glucksberg found that while financial incentives helped
his participants in perceptual recognition tasks, it hurt those
completing the functional fixedness task.

Our results showed that financial incentives had a negative
impact on both problem-solving strategies in our tasks. P8
was the only one who had a faster time when he was offered
money, completing the non-creative task. On average the
non-creative task completion time was faster in the high
and low drive groups compared to the creative task, but
there was still an increase on average and results were not
statistically significant between groups. P6 mentioned the
money caused her to only focused on the “more complicated-
looking part” of the non-creative task making her overlook a
“very simple detail”, and said she probably would have solved
the task sooner without the monetary reward. The results
for RQ2 shows that money did not have a different affect on
debugging tasks using perceptual recognition or functional
fixedness and we may need a better way to define ‘creative’
and ‘non-creative’ problems in software engineering.

5.3 Limitations

There were several limitations to our experiment. We
hoped to get more people but were only able to get six par-
ticipants to complete our study with three in each group.
The subjects also weren’t very representative of the popula-
tion we want to study, using South Asian master’s students
to represent all software engineers. We also lost the record-
ing for P7 and had one participant (P8) who is enrolled as a
graduate student at NC State online and currently working
in industry in Charlotte so we had to complete the study
with him remotely using Google Hangouts.

During the study, several participants did not believe we
were really offering money and thought it was fake. P5
specifically mentioned he didn’t think the money was real
until late in the task and he failed to solve it. We tried to
divide the groups evenly based on the industry experience,
but we assigned groups before the study when participants
signed up for a time and two students (P2 and P3) did not
show up for their session leading to a large difference in av-
erage years of work between Group 1 (2.6667) and Group
2 (6). Additionally, even though participants did not get a
financial incentive to complete the study they did have some
incentive by receiving academic credit.

6. CONCLUSION

Our study was unable to replicate the results from Sam
Glucksberg’s experiment on the influence of drive in differ-
ent problem solving strategies for software engineers. He
found that financial incentives negatively impacted the per-
formance of subjects for a task that required functional fixed-
ness and had a positive affect on participants in tasks that in-
volved perceptual recognition. Even though our results were
not statistically significant, it contributes insight into better
methods to motivate software engineers which is becoming
increasingly important as problems become more complex
and require more creative solutions and our society becomes
more reliant on software and technology.

7. ACKNOWLEDGMENTS

We would like to thank all of the students who partic-
ipated in our study and thank Dr. Emerson Murphy-Hill
who advised us on this project as part of the Software Engi-
neering as a Human Activity course (CSC 710) and we also
owe him $10.

[14]

[15]

[16]

[17]

[18]

REFERENCES

R. Agarwal and T. Ferratt. Retention and the career
motives of it professionals. In ACM SIGCPR
Conference, pages 158-166, 2000.

D. Ariely, U. Gneezy, G. Loewenstein, and N. Mazar.
Large stakes and big mistakes. Review of Economic
Studies, pages 451-469, 2009.

J. Bloch and N. Gafter. Java Puzzlers: Traps, Pitfalls,
and Corner Cases. Addison-Wesley Professional, 2005.
J. L. Bowditch and A. F. Buono. A Primer on
Organizational Behavior. John Wiley & Sons, inc., 4th
edition, 1997.

J. Burn, L. Ma, and E. N. Tye. Managing it
professionals in a global environment. SIGCPR
Comput. Pers, 16(3):11-19, 1995.

D. Darcy and M. Ma. Exploring individual
characteristics and programming performance:
Implications for programmer selection. In Proceedings
of HICSS 05, pages 314a—314a, 2005.

K. Duncker and L. Lees. On problem-solving. Number
v. 58 in Psychological monographs. The American
psychological association, inc., 1945.

A. Franca and F. da Silva. An empirical study on
software engineers motivational factors. In Empirical
Software Engineering and Measurement, 2009. ESEM
2009, pages 405-409. 3rd International Symposium on,
15-16 Oct 2009.

S. Glucksberg. The influence of strength of drive on
functional fixedness and perceptual recognition.
Journal of Experimental Psychology, 63(1):36, 1962.
A. J. Ko and B. A. Myers. Designing the whyline: A
debugging interface for asking questions about
program behavior. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’04, pages 151-158, New York, NY, USA, 2004.
ACM.

D. Pink. The puzzle of motivation. TEDGlobal, July
2009.

S. L. Rynes, B. Gerhart, and K. A. Minette. The i
mportance of pay in employee motivation:
Discrepancies between what people say and what they
do. Human Resource Management, 43(4):381-394,
2004.

R. Sach, H. Sharp, and M. Petre. Continued
involvement in software development: Motivational
factors. In Proceedings of the 2010 ACM-IEEE
International Symposium on Empirical Software
Engineering and Measurement, ESEM 10, pages
44:1-44:4, 2010.

F. Tanner. On motivating engineers. In Engineering
Management Conference, IEMC 03, pages 214218,
2003.

G. Tassey. The Economic Impact of Inadequate
Infrastructure for Software Testing. National Institute
Of Standards & Technology, May 2002.

I. Uy. On the high turnover rate of software developers
or how to retain your best software developers and
programmers, 2010.

V. H. Vroom. Work and Motivation. John Wiley &
Sons, inc., 1964.

K. Whitaker. Motivating and keeping software
developers. Computer, 30(1):126-128, Jan 1997.

[19] V. Woods and R. van der Meulen. Gartner says
worldwide it spending is forecast to grow 0.6 percent
in 2016, 2016.

APPENDIX
A. CREATIVE TASK

1 students = list of all students in the system

2

3 /* Function to return the number of computer science
graduate

4 students enrolled in the school.

5

6 Note: Undergraduate students taking classes towards the
7 Accelerated Bachelor‘s/Master‘s should also be included.
*

8 GetCSCGradCount()

9 count =0

10 for student = each element in students

11 add = false

12 if student.major == “CSC”

13 if student.degree in [“PhD”, “MS”, “MCS”, “MA”]
14 add = true

15 else

16 for ¢ = every class student has passed

17 if c.subject==“CSC” and c.number>500
18 add = true

19 if add == true

20 count = count++

21 return count

B. NON-CREATIVE TASK

1 /*Unity IDs must be 8 or more characters with at least
one

2 letter followed by one or more numbers */

3 ValidateID (username)

Let letter, number = false

5 if username.length > 8

6 return false

7 for ¢ = each character in username

8

I

if c is a letter and number == false
9 letter = true
10 continue
11 else if c is a digit
12 number = true
13 continue
14 else
15 return false

16 return letter and number

